簡易檢索 / 詳目顯示

研究生: 吳育萱
YU-HSUAN WU
論文名稱: 添加不同黏度尼龍對聚醚-聚醯胺嵌段共聚物的發泡行為研究
Nylon as a filler to the foaming behavior of Pebax - Effect of nylon viscosity
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 賴森茂
Sun-Mou Lai
何明樺
Ming-Hua Ho
王鎮杰
Jenn-Jye Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 135
中文關鍵詞: 聚醚-聚醯胺嵌段共聚物抗縮劑批次發泡流變
外文關鍵詞: Polyether-polyamide block copolymer, Anti-shrinkage agent, Batch foaming, Rheology
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用聚醚-聚醯胺嵌段共聚物(polyether block amide, Pebax)以超臨界二氧化碳作為發泡劑探討 Pebax 發泡型態,由於熱塑性彈性體(TPE)之發泡材料會有發泡後收縮現象,會影響到成品性及型態,目前對於 Pebax 泡珠製備方面的文獻較少,同時也沒有文獻探討抗縮劑黏度對於彈性體泡珠製備方面的研究。
    在過去本實驗室透過添加剛性高分子較低黏度聚醯胺 12 (PA-L)作為 Pebax 的抗縮劑改善 Pebax 發泡後收縮之情形,並觀察 Pebax 與 PA 12 相容情形,再額外添加高分子擴鏈劑(BASF Joncryl ADR-4368C, ADR)改善其泡孔破裂的情形。
    在本實驗的第一部分將較高黏度的聚醯胺 12 (PA-H)共混作為 Pebax 的抗縮劑,在含浸壓力 2000 psi 的條件下,以不同含浸溫度(80°C-140°C),通過一步法製備泡珠,成功分析 Pebax 添加高黏度的聚醯胺 12 (PA-H)的發泡行為,含浸溫度 130°C 時且PA-H 添加量達 20 wt%時,膨脹倍率最高的膨脹倍率可達到 7.02,同時樣品具有非常明顯的回澎現象。然而在不同的發泡溫度下,添加 20 wt%的 PA-H 高分子發泡後仍會觀察到破裂現象。添加擴鏈劑 ADR 後,泡體破裂現象得以改善,最高的膨脹倍率仍
    可達到 6.50。本實驗研究結果與添加低黏度聚醯胺 12 (PA-L)實驗結果相互討論,對於不同黏度的抗縮劑,膨脹倍率的變化較不明顯,雖然較高黏度的抗縮劑使 Pebax 發泡材料具有非常明顯的回膨現象,但熔體強度過高同時也會限制泡孔的成長。
    本研究第二部分將 Pebax 於 240°C 之下退火不同時間 10 min, 20 min, 30 min 改變 Pebax 材料的流變性質,增加其儲存模量,觀察其發泡行為的變化,在不添加抗縮劑的情況之下,退火 30 min 的 Pebax 樣品膨脹倍率可達到 7.49,並且有 20%的回澎現象,而退火樣品於發泡之後大部分中間皆會出現明顯的裂縫。


    In this study, polyether block amide (Pebax) was foamed using supercritical carbon
    dioxide as foaming agent. Since the thermoplastic elastomer (TPE) foam material shrink after foaming, the shrinkage affects the finished product and shape. At present, there are few literatures on the preparation of Pebax beads, and there is no literature discussing the preparation of elastomer beads with anti-shrinkage agents of different viscosities. In the past, rigid polymer with relatively low viscosity polyamide 12 (PA-L) was added as an antishrinkage agent for Pebax to reduce the Pebax foam shrinkage, and to observe the compatibility of Pebax with PA 12. At the same time, an additional polymer chain extender (BASF Joncryl ADR-4368C, ADR) was added to reduce the cell rupture.
    In this study, the higher viscosity polyamide 12 (PA-H) was blended as an antishrinkage agent for Pebax. The Pebax bead foam was prepared by one-step foaming under the saturation pressure of 2000 psi with different saturation temperatures of 80°C-140°C. When the saturation temperature reached 130°C and the loading level of PA-H reached 20wt%, the highest expansion ratio could reach 7.02, and obvious foam re-expand phenomenon was observed. However, at different foaming temperatures, cracking was still observed after adding 20 wt% of PA-H polymer foaming. After adding the chain-enclosed agent ADR, the cell cracking phenomenon was improved, and the highest expansion ratio could still reach 6.50. The results of this experimental study are compared with the experimental results of adding PA-L. For anti-shrinkage agents with different viscosities, the change of expansion ratio is less obvious. Although the anti-shrinkage agent of higher viscosity makes the Pebax foam material have a very obvious rebound phenomenon, but the high melt strength will also
    limit the growth of cells.

    目錄 摘要 I ABSTRACTIII 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XV 第一章、緒論 1 第二章、文獻回顧 3 2.1 聚醚-聚醯胺熱塑性彈性體之簡介 3 2.1.1 聚醚-聚醯胺嵌段共聚物的結構和反應機制 4 2.1.2 聚醚-聚醯胺嵌段共聚物的分類 6 2.1.3 聚醚-聚醯胺嵌段共聚物特性 8 2.1.4 聚醚-聚醯胺熱塑性彈性體發泡 14 2.2 聚醯胺簡介 18 2.3 擴鏈劑-ADR 20 2.2 高分子發泡材料 22 2.2.1 發泡劑 24 2.2.2 彈性體發泡機制 25 2.2.2.1 氣體溶解 (gas dissolution) 25 2.2.2.2 泡孔成核 (cell nucleation) 25 2.2.2.3 泡孔成長(cell growth) 27 2.2.2.4 泡孔穩定(cell stabilization) 28 2.2.3 批次發泡 28 2.2.4 泡珠材料 29 2.2.5 彈性體發泡的挑戰 30 第三章、實驗方法 35 3.1 實驗藥品 35 3.2 實驗儀器 37 3.3 實驗流程與步驟 39 3.3.1 實驗架構 39 3.3.2 Pebax 與 PA12-L25 混煉 40 3.3.3 Pebax 與 PA12-L25 以及擴鏈劑 ADR 混煉 40 3.3.4 一步法批次發泡 41 3.3.5 熱壓成型 42 3.4 測量方法 42 3.4.1 示差掃描量熱儀(DSC) 42 3.4.3 熱機械性質分析儀 (TMA) 43 3.4.4 PVT 測試儀 43 3.4.4 流變試驗 44 3.4.4.1 剪切流變 44 3.4.4.2 拉伸流變 45 3.4.5 掃描式電子顯微鏡 (SEM) 46 3.5 發泡材料分析 46 3.5.1 密度量測 46 3.5.2 發泡材料膨脹倍率和收縮率分析 47 3.5.3 計算泡孔尺寸(cell size) &泡孔密度(cell density) 47 第四章、結果與討論 48 4.1 Pebax/PA12/ADR 性質分析 48 4.1.1 示差掃描量熱儀(DSC) 48 4.1.2 熱機械性質分析儀 (TMA) 53 4.1.3 PVT 測試儀 54 4.1.4 流變試驗 55 4.1.4.1 剪切流變 55 4.1.4.2 拉伸流變 59 4.1.5 批次發泡分析 65 4.1.5.1 Pebax/PA12 批次發泡分析 65 4.1.5.2 不同黏度的 PA-12 發泡結果比較 69 4.1.5.3 Pebax/PA12/ADR 批次發泡分析 72 4.1.5.4 不同黏度的 PA-12 ADR 發泡結果比較 76 4.2 Pebax 退火性質對於發泡的影響 80 4.2.1 示差掃描量熱儀(DSC) 80 4.2.2 熱機械性質分析儀 (TMA) 83 4.2.3 流變試驗 84 4.2.3.1 剪切流變 84 4.2.3.2 拉伸流變 85 4.2.4 Pebax 退火批次發泡分析 87 第五章、結論 91 參考文獻 93 附錄 A Pebax / PA-H & Pebax / PA-L DSC 101 附錄 B Pebax/PA-L/ADR 之剪切流變頻率掃描 102 附錄 C Pebax/PA-H & Pebax/PA-L 膨脹倍率和收縮率 104 附錄 D Pebax/PA-H & Pebax/PA-L 泡孔尺寸和泡孔密度 106 附錄 E Pebax/PA-H ADR & Pebax/PA-L ADR 膨脹倍率和收縮率 108 附錄 F Pebax/PA-H ADR & Pebax/PA-L ADR 泡孔尺寸和泡孔密度110 附錄 G 退火樣品膨脹倍率和收縮率 112 附錄 H 退火樣品頻率掃描 113 附錄 I Pebax 剪切測試 114 附錄 J Pebax 低溫脆性試驗 117

    參考文獻
    1. Y. Pang, Y. Cao, W. Zheng, C.B. Park, A comprehensive review of cell structure variation and general rules for polymer microcellular foams, Chemical Engineering Journal, 430, (2022), 1-11.
    https://doi.org/10.1016/j.cej.2021.132662.
    2. J.G. Drobny, Chapter 1 Introduction in Handbook of Thermoplastic Elastomers, Second Edition. ed., Elsevier, Amsterdam, (2014), 1-11.
    https://doi.org/10.1016/B978-0-323-22136-8.00001-6.
    3. M.R. Barzegari, N. Hossieny, D. Jahani, C.B. Park, Characterization of
    hard-segment crystalline phase of poly(ether-block-amide) (PEBAX®) thermoplastic elastomers in the presence of supercritical CO2 and its impact on foams, Polymer, 114, (2017), 15-27.
    https://doi.org/10.1016/j.polymer.2017.02.088.
    4. Arkema Inc., Pebax® Elastomer Family, 2022.
    https://www.extremematerials-arkema.com/en/product-families/pebaxelastomer-family/. (Accessed 2/19 2022).
    5. Y. Cao, Y. Pang, X. Dong, D. Wang, W. Zheng, Cell Structure Variation in
    Poly(ether-mb-amide) copolymer foams induced by chemi-crystallization,
    Industrial & Engineering Chemistry Research, 59(24), (2020), 11340-11349. https://doi.org/10.1021/acs.iecr.0c01580.
    6. W. Zhai, J. Jiang, C.B. Park, A review on physical foaming of thermoplastic
    and vulcanized elastomers, Polymer Reviews, 62(1), (2022), 95-141.
    https://doi.org/10.1080/15583724.2021.1897996.
    7. R. Zhang, K. Huang, S. Hu, Q. Liu, X. Zhao, Y. Liu, Improved cell morphology and reduced shrinkage ratio of ETPU beads by reactive blending, Polymer Testing, 63, (2017), 38-46.
    https://doi.org/10.1016/j.polymertesting.2017.08.007.
    8. J. Drobny, Chapter 10 Thermoplastic Elastomers Based on Polyamides in Handbook of Thermoplastic Elastomers, 2007, 235-247.
    https://doi.org/10.1016/B978-081551549-4.50011-6.
    9. R.-P. Eustache, Chapter 10 Poly(Ether-b-Amide) Thermoplastic Elastomers: Structure, Properties, and Applications in Handbook of Condensation
    Thermoplastic Elastomers, 2005, p 263-281.
    10. D.J. Lohse, N. Hadjichristidis, Microphase separation in block copolymers,
    Current Opinion in Colloid & Interface Science, 2(2), (1997), 171-176.
    https://doi.org/https://doi.org/10.1016/S1359-0294(97)80023-4.
    11. S. Todros, A.N. Natali, M. Piga, G.A. Giffin, G. Pace, V. Di Noto, Interplay
    between chemical structure and ageing on mechanical and electric relaxations in poly(ether-block-amide)s, Polymer Degradation and Stability 98(6), (2013), 1126-1137.
    https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2013.03.014.
    12. I. Yilgör, E. Yilgör, G.L. Wilkes, Critical parameters in designing segmented
    polyurethanes and their effect on morphology and properties: A comprehensive review, Polymer, 58, (2015), A1-A36.
    https://doi.org/https://doi.org/10.1016/j.polymer.2014.12.014.
    13. S. Gong, S. Zhao, X. Chen, H. Liu, J. Deng, S. Li, X. Feng, Y. Li, X. Wu,
    K. Pan, Thermoplastic Polyamide Elastomers: Synthesis, Structures/Properties, and Applications, Macromolecular Materials and Engineering, 306(12), (2021), 2100568.
    https://doi.org/https://doi.org/10.1002/mame.202100568.
    14. F.L.G. Malet, Thermoplastic Poly(Ether-b-Amide) Elastomers: Synthesis in
    Handbook of Condensation Thermoplastic Elastomers, edited by S. Fakirov,
    2005, pp. 241-262. https://doi.org/https://doi.org/10.1002/3527606610.ch9.
    15. J.P. Sheth, J. Xu, G.L. Wilkes, Solid state structure–property behavior of
    semicrystalline poly(ether-block-amide) PEBAX®thermoplastic elastomers, Polymer 44(3) (2003) 743-756.
    https://doi.org/https://doi.org/10.1016/S0032-3861(02)00798-X.
    16. J.R. Flesher Jr, PEBAX polyether block amide - A new family of engineering tthermoplastic elastomers, in High Performance Polymers: Their Origin and Development, edited by R. B. Seymour and G. S.
    Krishenbaum, 1986, pp. 401-408.
    https://doi.org/10.1007/978-94-011-7073-4_38
    17. B. Tavernier, Influence of Processing Conditions on the Structure Development in PEBAX, Ph.D. Dissertation, Department of Chemical Engineering, KU Leuven (2009).
    18. E.V. Konyukhova, A.I. Buzin, Y.K. Godovsky, Melting of polyether block
    amide (Pebax): the effect of stretching, Thermochimica Acta, 391(1-2),
    (2002), 271-277. https://doi.org/10.1016/s0040-6031(02)00189-2.
    95
    19. R.K. Gupta, Chapter 6 Dynamic Mechanical Properties in Polymer and composite rheology, 2nd ed., Marcel Dekker, New York, 2000, 117-139.
    https://doi.org/10.1201/9781482273700
    20. I.K. Yang, P.H. Tsai, Abnormal Flow and Viscoelastic Behavior of Poly(Ether‐Block‐Amide), 832(1), (2006), 221-224. https://doi.org/10.1063/1.2204495.
    21. Y. Wang, Z. Wang, P. Zhu, X. Liu, L. Wang, X. Dong, D. Wang, Microphase
    separation/crosslinking competition-based ternary microstructure evolution
    of poly(ether-b-amide), RSC Advances, 11(12), (2021), 6934-6942.
    https://doi.org/10.1039/d0ra10627e.
    22. A. Ajji, L. Choplin, Rheology and dynamics near phase separation in a
    polymer blend: model and scaling analysis, Macromolecules, 24(18), (1991)
    5221-5223. https://doi.org/10.1021/ma00018a031.
    23. Y. Cao, Y. Pang, X. Dong, D. Wang, W. Zheng, To clarify the resilience of
    PEBA/MWCNT foams via revealing the effect of the nanoparticle and the cellular structure, ACS Applied Polymer Materials, 3(8), (2021), 3766-3775. https://doi.org/10.1021/acsapm.1c00307.
    24. Z. Xu, G. Wang, J. Zhao, A. Zhang, G. Zhao, Super-elastic and structuretunable poly(ether-block-amide) foams achieved by microcellular foaming, Journal of CO2 Utilization, 55, (2022), 101807.
    https://doi.org/https://doi.org/10.1016/j.jcou.2021.101807.
    25. J. Zhao, G. Wang, Z. Xu, A. Zhang, G. Dong, G. Zhao, C.B. Park, Ultraelastic and super-insulating biomass PEBA nanoporous foams achieved by combining in-situ fibrillation with microcellular foaming, Journal of CO2 Utilization, 57, (2022), 101891. https://doi.org/https://doi.org/10.1016/j.jcou.2022.101891.
    26. D. Dong, J. Ma, Z. Ma, Y. Chen, H. Zhang, L. Shao, J. Gao, L. Wei, A. Wei,
    S. Kang, Flexible and lightweight microcellular RGO@Pebax composites with synergistic 3D conductive channels and microcracks for piezoresistive sensors, Composites Part A: Applied Science and Manufacturing, 123, (2019), 222-231.
    https://doi.org/https://doi.org/10.1016/j.compositesa.2019.05.019.
    27. G. Wang, J. Zhao, C. Ge, G. Zhao, C.B. Park, Nanocellular poly(etherblock amide)/MWCNT nanocomposite films fabricated by stretchingassisted microcellular foaming for high-performance EMI shielding applications, Journal of Materials Chemistry C, 9(4), (2021), 1245-1258.
    https://doi.org/10.1039/d0tc04099a.
    28. S. Rhee, J.L. White, Crystal structure and morphology of biaxially oriented
    polyamide 12 films, Journal of Polymer Science Part B: Polymer Physics, 40(12), (2002), 1189-1200.
    https://doi.org/https://doi.org/10.1002/polb.10181.
    29. R. Zhang, K. Jariyavidyanont, M. Du, E. Zhuravlev, C. Schick, R. Androsch, Nucleation and crystallization kinetics of polyamide 12 investigated by fast scanning calorimetry, Journal of Polymer Science, 60(5), (2022), 842-855. https://doi.org/https://doi.org/10.1002/pol.20210813.
    30. A.C. Ruddy, G.M. McNally, G.M. Walker, The processing and performance
    of nylon 12/PEBAX blends, Annual Technical Conference - ANTEC, Conference Proceedings, 2006, pp. 1392-1396.
    31. D. Dörr, U. Kuhn, V. Altstädt, Rheological study of gelation and
    crosslinking in chemical modified polyamide 12 using a multiwave
    technique, Polymers 12 , Polymers, (2020), 12(4), 855
    https://doi.org/10.3390/polym12040855
    32. T. Standau, M. Nofar, D. Dörr, H. Ruckdäschel, V. Altstädt, A Review on
    Multifunctional Epoxy-Based Joncryl® ADR Chain Extended Thermoplastics, Polymer Reviews, (2021), 1-55.
    https://doi.org/10.1080/15583724.2021.1918710.
    33. O. Kriha, K. Hahn, P. Desbois, V. Warzelhan, H. Ruckdäschel, M. Hofmann, C. Exner, R. Hingmann, Expandable pelletized polyamide material, 2011. US 20110294910 A1
    34. C. E. Holmes, Huu, M. T. Le, S. Kerling, D. Kirupanantham, V. Altstädt, A.
    Fathi, D. Raps, C. Keilholz, T. Koeppl, P. L. M. Smith, J. Hill, A. Wardlaw,
    D. S. Price, J. Tarrier, C. Robertson , Expanded polyamide pellets and
    method for manufacturing molded components using them, WO2016030333A1.
    35. Y. Wang, X. Wang, Z. Du, J. Mi, C. Zhang, Evolution of cell morphology
    from sub-macroscale to nanoscale in modified thermoplastic polyether ester
    elastomer via supercritical CO2 foaming, The Journal of Supercritical
    Fluids, 171, (2021), 105186. https://doi.org/10.1016/j.supflu.2021.105186.
    36. Y. Kahraman, B. Özdemir, V. Kılıç, Y.A. Goksu, M. Nofar, Super toughened
    and highly ductile PLA/TPU blend systems by in situ reactive interfacial
    compatibilization using multifunctional epoxy-based chain extender,
    Journal of Applied Polymer Science, 138(20), (2021), 50457.
    https://doi.org/10.1002/app.50457.
    37. M. Manitiu, G. Scholz, B. Martin, G. Bilges, D. J. Chen, Thermoplastic polyurethane foamed articles comprising a thermoplastic polyurethane
    composition and an epoxy, functional styrene acrylic copolymer, 2018, US 20160280875A1.
    38. S.-K. Yeh, W.-H. Liu, Y.-M. Huang, Carbon Dioxide-Blown Expanded Polyamide Bead Foams with Bimodal Cell Structure, Industrial & Engineering Chemistry Research, 58(8), (2019), 2958-2969.
    https://doi.org/10.1021/acs.iecr.8b05195.
    39. M. Xu, Y. Chen, T. Liu, L. Zhao, C.B. Park, Determination of modified
    polyamide 6's foaming windows by bubble growth simulations based on rheological measurements, Journal of Applied Polymer Science, 136(42), (2019), 48138. https://doi.org/https://doi.org/10.1002/app.48138.
    40. Q. Ren, J. Wang, W. Zhai, S. Su, Solid State Foaming of Poly(lactic acid) Blown with Compressed CO2: Influences of Long Chain Branching and Induced Crystallization on Foam Expansion and Cell Morphology, Industrial & Engineering Chemistry Research, 52(37), (2013), 13411-13421. https://doi.org/10.1021/ie402039y.
    41. Z. Yang, C. Xin, W. Mughal, X. Li, Y. He, High-melt-elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multifunctional epoxide for foaming, Journal of Applied Polymer Science, 135(8), (2018), 45805. https://doi.org/10.1002/app.45805.
    42. 黃彥銘, 以批次發泡法製備聚醚-聚醯胺嵌段共聚物(PEBAX)發泡材料之研究, 碩士論文, 材料科學與工程系, 國立臺灣科技大學, 2019.
    43. T. Zhang, Y. Jang, E. Lee, S. Shin, H.-J. Kang, Supercritical CO2 Foaming of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate), 14(10), (2022), 2018.
    https://doi.org/10.3390/polym14102018
    44. M. Aksit, S. Gröschel, U. Kuhn, A. Aksit, K. Kreger, H.-W. Schmidt, V. Altstädt, Low-Density Polybutylene Terephthalate Foams with Enhanced Compressive Strength via a Reactive-Extrusion Process, Polymers, 12 (9) , (2020), 2021. https://doi.org/10.3390/polym12092021.
    45. Grand View Research, Polymer Foam Market Size, Share & Trends Analysis Report By Type (Polystyrene, Polyurethane, Polyolefin, Melamine, Phenolic, PVC), By Application, By Region, And Segment Forecasts, 2022 - 2030, 2022.
    https://www.grandviewresearch.com/industry-analysis/polymer-foammarket. (Accessed 07/11 2022).
    46. R. Dugad, G. Radhakrishna, A. Gandhi, Recent advancements in
    manufacturing technologies of microcellular polymers: a review, Journal of
    Polymer Research , 27(7), (2020), 182.
    https://doi.org/10.1007/s10965-020-02157-7.
    47. L.J. Lee, C.C. Zeng, X. Cao, X.M. Han, J. Shen, G.J. Xu, Polymer nanocomposite foams, Composites Science and Technology, 65(15-16), (2005), 2344-2363. https://doi.org/10.1016/j.compscitech.2005.06.016.
    48. V. Kumar, N.P. Suh, A process for making microcellular thermoplastic
    parts, Polymer Engineering and Science, 30(20), (1990), 1323-1329.
    https://doi.org/10.1002/pen.760302010.
    49. E. Aram, S. Mehdipour-Ataei, A review on the micro- and nanoporous polymeric foams: Preparation and properties, International Journal of Polymeric Materials and Polymeric Biomaterials, 65(7), (2015), 358-375.
    https://doi.org/10.1080/00914037.2015.1129948.
    50. A. Wong, L.H. Mark, M.M. Hasan, C.B. Park, The synergy of supercritical CO2 and supercritical N2 in foaming of polystyrene for cell nucleation, Journal of Supercritical Fluids, 90, (2014), 35-43.
    https://doi.org/10.1016/j.supflu.2014.03.001.
    51. R. Banerjee, S.S. Ray, Foamability and Special Applications of Microcellular Thermoplastic Polymers: A Review on Recent Advances and Future Direction, Macromolecular Materials and Engineering, 305(10), (2020), 2000366. https://doi.org/10.1002/mame.202000366.
    52. J.S. Colton, N.P. Suh, The nucleation of microcellular thermoplastic foam
    with additives: Part I: Theoretical considerations, Polymer Engineering and
    Science, 27(7), (1987), 485-492. https://doi.org/10.1002/pen.760270702.
    53. G. Wang, J. Zhao, K. Yu, L.H. Mark, G. Wang, P. Gong, C.B. Park, G. Zhao, Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms, Polymer, 119, (2017), 28-39. https://doi.org/10.1016/j.polymer.2017.05.016.
    54. C. Okolieocha, D. Raps, K. Subramaniam, V. Altstädt, Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review, European Polymer Journal, 73, (2015), 500-519.
    https://doi.org/10.1016/j.eurpolymj.2015.11.001.
    55. D. Raps, N. Hossieny, C.B. Park, V. Altstädt, Past and present developments in polymer bead foams and bead foaming technology, Polymer, 56, (2015), 5-19. https://doi.org/https://doi.org/10.1016/j.polymer.2014.10.078.
    56. T. Standau, C. Zhao, S. Murillo Castellón, C. Bonten, V. Altstädt, Chemical
    Modification and Foam Processing of Polylactide (PLA), Polymers, 11(2), (2019). https://doi.org/10.3390/polym11020306.
    57. D. Zhao, G. Wang, M. Wang, Investigation of the effect of foaming process
    parameters on expanded thermoplastic polyurethane bead foams properties using response surface methodology, Journal of Applied Polymer Science, 135(25), (2018), 46327. https://doi.org/https://doi.org/10.1002/app.46327.
    58. W. Wang, X. Liao, Y. He, J. Li, Q. Jiang, G. Li, Thermoplastic polyurethane/polytetrafluoroethylene composite foams with enhanced mechanical properties and anti-shrinkage capability fabricated with supercritical carbon dioxide, The Journal of Supercritical Fluids, 163, (2020), 104861.
    https://doi.org/https://doi.org/10.1016/j.supflu.2020.104861.
    59. R. Jiang, S. Yao, Y. Chen, T. Liu, Z. Xu, C.B. Park, L. Zhao, Effect of chain
    topological structure on the crystallization, rheological behavior and foamability of TPEE using supercritical CO2 as a blowing agent, The Journal of Supercritical Fluids, 147, (2019), 48-58.
    https://doi.org/10.1016/j.supflu.2019.02.006.
    60. H. Zheng, G. Pan, P. Huang, D. Xu, W. Zhai, Fundamental influences of crosslinking Structure on the cell morphology, creep property, thermal property, and recycling behavior of microcellular EPDM foams blown with compressed CO2, Industrial & Engineering Chemistry Research, 59(4), (2020), 1534-1548. https://doi.org/10.1021/acs.iecr.9b05611.
    61. F. Gunkel, A.N.J. Spörrer, G.T. Lim, D.S. Bangarusampath, V. Altstädt,
    Understanding melt rheology and foamability of polypropylene-based TPO blends, Journal of Cellular Plastics, 44(4), (2008), 307-325.
    https://doi.org/10.1177/0021955x08088858.
    62. A. Mohebbi, F. Mighri, A. Ajji, D. Rodrigue, Current issues and challenges in polypropylene foaming: a review, Cellular Polymers, 34(6), (2015), 299-338. https://doi.org/10.1177/026248931503400602.
    63. Y. Ma, H. Wen, C. Xin, Y. He, Chain extension of thermoplastic polyamide
    elastomer and its foaming performance, Journal of Applied Polymer Science, 139(22), (2022), 52233. https://doi.org/10.1002/app.52233.
    64. R.W.B. Sharudin, M. Ohshima, Preparation of microcellular thermoplastic elastomer foams from polystyrene-b-ethylene-butylene-b-polystyrene (SEBS) and their blends with polystyrene, 128(4), (2013), 2245-2254.
    https://doi.org/https://doi.org/10.1002/app.38104.
    65. E. Laguna-Gutierrez, R. Van Hooghten, P. Moldenaers, M.A. RodriguezPerez, Understanding the foamability and mechanical properties of foamed polypropylene blends by using extensional rheology, Journal of Applied Polymer Science, 132(33), (2015), 42430.
    https://doi.org/https://doi.org/10.1002/app.42430.
    66. S. Yamasaki, D. Nishiguchi, K. Kojio, M. Furukawa, Effects of aggregation structure on rheological properties of thermoplastic polyurethanes, Polymer,
    48(16), (2007), 4793-4803. https://doi.org/10.1016/j.polymer.2007.06.006.
    67. 陳姿瑜, 抗縮聚醚-聚醯胺嵌段發泡材料製備研究,碩士論文, 材料科學與工程系, 國立臺灣科技大學,碩士論文 台北市, 2020.
    68. S. Zheng, J. Huang, Y. Li, Q. Guo, A DSC study of miscibility and phase separation in crystalline polymer blends of phenolphthalein poly(ether ether
    sulfone) and poly(ethylene oxide), Journal of Polymer Science Part B: Polymer Physics, 35(9), (1997), 1383-1392.
    https://doi.org/https://doi.org/10.1002/(SICI)1099-0488(19970715)35:9<1383::AID-POLB8>3.0.CO;2-N.
    69. H. Boublil, E. Okoroafor, M. Belhoucine, J. Rault, M.G. Atochem, Morphology of polyamide and polyether block amide blends, Polymer Engineering & Science 29(10) (1989) 679-684.
    https://doi.org/10.1002/pen.760291010.
    70. 林達也; 越田展允; 及川政春 " 熱塑性聚氨酯發泡粒子成形體及其製造方法與熱塑性聚氨酯發泡粒子", TWI752029B
    71. 蔡秉宏, The Properties of Rheology and Microphase Transition of Polyether-block-amide, Chemical Engineering, 化工系,東海大學,博士論文, 2006.
    72. H. Münstedt, Extensional Rheology and Processing of Polymeric Materials, Int. Polym. Process. 33, (2018), 594-618. https://doi.org/10.3139/217.3532.
    73. M. Härth, J. Kaschta, D.W. Schubert, Shear and Elongational Flow Properties of Long-Chain Branched Poly(ethylene terephthalates) and Correlations to Their Molecular Structure, Macromolecules ,47(13), (2014), 4471-4478. https://doi.org/10.1021/ma5002657.
    74. S. Wu, Formation of dispersed phase in incompatible polymer blends: Interfacial and rheological effects, Polymer Engineering & Science, 27(5), (1987), 335-343. https://doi.org/10.1002/pen.760270506
    75. Z. Starý, Chapter 3 Thermodynamics and Morphology and Compatibilization of Polymer Blends, Characterization of Polymer Blends, 2014, pp. 93-132.
    https://doi.org/https://doi.org/10.1002/9783527645602.ch03.

    無法下載圖示 全文公開日期 2025/01/03 (校內網路)
    全文公開日期 2025/01/03 (校外網路)
    全文公開日期 2025/01/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE