簡易檢索 / 詳目顯示

研究生: 彭思穎
Ssu-Ying Peng
論文名稱: 感知無線電網路對於次要用戶採用緩衝器 與頻譜租用之連結允入控制研究
A Study on Call Admission Control with Buffer and Spectrum Leasing for Secondary Users in Cognitive Radio Networks
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 鍾順平
王乃堅
林永松
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 220
中文關鍵詞: 感知無線電網路連結允入控制頻譜租用緩衝器次要用戶阻塞機率次要用戶中斷機率成功送達率
外文關鍵詞: Cognitive radio network, preemptive priority, spectrum leasing, buffer, call admission control,, SU blocking probability, SU dropping probability
相關次數: 點閱:315下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著越來越多的裝置追求無線化和行動化的時代來臨,無線頻譜的需求急劇的增加。然而,由於無線頻譜資源有限,並且通常需要官方授權,因此用戶需要支付較高的成本來使用無線頻譜。另一方面,並非所有用戶的資料都需要高度即時性傳輸。為了提高頻譜的利用率,學界提出了感知無線電網路(CRN)的概念,並且定義用戶成兩種類型,即主要用戶(PU)和次要用戶(SU)。主要用戶是頻譜的擁有者,而次要用戶不是頻譜擁有者,如果主要用戶不使用頻譜,則會允許次要用戶來使用無線頻譜的服務。由於主要用戶對於次要用戶具有佔先的優先權,因此我們利用頻譜租用方案來改善次要用戶的服務品質。具體的來說,我們將無線頻譜的一部分分配為租用頻譜。在該租用頻譜中,主要用戶和次要用戶具有相同的優先權,並且次要用戶被中斷的機率降低。此外,系統配有緩衝器以容納被阻塞的次要用戶和被中斷服務的次要用戶,因此次要用戶有更多機會去使用無線傳輸服務。另外,為了增加次要用戶的成功送達率,我們應用三種連結允入控制(CAC)方案以允許SU執行通道聚合。我們分析了不同CAC方案對主要用戶和次要用戶的效能指標的影響。我們重視的效能指標包括主要用戶/次要用戶阻塞機率和次要用戶中斷機率。最後但並非最不重要的是,為了驗證解析結果的準確性,我們使用Visual Studio 2013以C ++編寫電腦模擬程式,以便用於比較解析結果和模擬結果。


As more and more equipment and devices are pursuing the usage of wireless and mobile networks, the demand for wireless spectrum has increased dramatically. However, as the wireless spectrum is limited resource and usually needs a license issued by the authorities, users need to pay a high cost to use the spectrum. On the other hand, not all users’ data require highly immediacy. For the purpose of improving spectrum utilization, the concept of Cognitive Radio Network (CRN) is proposed, and two types of users, namely the primary user (PU) and secondary user (SU) are defined. A PU is the owner of the licensed spectrum, while an SU is not a spectrum owner that is allowed to use the services of the wireless spectrum if the PU is not using it. Since a PU has a preemptive priority over an SU, spectrum leasing is utilized to improve the quality of service of SUs. Specifically, a part of the wireless spectrum is allocated as the leased spectrum. In this leased spectrum, PUs and SUs have the same priority, and the probability of SU being interrupted is reduced. In addition, the system is equipped with a buffer to accommodate the blocked SUs and the preempted SUs, so that the SUs have more opportunities to use the wireless transmission service. Furthermore, in order to increase the SU throughput, three CAC schemes are applied to allow SU to perform channel aggregation. The performance impacts of different CAC schemes on the performance measures of PUs and SUs are analyzed. The performance measures of interest include PU/SU blocking probability and SU dropping probability. Last but not least, to verify the accuracy of the analytical results, a computer simulation program is written in C++ with Visual Studio 2013 for comparing the above measurements between the analytical model and the simulation model.

摘要 I ABSTRACT II CONTENTS III List of Tables V List of Figures VI 1. Introduction 1 2. System Model 3 2.1 CAC1 4 2.2 CAC2 6 2.3 CAC3 7 3. Analytical Model 10 3.1 CAC1 10 3.1.1 Balance Equations 10 3.1.2 Steady State Probability Distribution 15 3.1.3 Performance Measures 16 3.2 CAC2 19 3.2.1 Balance Equations 19 3.2.2 Steady State Probability Distribution 28 3.2.3 Performance Measures 29 3.3 CAC3 32 3.3.1 Balance Equations 33 3.3.2 Steady State Probability Distribution 45 3.3.3 Performance Measures 46 4. Simulation Model 92 4.1 CAC1 92 4.1.1 Main Program 92 4.1.2 Timing Subprogram 93 4.1.3 PU Arrival Subprogram 93 4.1.4 PU Departure Subprogram 94 4.1.5 SU Arrival Subprogram 94 4.1.6 SU Departure Subprogram 95 4.1.7 Buffer Drop Subprogram 95 4.1.8 Performance Measures 96 4.2 CAC2 99 4.2.1 Main Program 99 4.2.2 Timing Subprogram 99 4.2.3 PU Arrival Subprogram 100 4.2.4 PU Departure Subprogram 100 4.2.5 SU Arrival Subprogram 101 4.2.6 SU Departure Subprogram 101 4.2.7 Buffer Drop Subprogram 102 4.2.8 Performance Measures 102 4.3 CAC3 105 4.3.1 Main Program 105 4.3.2 Timing Subprogram 105 4.3.3 PU Arrival Subprogram 106 4.3.4 PU Departure Subprogram 106 4.3.5 SU Arrival Subprogram 107 4.3.6 SU Departure Subprogram 108 4.3.7 Buffer Drop Subprogram 109 4.3.8 Performance Measures 109 5. Numerical Results 128 5.1 Comparison of CAC1 and CAC2 129 5.1.1 PU Mean Arrival Rate 129 5.1.2 PU Mean Departure rate 133 5.1.3 SU Mean Arrival Rate 137 5.1.4 SU Mean Departure rate 141 5.2 Comparison of CAC1, CAC2, and CAC3 146 5.2.1 PU Mean Arrival Rate 146 5.2.2 PU Mean Departure rate 151 5.2.3 SU Mean Arrival Rate 156 5.2.4 SU Mean Departure rate 162 5.2.5 Buffer Size 168 6. Conclusions 218 References 219 List of Tables Table 3-1 49 Table 3-2 50 Table 3-3 58 Table 3-4 73 List of Figures Fig. 2-1 The illustration of the licensed spectrum for a CRN with spectrum leasing 4 Fig. 4-1 The flow chart of main program for CAC1, CAC2, and CAC3 112 Fig. 4-2 The flow chart of timing subprogram for CAC1, CAC2, and CAC3 113 Fig. 4-3 The flow chart of PU arrival subprogram for CAC1 114 Fig. 4-4 The flow chart of PU departure subprogram for CAC1 115 Fig. 4-5 The flow chart of SU arrival subprogram for CAC1 116 Fig. 4-6 The flow chart of SU departure subprogram for CAC1 117 Fig. 4-7 The flow chart of buffer dropping subprogram for CAC1, CAC2, and CAC3 118 Fig. 4-8 The flow chart of PU arrival subprogram for CAC2 119 Fig. 4-9 The flow chart of PU departure subprogram for CAC2 120 Fig. 4-10 The flow chart of SU arrival subprogram for CAC2 121 Fig. 4-11 The flow chart of SU departure subprogram for CAC2 122 Fig. 4-12 The flow chart of PU arrival subprogram for CAC3 123 Fig. 4-13 The flow chart of PU departure subprogram for CAC3 124 Fig. 4-14 The flow chart of SU arrival subprogram for CAC3 125 Fig. 4-15 The flow chart of SU departure subprogram for CAC3 126 Fig. 5-1-1-1 PU blocking probability vs. PU mean arrival rate 173 Fig. 5-1-1-2 SU blocking probability vs. PU mean arrival rate 173 Fig. 5-1-1-3 SU dropping probability vs. PU mean arrival rate 174 Fig. 5-1-1-4 PU throughput vs. PU mean arrival rate 174 Fig. 5-1-1-5 SU throughput vs. PU mean arrival rate 175 Fig. 5-1-1-6 average number of PUs in system vs. PU mean arrival rate 175 Fig. 5-1-1-7 average number of SUs in system vs. PU mean arrival rate 176 Fig. 5-1-1-8 average PU system delay vs. PU mean arrival rate 176 Fig. 5-1-1-9 average SU system delay vs. PU mean arrival rate 177 Fig. 5-1-2-1 PU blocking probability vs. PU mean departure rate 178 Fig. 5-1-2-2 SU blocking probability vs. PU mean departure rate 178 Fig. 5-1-2-3 SU dropping probability vs. PU mean departure rate 179 Fig. 5-1-2-4 PU throughput vs. PU mean departure rate 179 Fig. 5-1-2-5 SU throughput vs. PU mean departure rate 180 Fig. 5-1-2-6 average number of PUs in system vs. PU mean departure rate 180 Fig. 5-1-2-7 average number of SUs in system vs. PU mean departure rate 181 Fig. 5-1-2-8 average PU system delay vs. PU mean departure rate 181 Fig. 5-1-2-9 average SU system delay vs. PU mean departure rate 182 Fig. 5-1-3-1 PU blocking probability vs. SU mean arrival rate 183 Fig. 5-1-3-2 SU blocking probability vs. SU mean arrival rate 183 Fig. 5-1-3-3 SU dropping probability vs. SU mean arrival rate 184 Fig. 5-1-3-4 PU throughput vs. SU mean arrival rate 184 Fig. 5-1-3-5 SU throughput vs. SU mean arrival rate 185 Fig. 5-1-3-6 average number of PUs in system vs. SU mean arrival rate 185 Fig. 5-1-3-7 average number of SUs in system vs. SU mean arrival rate 186 Fig. 5-1-3-8 average PU system delay vs. SU mean arrival rate 186 Fig. 5-1-3-9 average SU system delay vs. SU mean arrival rate 187 Fig. 5-1-4-1 PU blocking probability vs. SU mean departure rate 188 Fig. 5-1-4-2 SU blocking probability vs. SU mean departure rate 188 Fig. 5-1-4-3 SU dropping probability vs. SU mean departure rate 189 Fig. 5-1-4-4 PU throughput vs. SU mean departure rate 189 Fig. 5-1-4-5 SU throughput vs. SU mean departure rate 190 Fig. 5-1-4-6 average number of PUs in system vs. SU mean departure rate 190 Fig. 5-1-4-7 average number of SUs in system vs. SU mean departure rate 191 Fig. 5-1-4-8 average PU system delay vs. SU mean departure rate 191 Fig. 5-1-4-9 average SU system delay vs. SU mean departure rate 192 Fig. 5-2-1-1 PU blocking probability vs. PU mean arrival rate 193 Fig. 5-2-1-2 SU blocking probability vs. PU mean arrival rate 193 Fig. 5-2-1-3 SU dropping probability vs. PU mean arrival rate 194 Fig. 5-2-1-4 PU throughput vs. PU mean arrival rate 194 Fig. 5-2-1-5 SU throughput vs. PU mean arrival rate 195 Fig. 5-2-1-6 average number of PUs in system vs. PU mean arrival rate 195 Fig. 5-2-1-7 average number of SUs in system vs. PU mean arrival rate 196 Fig. 5-2-1-8 average PU system delay vs. PU mean arrival rate 196 Fig. 5-2-1-9 average SU system delay vs. PU mean arrival rate 197 Fig. 5-2-1-10 average number of channels occupied by each SU vs. PU mean arrival rate 197 Fig. 5-2-2-1 PU blocking probability vs. PU mean departure rate 198 Fig. 5-2-2-2 SU blocking probability vs. PU mean departure rate 198 Fig. 5-2-2-3 SU dropping probability vs. PU mean departure rate 199 Fig. 5-2-2-4 PU throughput vs. PU mean departure rate 199 Fig. 5-2-2-5 SU throughput vs. PU mean departure rate 200 Fig. 5-2-2-6 average number of PUs in system vs. PU mean departure rate 200 Fig. 5-2-2-7 average number of SUs in system vs. PU mean departure rate 201 Fig. 5-2-2-8 average PU system delay vs. PU mean departure rate 201 Fig. 5-2-2-9 average SU system delay vs. PU mean departure rate 202 Fig. 5-2-2-10 average number of channels occupied by each SU vs. PU mean departure rate 202 Fig. 5-2-3-1 PU blocking probability vs. SU mean arrival rate 203 Fig. 5-2-3-2 SU blocking probability vs. SU mean arrival rate 203 Fig. 5-2-3-3 SU dropping probability vs. SU mean arrival rate 204 Fig. 5-2-3-4 PU throughput vs. SU mean arrival rate 204 Fig. 5-2-3-5 SU throughput vs. SU mean arrival rate 205 Fig. 5-2-3-6 average number of PUs in system vs. SU mean arrival rate 205 Fig. 5-2-3-7 average number of SUs in system vs. SU mean arrival rate 206 Fig. 5-2-3-8 average PU system delay vs. SU mean arrival rate 206 Fig. 5-2-3-9 average SU system delay vs. SU mean arrival rate 207 Fig. 5-2-3-10 average number of channels occupied by each SU vs. SU mean arrival rate 207 Fig. 5-2-4-1 PU blocking probability vs. SU mean departure rate 208 Fig. 5-2-4-2 SU blocking probability vs. SU mean departure rate 208 Fig. 5-2-4-3 SU dropping probability vs. SU mean departure rate 209 Fig. 5-2-4-4 PU throughput vs. SU mean departure rate 209 Fig. 5-2-4-5 SU throughput vs. SU mean departure rate 210 Fig. 5-2-4-6 average number of PUs in system vs. SU mean departure rate 210 Fig. 5-2-4-7 average number of SUs in system vs. SU mean departure rate 211 Fig. 5-2-4-8 average PU system delay vs. SU mean departure rate 211 Fig. 5-2-4-9 average SU system delay vs. SU mean departure rate 212 Fig. 5-2-4-10 average number of channels occupied by each SU vs. SU mean departure rate 212 Fig. 5-2-5-1 PU blocking probability vs. buffer size 213 Fig. 5-2-5-2 SU blocking probability vs. buffer size 213 Fig. 5-2-5-3 SU dropping probability vs. buffer size 214 Fig. 5-2-5-4 PU throughput vs. buffer size 214 Fig. 5-2-5-5 SU throughput vs. buffer size 215 Fig. 5-2-5-6 average number of PUs in system vs. buffer size 215 Fig. 5-2-5-7 average number of SUs in system vs. buffer size 216 Fig. 5-2-5-8 average PU system delay vs. buffer size 216 Fig. 5-2-5-9 average SU system delay vs. buffer size 217 Fig. 5-2-5-10 average number of channels occupied by each SU vs. buffer size 217

[1] G. Staple and K. Werbach, “The End of Spectrum Scarcity,” IEEE Spectrum, vol. 41, No. 3, pp. 48-52, Mar. 2004.
[2] B. D. Omkarappa, J. B. Quintana, and H. Hämmainen, “Study of Spectrum Scarcity and Community Wireless Network Operators in India,” 2017 IEEE Conference on Internet of Things Business Models, Users, and Networks, DOI: 10.1109/CTTE.
2017.8260995, Copenhagen, Denmark, Nov. 2017.
[3] A. Petrin and P. G. Steffes, “Measurement and Analysis of Urban Spectrum Usage,” Int. Symposium on Advanced Radio Technologies, Mar. 2004.
[4] FCC, “Spectrum Policy Task Force Report,” Tech. Rep. Report of the Spectrum Efficiency Working Group, no. 02-155, Washington, DC, USA, Nov. 2002.
[5] M. Matinmikko-Blue, S. Yrjölä, V. Seppänen, P. Ahokangas, H. Hämmäinen, and M. Latva-aho, “Analysis of Spectrum Valuation Approaches: The Viewpoint of Local 5G Networks in Shared Spectrum Bands,” 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), DOI: 10.1109/ DySPAN.2018.8610409, Oct. 2018.
[6] F. A. P. D. Figueiredo, X. Jiao, W. Liu, R. M., I. Jabandžić, I. Moerman, “A Spectrum Sharing Framework for Intelligent Next Generation Wireless Networks,” IEEE Access, vol. 6, pp. 60704 – 60735, Oct 2018.
[7] J. Mitola III, “Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio,” Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 2000.
[8] J. Mitola III and G. Q. Maguire Jr., “Cognitive Radio: Making Software Radios More Personal,” IEEE Personal Commun., vol. 6, no. 4, pp. 13-18, Aug. 1999.
[9] I. A. M. Balapuwaduge, F. Y. Li, A. Rajanna, M. Kaveh, “Channel Occupancy-Based Dynamic Spectrum Leasing in Multichannel CRNs: Strategies and Performance Evaluation” IEEE Transactions on Communications, vol. 64, pp. 1313-1328, Jan. 2016.
[10] A. Y. Zakariya, S. I. Rabia, “Analysis of an Interruption-Based Priority for Multi-Class Secondary Users in Cognitive Radio Networks,” 2016 IEEE International Conference on Communications (ICC), DOI: 10.1109/ICC.2016. 7511542, May 2016
[11] Y. Wu, F. Hu, S. Kumar, M. Guo, K. Bao, “Spectrum Handoffs with Mixed-Priority Queueing Model over Cognitive Radio Networks,” 2013 IEEE Global Conference on Signal and Information Processing, DOI: 10.1109/ GlobalSIP.2013.6737121, Dec. 2013.
[12] S. Gunawardena, W. Zhuang, “Capacity Analysis and Call Admission Control in Distributed Cognitive Radio Networks,” IEEE Transactions on Wireless Communications, vol. 10, pp. 3110-3120, July. 2011.
[13] P. Garg, R. M. Sharma, “Spectrum aggregation in cognitive radio network,” 2016 International Conference on Computing, Communication and Automation (ICCCA), DOI: 10.1109/CCAA.2016.7813977, Noida, India, April 2016

無法下載圖示 全文公開日期 2024/08/05 (校內網路)
全文公開日期 2024/08/05 (校外網路)
全文公開日期 2024/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE