簡易檢索 / 詳目顯示

研究生: 吳采頻
Tsai-Pin Wu
論文名稱: 原位7Li固態核磁共振於預置鋰之研究與新型預置鋰方法之研發
Study of in-situ 7Li solid state NMR on pre-lithiation and development of novel pre-lithiation method
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 146
中文關鍵詞: 預置鋰原位7Li固態NMR硫化鋰鋰硫電池
外文關鍵詞: Pre-lithiation, in-situ 7Li solid state NMR, lithium sulfide, lithium sulfur batteries
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 Abstract 致謝 Acknowledgment Table of Contents List of Figure List of Table Chapter 1 Introduction and Background 1.1 Foreword 1.2 Development of lithium ion battery 1.3 Component and working principle of lithium ion battery 1.3.1 Positive material 1.3.2 Negative material 1.3.3 Electrolyte 1.3.4 Separator Chapter 2 Literature Review 2.1 Pre-lithiation 2.1.1 Physical Pre-lithiation 2.1.2 Chemical Pre-lithiation 2.1.3 Electrochemical Pre-lithiation 2.1.4 Adding the lithiated material as the electrode additives 2.2 Lithium sulfur battery 2.2.1 The mechanism of lithium sulfur battery 2.2.2 Challenges of lithium sulfur battery 2.2.3 Development of lithium sulfur battery 2.2.4 Solid state 7Li NMR and lithium sulfur battery Chapter 3 Experimental Material and Method 3.1 List of chemicals 3.2 List of equipment 3.3 Experiment preparation 3.3.1 Synthesis of SPAN 3.3.2 Preparation of electrodes 3.3.3 Coin cell 3.3.4 Preparation of NMR pouch cell 3.3.5 Preparation of dual cell 3.4 Material Analysis 3.4.1 Filed Emission-Scanning Electron Microscope 3.4.2 X-ray Diffraction 3.4.3 Solid State Nuclear Magnetic Resonance spectroscopy 3.4.4 Fourier-transform infrared spectroscopy 3.4.5 Raman spectroscopy 3.4.6 X-ray photoelectron spectroscopy 3.4.7 Electrochemical performance Chapter 4 Results and discussion 4.1 Structure analysis and electrochemical results of SPAN 4.2 Solid State 7Li NMR with pre-lithiation 4.2.1 Electrochemical pre-lithiation with lithium foil 4.2.2 Electrochemical pre-lithiation with lithium powder 4.2.3 Physical pre-lithiation with lithium powder 4.2.4 Electrochemical performance comparison 4.2.5 Summary 4.3 Pre-lithiation 4.3.1 Capacity of lithium source 4.3.2 Analysis of Li+ Nafion film 4.3.3 Pre-lithiation with Li+ Nafion film 4.3.4 Analysis of Li2SPAN electrode 4.3.5 Pre-lithiation with PVDF-HFP film 4.3.6 Electrochemical performance testing 4.3.7 Summary Chapter 5 Conclusion Chapter 6 Outlook Reference

[1] “18650 Rechargeable Battery Li-ion Battery pack for small household appliances-產品中心-Shenzhen VATS Power Source Co., LTD-.” [Online]. Available: http://hz-battery.com/cn/18-Suitability.html. [Accessed: 30-Dec-2019].
[2] J. B.Goodenough, “Rechargeable batteries: Challenges old and new,” J. Solid State Electrochem., vol. 16, no. 6, pp. 2019–2029, 2012.
[3] “Sony Global - Sony History Chapter13 Recognized as an International Standard.” [Online]. Available: https://www.sony.net/SonyInfo/CorporateInfo/History/SonyHistory/2-13.html. [Accessed: 30-Dec-2019].
[4] “A Look At The Top 5 Lithium-Ion Battery Manufacturers In 2019 | Seeking Alpha.” [Online]. Available: https://seekingalpha.com/article/4289626-look-top-5-lithium-ion-battery-manufacturers-in-2019. [Accessed: 30-Dec-2019].
[5] C. J.Northcott andM. B.Stein, “Panic disorder in pregnancy,” J. Clin. Psychiatry, vol. 55, no. 12, pp. 539–542, 1994.
[6] J. B.Goodenough andK. S.Park, “The Li-ion rechargeable battery: A perspective,” J. Am. Chem. Soc., vol. 135, no. 4, pp. 1167–1176, 2013.
[7] Christian Julien, “Comparative Issues of Cathode Materials for Li-Ion Batteries,” Inorganics, vol. 2, pp. 132–154, 2014.
[8] T.Fujita andK.Toda, “A new cathode material for batteries of high energy density,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 42, no. 9 B, pp. 6131–6134, 2003.
[9] A. W.Moses, H. G. G.Flores, J. G.Kim, andM. A.Langell, “Surface properties of LiCoO 2 , LiNiO 2 and LiNi 1-x Co x O 2,” Appl. Surf. Sci., vol. 253, no. 10, pp. 4782–4791, 2007.
[10] S.Wang, C.Zhou, Q.Zhou, G.Ni, andJ.Wu, “Preparation of LiFePO4/C in a reductive atmosphere generated by windward aerobic decomposition of glucose,” J. Power Sources, vol. 196, no. 11, pp. 5143–5146, 2011.
[11] R. D.Rauh, K. M.Abraham, G. F.Pearson, J. K.Surprenant, andS. B.Brummer, “A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte,” J. Electrochem. Soc., vol. 126, no. 4, pp. 523–527, 1979.
[12] T.Placke, R.Kloepsch, S.Dühnen, andM.Winter, “Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density,” J. Solid State Electrochem., vol. 21, no. 7, pp. 1939–1964, 2017.
[13] J.Kim, Y. U.Park, D. H.Seo, J.Kim, S. W.Kim, andK.Kang, “Mg and Fe Co-doped Mn based olivine cathode material for high power capability,” J. Electrochem. Soc., vol. 158, no. 3, pp. 249–254, 2011.
[14] M. D.Bhatt andC.O’Dwyer, “Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes,” Phys. Chem. Chem. Phys., vol. 17, no. 7, pp. 4799–4844, 2015.
[15] B.Flamme et al., “Guidelines to design organic electrolytes for lithium-ion batteries: Environmental impact, physicochemical and electrochemical properties,” Green Chem., vol. 19, no. 8, pp. 1828–1849, 2017.
[16] J. B.Goodenough andY.Kim, “Challenges for rechargeable Li batteries,” Chem. Mater., vol. 22, no. 3, pp. 587–603, 2010.
[17] “What is the Function of the Separator? – Battery University.” [Online]. Available: https://batteryuniversity.com/learn/article/bu_306_battery_separators. [Accessed: 03-Jan-2020].
[18] F.Holtstiege, P.Bärmann, R.Nölle, M.Winter, andT.Placke, “Pre-lithiation strategies for rechargeable energy storage technologies: Concepts, promises and challenges,” Batteries, vol. 4, no. 1, pp. 1–39, 2018.
[19] N.Liu, L.Hu, M. T.McDowell, A.Jackson, andY.Cui, “Prelithiated silicon nanowires as an anode for lithium ion batteries,” ACS Nano, vol. 5, no. 8, pp. 6487–6493, 2011.
[20] H.Sun, X.He, J.Ren, J.Li, C.Jiang, andC.Wan, “Hard carbon/lithium composite anode materials for Li-ion batteries,” Electrochim. Acta, vol. 52, no. 13, pp. 4312–4316, 2007.
[21] Y.Wang et al., “Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries,” Nanoscale, vol. 6, no. 15, pp. 8884–8890, 2014.
[22] Y.Li andB.Fitch, “Effective enhancement of lithium-ion battery performance using SLMP,” Electrochem. commun., vol. 13, no. 7, pp. 664–667, 2011.
[23] C. R.Jarvis, M. J.Lain, Y.Gao, andM.Yakovleva, “A lithium ion cell containing a non-lithiated cathode,” J. Power Sources, vol. 146, no. 1–2, pp. 331–334, 2005.
[24] V.V.Shinkarev, V. B.Fenelonov, andG. G.Kuvshinov, “Sulfur distribution on the surface of mesoporous nanofibrous carbon,” Carbon N. Y., vol. 41, no. 2, pp. 295–302, 2003.
[25] S.Zheng et al., “In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries,” ACS Nano, vol. 7, no. 12, pp. 10995–11003, 2013.
[26] H.Zhao et al., “Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design,” Nano Lett., vol. 14, no. 11, pp. 6704–6710, 2014.
[27] Z.Wang et al., “Application of Stabilized Lithium Metal Powder (SLMP®) in graphite anode - A high efficient prelithiation method for lithium-ion batteries,” J. Power Sources, vol. 260, pp. 57–61, 2014.
[28] Y.Yang, M. T.McDowell, A.Jackson, J. J.Cha, S. S.Hong, andY.Cui, “New nanostructured Li2S/Silicon rechargeable battery with high specific energy,” Nano Lett., vol. 10, no. 4, pp. 1486–1491, 2010.
[29] Y.Wu, T.Momma, S.Ahn, T.Yokoshima, H.Nara, andT.Osaka, “On-site chemical pre-lithiation of S cathode at room temperature on a 3D nano-structured current collector,” J. Power Sources, vol. 366, pp. 65–71, 2017.
[30] A.Veluchamy et al., “Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries,” J. Power Sources, vol. 188, no. 2, pp. 574–577, 2009.
[31] Z.Moorhead-Rosenberg, E.Allcorn, andA.Manthiram, “In situ mitigation of first-cycle anode irreversibility in a new spinel/FeSb lithium-ion cell enabled via a microwave-assisted chemical lithiation process,” Chem. Mater., vol. 26, no. 20, pp. 5905–5913, 2014.
[32] P. K.Nayak, T. R.Penki, B.Markovsky, andD.Aurbach, “Electrochemical performance of Li- and Mn- rich cathodes in full cells with prelithiated graphite negative electrodes,” ACS Energy Lett., vol. 2, no. 3, pp. 544–548, 2017.
[33] Y.Sun et al., “Hybrid lithium-ion capacitors with asymmetric graphene electrodes,” J. Mater. Chem. A, vol. 5, no. 26, pp. 13601–13609, 2017.
[34] H. J.Kim et al., “Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells,” Nano Lett., vol. 16, no. 1, pp. 282–288, 2016.
[35] A.Abouimrane et al., “Enabling high energy density Li-ion batteries through Li2O activation,” Nano Energy, vol. 27, pp. 196–201, 2016.
[36] Y.Bie, J.Yang, J.Wang, J.Zhou, andY.Nuli, “Li2O2as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries,” Chem. Commun., vol. 53, no. 59, pp. 8324–8327, 2017.
[37] K.Park, B. C.Yu, andJ. B.Goodenough, “Li3N as a Cathode Additive for High-Energy-Density Lithium-Ion Batteries,” Adv. Energy Mater., vol. 6, no. 10, pp. 1–7, 2016.
[38] Y.Zhan, H.Yu, L.Ben, Y.Chen, andX.Huang, “Electrochimica Acta Using Li 2 S to Compensate for the Loss of Active Lithium in Li-ion Batteries,” Electrochim. Acta, vol. 255, pp. 212–219, 2017.
[39] X.Su et al., “A new strategy to mitigate the initial capacity loss of lithium ion batteries,” J. Power Sources, vol. 324, pp. 150–157, 2016.
[40] M. S.Whittingham, “Lithium Batteries and Cathode Materials,” no. 607, 2004.
[41] R.Article, “Li – O 2 and Li – S batteries with high energy storage,” Nat. Mater., vol. 11, no. January, pp. 19–30, 2012.
[42] Y.Su, “Challenges and Prospects of Lithium À Sulfur Batteries,” vol. 46, no. 5, pp. 1125–1134, 2013.
[43] G.Li, S.Wang, Y.Zhang, M.Li, Z.Chen, andJ.Lu, “Revisiting the Role of Polysulfides in Lithium–Sulfur Batteries,” Adv. Mater., vol. 30, no. 22, pp. 1–19, 2018.
[44] A.Manthiram, Y.Fu, S.Chung, C.Zu, andY.Su, “Rechargeable Lithium − Sulfur Batteries,” 2014.
[45] S.Urbonaite, T.Poux, andP.Novák, “Progress Towards Commercially Viable Li-S Battery Cells,” Adv. Energy Mater., vol. 5, no. 16, pp. 1–20, 2015.
[46] M. R.Busche, P.Adelhelm, H.Sommer, H.Schneider, K.Leitner, andJ.Janek, “Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates,” J. Power Sources, vol. 259, pp. 289–299, 2014.
[47] R.Demir-Cakan, “Li-S Batteries: The Challenges, Chemistry, Materials and Future Perspectives,” London World Sci. Publ. Eur. c2017., 2017.
[48] X.Liang et al., “Improved cycling performances of lithium sulfur batteries with LiNO 3-modified electrolyte,” J. Power Sources, vol. 196, no. 22, pp. 9839–9843, 2011.
[49] Q.Zhu, Q.Zhao, Y.An, B.Anasori, H.Wang, andB.Xu, “Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery,” Nano Energy, vol. 33, no. January, pp. 402–409, 2017.
[50] J.Wang, J.Yang, J.Xie, andxu naixin, “A Novel Conductive Polymer ± Sulfur Composite,” Adv. Mater., vol. 050, no. 13, pp. 963–965, 2002.
[51] L.Yin, J.Wang, J.Yang, andY.Nuli, “A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries,” J. Mater. Chem., vol. 21, no. 19, pp. 6807–6810, 2011.
[52] S.Wei, L.Ma, K. E.Hendrickson, Z.Tu, andL. A.Archer, “Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites,” J. Am. Chem. Soc., vol. 137, no. 37, pp. 12143–12152, 2015.
[53] Y.Hu, B.Li, X.Jiao, C.Zhang, X.Dai, andJ.Song, “Stable Cycling of Phosphorus Anode for Sodium-Ion Batteries through Chemical Bonding with Sulfurized Polyacrylonitrile,” Adv. Funct. Mater., vol. 28, no. 23, pp. 1–6, 2018.
[54] Y.Zhang et al., “Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery,” Energy Storage Mater., vol. 21, no. December 2018, pp. 287–296, 2019.
[55] S.Wang, H.Chen, Z.Zhong, X.Hou, S.Hu, andJ.Wu, “Graphene-decorated sphere Li2S composite prepared by spray drying method as cathode for lithium-sulfur full cell,” Ionics (Kiel)., vol. 24, no. 11, pp. 3385–3392, 2018.
[56] T.Momma, Y.Wu, H.Mikuriya, H.Nara, andT.Osaka, “In-situ lithiation through an ‘injection’ strategy in the pouch type sulfur-graphite battery system,” J. Power Sources, vol. 430, no. May, pp. 228–232, 2019.
[57] M. U. M.Patel, I.Arčon, G.Aquilanti, L.Stievano, G.Mali, andR.Dominko, “X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components,” ChemPhysChem, vol. 15, no. 5, pp. 894–904, 2014.
[58] J.Xiao et al., “Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique,” Nano Letters, vol. 15, no. 5. pp. 3309–3316, 2015.
[59] D. M.Spori, “Structural Influences on Self-Cleaning Surfaces,” no. March, pp. 1–201, 2010.
[60] Z. L.Wang andJ. L.Lee, Electron Microscopy Techniques for Imaging and Analysis of Nanoparticles, 2nd ed., vol. 1. Elsevier Inc., 2008.
[61] C.O’Brien, “Sulfur Poisoning of Pd and PdCu Alloy Hydrogen Separation Membranes,” no. July, 2011.
[62] K.Krishnaveni et al., “Carbon Wrapping Effect on Sulfur/Polyacrylonitrile Composite Cathode Materials for Lithium Sulfur Batteries,” J. Nanosci. Nanotechnol., vol. 18, no. 1, pp. 121–126, 2017.
[63] T. N. L.Doan et al., “Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode,” J. Power Sources, vol. 241, pp. 61–69, 2013.
[64] X.Yu, J.Xie, Y.Li, H.Huang, C.Lai, andK.Wang, “Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries,” J. Power Sources, vol. 146, no. 1–2, pp. 335–339, 2005.
[65] X. G.Yu, J. Y.Xie, J.Yang, H. jiangHuang, K.Wang, andZ. S.Wen, “Lithium storage in conductive sulfur-containing polymers,” J. Electroanal. Chem., vol. 573, no. 1, pp. 121–128, 2004.
[66] J. T.Yeon, J. Y.Jang, J. G.Han, J.Cho, K. T.Lee, andN. S.Choi, “Raman Spectroscopic and X-ray Diffraction Studies of Sulfür Composite Electrodes during Discharge and Charge,” J. Electrochem. Soc., vol. 159, no. 8, pp. A1308–A1314, 2012.
[67] H. J.Chang et al., “Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ 6Li/7Li NMR and SEM,” J. Phys. Chem. C, vol. 119, no. 29, pp. 16443–16451, 2015.
[68] R.Bhattacharyya, B.Key, H.Chen, A. S.Best, A. F.Hollenkamp, andC. P.Grey, “In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries,” Nat. Mater., vol. 9, no. 6, pp. 504–510, 2010.
[69] F.Holtstiege, R.Schmuch, M.Winter, G.Brunklaus, andT.Placke, “New insights into pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy,” J. Power Sources, vol. 378, no. December 2017, pp. 522–526, 2018.
[70] M.Winter, J. O.Besenhard, M. E.Spahr, andP.Novák, “Insertion electrode materials for rechargeable lithium batteries,” Adv. Mater., vol. 10, no. 10, pp. 725–763, 1998.
[71] N. M.Trease, L.Zhou, H. J.Chang, B. Y.Zhu, andC. P.Grey, “In situ NMR of lithium ion batteries: Bulk susceptibility effects and practical considerations,” Solid State Nucl. Magn. Reson., vol. 42, pp. 62–70, 2012.
[72] T. chingLiu, “Synthesis and Characterization of Highly-stable Li2S-PAN Composite for Li-free-anode Lithium-sulfur Batteries Application.” 2017.
[73] S. S.Zhang, “A new finding on the role of LiNO3 in lithium-sulfur battery,” J. Power Sources, vol. 322, pp. 99–105, 2016.
[74] N.Ding et al., “Building better lithium-sulfur batteries: From LiNO2 to solid oxide catalyst,” Sci. Rep., vol. 6, no. June, pp. 1–10, 2016.
[75] J.Song, H.Noh, J.Lee, I. W.Nah, W.IlCho, andH. T.Kim, “In situ coating of Poly(3,4-ethylenedioxythiophene) on sulfur cathode for high performance lithium–sulfur batteries,” J. Power Sources, vol. 332, pp. 72–78, 2016.
[76] R.Buzzoni, S.Bordiga, G.Ricchiardi, G.Spoto, andA.Zecchina, “Interaction of H2O, CH3OH, (CH3)2O, CH3CN, and pyridine with the superacid perfluorosulfonic membrane nation: An IR and Raman study,” J. Phys. Chem., vol. 99, no. 31, pp. 11937–11951, 1995.
[77] H. Y.Liang, X. P.Qiu, S. C.Zhang, W. T.Zhu, andL. Q.Chen, “Study of lithiated Nafion ionomer for lithium batteries,” J. Appl. Electrochem., vol. 34, no. 12, pp. 1211–1214, 2004.
[78] P.Zeng, Y.Han, X.Duan, G.Jia, L.Huang, andY.Chen, “A stable graphite electrode in superconcentrated LiTFSI-DME/DOL electrolyte and its application in lithium-sulfur full battery,” Mater. Res. Bull., vol. 95, pp. 61–70, 2017.
[79] M. D.Walle, Z.Zhang, M.Zhang, X.You, Y.Li, andY. N.Liu, “Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite with synergistic effect for high performance of lithium–sulfur batteries,” J. Mater. Sci., vol. 53, no. 4, pp. 2685–2696, 2018.
[80] J.Guo, Z.Wen, M.Wu, J.Jin, andY.Liu, “Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode,” Electrochem. commun., vol. 51, pp. 59–63, 2015.
[81] J.Xu, W. H.Yao, Y. W.Yao, Z. C.Wang, andY.Yang, “Effect of fluoroethylene carbonate additive on the performance of lithium ion battery,” Wuli Huaxue Xuebao/ Acta Phys. - Chim. Sin., vol. 25, no. 2, pp. 201–206, 2009.

無法下載圖示 全文公開日期 2025/01/17 (校內網路)
全文公開日期 2025/01/17 (校外網路)
全文公開日期 2025/01/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE