簡易檢索 / 詳目顯示

研究生: 游家齊
Chia-Chi Yu
論文名稱: 金屬玻璃薄膜之室溫塑性變形行為及其作為中溫熱電模組中擴散阻障層之研究
Investigations of Room-temperature Plastic Deformation Behavior of Thin Film Metallic Glass and Its Application as A Diffusion Barrier Layer for Mid-temperature Thermoelectric Modules
指導教授: 朱瑾
Jinn P. Chu
口試委員: 高振宏
C. Robert Kao
薛承輝
Chun-Hway Hsueh
顏怡文
Yee-wen Yen
鄭憲清
Shian-Ching Jang
吳欣潔
Hsin-Jay Wu
朱瑾
Jinn P. Chu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 110
中文關鍵詞: 金屬玻璃鍍層擴散阻障層中溫熱電模組AgSbTe2PbTeI-doped PbTe
外文關鍵詞: thin-film metallic glass, diffusion barrier, mid-temperature thermoelectric modules, AgSbTe2, PbTe, I-doped PbTe
相關次數: 點閱:363下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高操作溫度下,熱電材料和金屬接觸之間因產生相互擴散而使熱電模組中接合點的熱穩定性衰退,故此問題需要加以解決,以便將熱電技術應用於永續能源領域。在本研究中,我們利用金屬玻璃鍍層(TFMG)的無晶界結構來延緩熱電材料在400℃高溫時效環境下與金屬接觸間的擴散。我們首先研究厚度為260 nm的金屬玻璃鍍層在室溫下之四點彎曲疲勞和奈米壓痕實驗中的變形行為。在疲勞試驗中,我們發現金屬玻璃鍍層遭受約4000%剪切應變並呈現如橡膠般的變形行為,此外,在奈米壓痕延伸穿過鍍層進入基材的實驗觀察到鍍層厚度均勻減少高達61.5%,並且沒有剪切帶或裂縫產生,在疲勞及奈米壓痕兩種實驗下,我們發現在嚴重的剪切變形區金屬玻璃鍍層及塊材基材發生擴散接合。
    接著,我們在Se-doped AgSbTe2及PbTe-基 (包含p型 PbTe及n型I-doped PbTe)熱電基材上分別沉積上厚度為200奈米的鋯基及鈦基金屬玻璃鍍層作為擴散阻障層,此外,也將相同厚度的傳統的金屬鎳及鈦鍍層也一同加入比較,經量測後兩種金屬玻璃鍍層與熱電基材皆表現出良好的接觸電阻率 (小於10-8 Ω∙m^2)。對於Se-doped AgSbTe2的熱電模組,我們將具有金屬玻璃鍍層/熱電材料/純鎳鍍層結構的反應偶在400°C下退火8到360小時,並用穿透式電子顯微鏡分析。其結果顯示在金屬玻璃薄膜及熱電材料界面並無發現任何介金屬化合物,僅有硒原子緩慢擴散至金屬玻璃能,反之,鎳與熱電基材嚴重反應,並生成NiSbxTe2-x介金屬化合物。對於PbTe基熱電模組,我們對具有銅/金屬玻璃鍍層/熱電材料/純鈦/銅結構的反應偶在400°C下退火8到96小時後進行研究。從穿透式電子顯微鏡分析結果中觀察到鈦基金屬玻璃鍍層能成功延緩來自PbTe 及I-doped PbTe 基材的擴散,然而,純鈦鍍層在高溫下與基材劇烈反應形成TixTe1-x介金屬化合物導致鉛的析出,因此鈦/熱電材料間的高接觸電阻是歸因於鈦與PbTe間激烈反應進而導致在其界面生成介金屬化合物和鉛析出而產生孔洞。


    At high operation temperature, the thermal stability of joints in thermoelectric (TE) modules, which are degraded during interdiffusion between the TE material and the contacting metal, needs to be addressed in order to utilize TE technology for competitive, sustainable energy applications. In this work, we take advantage of grain boundary-free structure of thin film metallic glasses (TFMGs) to retard the diffusion between TE materials and metal contact upon thermal aging at 400°C. The room-temperature deformation behaviors of 260 nm-thick TFMGs on bulk metallic glass (BMG) in four-point-bend fatigue and nanoindentation experiments were investigated. During the fatigue tests, TFMGs undergo rubber-like deformation with a large shear strain, estimated to be ∼ 4000%. Additionally, thickness reductions of up to 61.5%, with no shear-banding or cracking, are observed during nanoindentation extending through the film and into the BMG substrate. In both cases, TFMG/BMG samples exhibit film/substrate diffusion bonding at severely shear-deformed regions during deformation.
    Then, the 200 nm-thick Zr-based and Ti-based TFMGs were deposited as diffusion barrier layers on Se-doped AgSbTe2 and PbTe-based (including p-type PbTe and n-type I-doped PbTe) TE substrates, respectively. Conventional metals, Ni and Ti, with the identical thickness are also prepared as comparisons. Both TFMGs exhibit good electrical contact resistivity with TE materials (<10-8 Ω∙m^2). For Se-doped AgSbTe2 module, the reaction couples structured with TFMG/TE/Ni are annealed at 400°C for 8–360 hours and analyzed by electron microscopy. No observable IMCs (intermetallic compounds) are formed at the TFMG/TE interface, suggesting the effective inhibition of atomic diffusion. On the contrary, Ni layer severely reacts with the TE substrate, and forms NiSbxTe2-x IMCs. For PbTe-based TE modules, the reaction couples structured with Cu/TFMG/TE/Ti/Cu annealed at 400°C for 8–96 hours are investigated. Ti-based TFMG layers successfully retard the atomic diffusion from both of PbTe and I-doped PbTe TE substrates. Nevertheless, pure Ti layer reacted significantly with substrate at high temperature and formed TixTe1-x IMCs, resulting in the precipitation of Pb. Hence, the high electrical contact resistivity of Ti/TE is measured which can be ascribed to the vigorous reaction of Ti with PbTe, leading to the formation of IMCs and precipitation of Pb at Ti/PbTe interface as well as the void.

    摘要 Abstract Acknowledgments Contents List of Tables List of Figures Chapter 1 Introduction Chapter 2 Literature Review 2.1 Metallic Glasses (MGs) 2.1.1 Glass Forming Ability of MGs 2.1.2 Deformation Mechanisms of MGs 2.1.3 Bulk Metallic Glasses (BMGs) 2.1.4 Thin Film Metallic Glasses (TFMGs) 2.1.4.1 TFMGs for Improving Mechanical Performance of Substrates 2.1.4.2 TFMGs as Diffusion Barriers (DBs) in Electronics 2.2 Physical Vapor Deposition- Sputtering 2.3 Thermoelectric Materials and Devices 2.3.1 The Necessity of Diffusion Barrier in Thermoelectric Generators 2.3.2. Various Diffusion Barriers and Their Interfacial Reactions in Thermoelectric Modules 2.4 Objectives of Study Chapter 3 Experimental Procedures 3.1 Sample Preparation 3.1.1 BMG Substrate Preparation 3.1.2 Thermoelectric Material Fabrications 3.1.3 Thin Film Depositions Using Sputtering 3.1.3.1 TFMG Deposition for Fatigue and Nanoindentation Tests 3.1.3.2 Thin film deposition for Transmission Line Measurement (TLM) 3.1.3.3 Se-doped AgSbTe2 Thermoelectric Couple 3.1.3.4 PbTe and I-doped PbTe Thermoelectric Couple 3.1.4 Thermal Aging Treatment of Thermoelectric Couple 3.2 Four-Point-Bend Fatigue Test 3.3 Material Characterizations 3.3.1 Crystallographic Analysis 3.3.2 Thermal Analysis 3.3.3 Nanoindentation Test 3.3.4 Microstructural Analysis & Elemental Composition Analysis 3.3.5 Electrical property Measurements Chapter 4 Results and Discussion 4.1 Bulk & Thin-film Metallic Glass Characterizations 4.1.1 Elemental Composition & Crystallographic Analyses 4.1.2 Thermal Analysis 4.2 Deformation behavior of TFMG in TFMG/BMG Couple under Fatigue Test 4.3 Nanoindentation Behavior of Zr-based TFMG and BMG Samples 4.4 Zr-based Thin Film Metallic Glass as A Diffusion Barrier for Se-doped AgSbTe2 Thermoelectric Module 4.4.1 Electrical Property Measurements 4.4.2 Interfacial Reactions in Ni/TE and Zr-based-TFMG/TE Couples after 400°C Annealing for Various Lengths of Time 4.4.3 Diffusion in Zr-based TFMG 4.5 Ti-based Thin Film Metallic Glass as A Diffusion Barrier for P-type PbTe and N-type I-doped PbTe Thermoelectric Modules 4.5.1 Electrical Properties of Ti/TE and TFMG/TE Couples 4.5.2 Surface Observations of Cu/Ti/TE and Cu/Ti-based TFMG/TE Couples after 400°C Annealing 4.5.3 Interfacial Reactions in Cu/Ti/PbTe and Cu/Ti-based TFMG/PbTe Couples after 400°C Annealing for Various Lengths of Time 4.5.4 Interfacial Reactions in Cu/Ti/I-doped PbTe and Cu/Ti-based TFMG/ I-doped PbTe Couples after 400°C Annealing for Various Lengths of Time 4.5.5 Diffusion in Cu/Ti/TE and Cu/Ti-based TFMG/TE Couples Chapter 5 Conclusions Chapter 6 Future Works References

    [1] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nature Materials 7(2) (2008) 105-114.
    [2] W. He, G. Zhang, X. Zhang, J. Ji, G. Li, X. Zhao, Recent development and application of thermoelectric generator and cooler, Applied Energy 143 (2015) 1-25.
    [3] H. Xia, F. Drymiotis, C.L. Chen, A. Wu, Y.Y. Chen, G. Jeffrey Snyder, Bonding and high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectric module applications, Journal of Materials Science 50(7) (2015) 2700-2708.
    [4] C.C. Li, F. Drymiotis, L.L. Liao, H.T. Hung, J.H. Ke, C.K. Liu, C.R. Kao, G.J. Snyder, Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials, Journal of Materials Chemistry C 3(40) (2015) 10590-10596.
    [5] C.C. Li, F. Drymiotis, L.L. Liao, M.J. Dai, C.K. Liu, C.L. Chen, Y.Y. Chen, C.R. Kao, G.J. Snyder, Silver as a highly effective bonding layer for lead telluride thermoelectric modules assembled by rapid hot-pressing, Energy Conversion and Management 98 (2015) 134-137.
    [6] W.A. Chen, S.W. Chen, S.M. Tseng, H.W. Hsiao, Y.Y. Chen, G.J. Snyder, Y. Tang, Interfacial reactions in Ni/CoSb3 couples at 450 °C, Journal of Alloys and Compounds 632 (2015) 500-504.
    [7] H. Xia, C.L. Chen, F. Drymiotis, A. Wu, Y.Y. Chen, G.J. Snyder, Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication, Journal of Electronic Materials 43(11) (2014) 4064-4069.
    [8] H. Xia, F. Drymiotis, C.L. Chen, A. Wu, G.J. Snyder, Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications, Journal of Materials Science 49(4) (2014) 1716-1723.
    [9] R. Zybała, K. Wojciechowski, M. Schmidt, R. Mania, Junctions and diffusion barriers for high temperature thermoelectric modules, Materiały Ceramiczne 62(4) (2010) 481-485.
    [10] K.T. Wojciechowski, R. Zybala, R. Mania, High temperature CoSb3–Cu junctions, Microelectronics Reliability 51(7) (2011) 1198-1202.
    [11] X.R. Ferreres, S. Aminorroaya Yamini, M. Nancarrow, C. Zhang, One-step bonding of Ni electrode to n-type PbTe — A step towards fabrication of thermoelectric generators, Materials & Design 107 (2016) 90-97.
    [12] D. Zhao, X. Li, L. He, W. Jiang, L. Chen, Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging, Journal of Alloys and Compounds 477(1-2) (2009) 425-431.
    [13] D. Zhao, X. Li, L. He, W. Jiang, L. Chen, High temperature reliability evaluation of CoSb3/electrode thermoelectric joints, Intermetallics 17(3) (2009) 136-141.
    [14] M. Gu, X. Xia, X. Huang, S. Bai, X. Li, L. Chen, Study on the interfacial stability of p-type Ti/CeyFexCo4-xSb12 thermoelectric joints at high temperature, Journal of Alloys and Compounds 671 (2016) 238-244.
    [15] B. Song, S. Lee, S. Cho, M.J. Song, S.M. Choi, W.S. Seo, Y. Yoon, W. Lee, The effects of diffusion barrier layers on the microstructural and electrical properties in CoSb3 thermoelectric modules, Journal of Alloys and Compounds 617 (2014) 160-162.
    [16] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520(16) (2012) 5097-5122.
    [17] C.W. Wang, P. Yiu, J.P. Chu, C.H. Shek, C.H. Hsueh, Zr–Ti–Ni thin film metallic glass as a diffusion barrier between copper and silicon, Journal of Materials Science 50(5) (2015) 2085-2092.
    [18] W. Diyatmika, L.G. Xue, T.N. Lin, C.W. Chang, J. Chu, P. , Thin film metallic glass as a diffusion barrier for copper indium gallium selenide solar cell on stainless steel substrate: A feasibility study, Japanese Journal of Applied Physics 55(8) (2016) 080303.
    [19] W. Diyatmika, J.P. Chu, Y.W. Yen, C.H. Hsueh, Sn whisker mitigation by a thin metallic-glass underlayer in Cu-Sn, Applied Physics Letters 103(24) (2013) 241912.
    [20] S.J. Kim, J.H. We, B.J. Cho, A wearable thermoelectric generator fabricated on a glass fabric, Energy and Environmental Science 7(6) (2014) 1959-1965.
    [21] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S.C. Jang, Y. Gao, P.K. Liaw, Thin-film metallic glasses for substrate fatigue-property improvements, Thin Solid Films 561(0) (2014) 2-27.
    [22] W. Klement, R.H. Willens, P.O.L. Duwez, Non-crystalline Structure in Solidified Gold-Silicon Alloys, Nature 187(4740) (1960) 869-870.
    [23] A.L. Greer, Metallic glasses, Science 267(5206) (1995) 1947.
    [24] W.L. Johnson, Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials, Progress in Materials Science 30(2) (1986) 81-134.
    [25] C. Suryanarayana, A. Inoue, Bulk metallic glasses, CRC press2010.
    [26] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia 48(1) (2000) 279-306.
    [27] A.L. Greer, Confusion by design, Nature 366(6453) (1993) 303-304.
    [28] D. Turnbull, Under what conditions can a glass be formed?, Contemporary Physics 10(5) (1969) 473-488.
    [29] Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Materialia 50(13) (2002) 3501-3512.
    [30] X.H. Du, J.C. Huang, C.T. Liu, Z.P. Lu, New criterion of glass forming ability for bulk metallic glasses, Journal of Applied Physics 101(8) (2007) 086108.
    [31] T. Masumoto, R. Maddin, The mechanical properties of palladium 20 a/o silicon alloy quenched from the liquid state, Acta Metallurgica 19(7) (1971) 725-741.
    [32] H.J. Leamy, T.T. Wang, H.S. Chen, Plastic flow and fracture of metallic glass, Metallurgical Transactions 3(3) (1972) 699-708.
    [33] A.S. Argon, Plastic deformation in metallic glasses, Acta Metallurgica 27(1) (1979) 47-58.
    [34] M.J. Demkowicz, A.S. Argon, Autocatalytic avalanches of unit inelastic shearing events are the mechanism of plastic deformation in amorphous silicon, Physical Review B 72(24) (2005) 245206.
    [35] D. Srolovitz, V. Vitek, T. Egami, An atomistic study of deformation of amorphous metals, Acta Metallurgica 31(2) (1983) 335-352.
    [36] D. Rodney, C. Schuh, Distribution of Thermally Activated Plastic Events in a Flowing Glass, Physical Review Letters 102(23) (2009) 235503.
    [37] F. Delogu, Identification and Characterization of Potential Shear Transformation Zones in Metallic Glasses, Physical Review Letters 100(25) (2008) 255901.
    [38] D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses, Proceedings of the National Academy of Sciences 105(39) (2008) 14769-14772.
    [39] W.L. Johnson, K. Samwer, A Universal Criterion for Plastic Yielding of Metallic Glasses with a (T/Tg)2/3 Temperature Dependence, Physical Review Letters 95(19) (2005) 195501.
    [40] M.H. Cohen, D. Turnbull, Molecular Transport in Liquids and Glasses, The Journal of Chemical Physics 31(5) (1959) 1164-1169.
    [41] F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metallurgica 25(4) (1977) 407-415.
    [42] A.R. Yavari, A.L. Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M.D. Michiel, Å. Kvick, Excess free volume in metallic glasses measured by X-ray diffraction, Acta Materialia 53(6) (2005) 1611-1619.
    [43] K.M. Flores, D. Suh, R.H. Dauskardt, P. Asoka-Kumar, P.A. Sterne, R.H. Howell, Characterization of Free Volume in a Bulk Metallic Glass Using Positron Annihilation Spectroscopy, Journal of Materials Research 17(5) (2011) 1153-1161.
    [44] P. Murali, U. Ramamurty, Embrittlement of a bulk metallic glass due to sub-Tg annealing, Acta Materialia 53(5) (2005) 1467-1478.
    [45] A. Bharathula, S.W. Lee, W.J. Wright, K.M. Flores, Compression testing of metallic glass at small length scales: Effects on deformation mode and stability, Acta Materialia 58(17) (2010) 5789-5796.
    [46] J. Luo, P. Keblinski, Y. Shi, A model metallic glass exhibits size-independent tensile ductility, Acta Materialia 103 (2016) 587-594.
    [47] A.L. Greer, Y.Q. Cheng, E. Ma, Shear bands in metallic glasses, Materials Science and Engineering: R: Reports 74(4) (2013) 71-132.
    [48] L. Tian, Z.-W. Shan, E. Ma, Ductile necking behavior of nanoscale metallic glasses under uniaxial tension at room temperature, Acta Materialia 61(13) (2013) 4823-4830.
    [49] J.H. Luo, F.F. Wu, J.Y. Huang, J.Q. Wang, S.X. Mao, Superelongation and Atomic Chain Formation in Nanosized Metallic Glass, Physical Review Letters 104(21) (2010) 215503.
    [50] D. Jang, J.R. Greer, Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses, Nature Materials 9(3) (2010) 215-219.
    [51] Z.W. Shan, J. Li, Y.Q. Cheng, A.M. Minor, S.A. Syed Asif, O.L. Warren, E. Ma, Plastic flow and failure resistance of metallic glass: Insight from in situ compression of nanopillars, Physical Review B 77(15) (2008) 155419.
    [52] X.L. Wu, Y.Z. Guo, Q. Wei, W.H. Wang, Prevalence of shear banding in compression of Zr41Ti14Cu12.5Ni10Be22.5 pillars as small as 150 nm in diameter, Acta Materialia 57(12) (2009) 3562-3571.
    [53] O.V. Kuzmin, Y.T. Pei, J.T.M. De Hosson, Size effects and ductility of Al-based metallic glass, Scripta Materialia 67(4) (2012) 344-347.
    [54] C.A. Volkert, A. Donohue, F. Spaepen, Effect of sample size on deformation in amorphous metals, Journal of Applied Physics 103(8) (2008) 083539.
    [55] J.C. Ye, J.P. Chu, Y.C. Chen, Q. Wang, Y. Yang, Hardness, yield strength, and plastic flow in thin film metallic-glass, Journal of Applied Physics 112(5) (2012).
    [56] X.W. Gu, M. Jafary-Zadeh, D.Z. Chen, Z. Wu, Y.W. Zhang, D.J. Srolovitz, J.R. Greer, Mechanisms of failure in nanoscale metallic glass, Nano Letters 14(10) (2014) 5858-5864.
    [57] D.Z. Chen, X.W. Gu, Q. An, W.A. Goddard, J.R. Greer, Ductility and work hardening in nano-sized metallic glasses, Applied Physics Letters 106(6) (2015).
    [58] H.S. Chen, Thermodynamic considerations on the formation and stability of metallic glasses, Acta Metallurgica 22(12) (1974) 1505-1511.
    [59] A. Inoue, T. Zhang, T. Masumoto, Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region, Materials Transactions, JIM 30(12) (1989) 965-972.
    [60] A. Inoue, M. Kohinata, A.P. Tsai, T. Masumoto, Mg-Ni-La Amorphous Alloys with a Wide Supercooled Liquid Region, Materials Transactions, JIM 30(5) (1989) 378-381.
    [61] A. Peker, W.L. Johnson, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Applied Physics Letters 63(17) (1993) 2342-2344.
    [62] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia 55(12) (2007) 4067-4109.
    [63] J. Kramer, The amorphous state of metals., Z. Phys. 106 (1936) 675-691.
    [64] M. Nastasi, F.W. Saris, L.S. Hung, J.W. Mayer, Stability of amorphous Cu/Ta and Cu/W alloys, Journal of Applied Physics 58(8) (1985) 3052-3058.
    [65] J. Rivory, J.M. Frigerio, M. Harmelin, A. Quivy, Y. Calvayrac, J. Bigot, Preparation of CuxZr1−x metallic glasses by sputtering and their thermal stability, electrical and optical properties, Thin Solid Films 89(3) (1982) 323-327.
    [66] J.P. Chu, J.E. Greene, J.S.C. Jang, J.C. Huang, Y.-L. Shen, P.K. Liaw, Y. Yokoyama, A. Inoue, T.G. Nieh, Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating, Acta Materialia 60(6–7) (2012) 3226-3238.
    [67] C.L. Chiang, J.P. Chu, F.X. Liu, P.K. Liaw, R.A. Buchanan, A 200nm thick glass-forming metallic film for fatigue-property enhancements, Applied Physics Letters 88(13) (2006) 131902.
    [68] H.K. Lin, S.M. Chiu, T.P. Cho, J.C. Huang, Improved bending fatigue behavior of flexible PET/ITO film with thin metallic glass interlayer, Materials Letters 113 (2013) 182-185.
    [69] C.M. Lee, J.P. Chu, W.Z. Chang, J.W. Lee, J.S.C. Jang, P.K. Liaw, Fatigue property improvements of Ti–6Al–4V by thin film coatings of metallic glass and TiN: a comparison study, Thin Solid Films 561 (2014) 33-37.
    [70] Y.Z. Chang, P.H. Tsai, J.B. Li, H.C. Lin, J.S.C. Jang, C. Li, G.J. Chen, Y.C. Chen, J.P. Chu, P.K. Liaw, Zr-based metallic glass thin film coating for fatigue-properties improvement of 7075-T6 aluminum alloy, Thin Solid Films 544 (2013) 331-334.
    [71] C.C. Yu, J.P. Chu, H. Jia, Y.L. Shen, Y. Gao, P.K. Liaw, Y. Yokoyama, Influence of thin-film metallic glass coating on fatigue behavior of bulk metallic glass: Experiments and finite element modeling, Materials Science and Engineering: A 692 (2017) 146-155.
    [72] C.H. Chang, C.M. Lee, J.P. Chu, P.K. Liaw, S.C.J. Jang, Fatigue property improvements of ZK60 magnesium alloy: Effects of thin film metallic glass, Thin Solid Films 616 (2016) 431-436.
    [73] W. Diyatmika, J.P. Chu, Y.W. Yen, W.Z. Chang, C.H. Hsueh, Thin film metallic glass as an underlayer for tin whisker mitigation: A room-temperature evaluation, Thin Solid Films 561 (2014) 93-97.
    [74] R. Wuerz, A. Eicke, F. Kessler, F. Pianezzi, Influence of iron on the performance of CIGS thin-film solar cells, Solar Energy Materials and Solar Cells 130 (2014) 107-117.
    [75] D. Depla, S. Mahieu, J. Greene, Sputter deposition processes, Handbook of deposition technologies for films and coatings: science, applications and technology, William Andrew2010, pp. 253-296.
    [76] M. Hamid Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M. Haji Hassan, M.B. Ali Bashir, M. Mohamad, A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renewable and Sustainable Energy Reviews 30 (2014) 337-355.
    [77] X.F. Zheng, C.X. Liu, Y.Y. Yan, Q. Wang, A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications, Renewable and Sustainable Energy Reviews 32 (2014) 486-503.
    [78] F.J. DiSalvo, Thermoelectric Cooling and Power Generation, Science 285(5428) (1999) 703-706.
    [79] T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and Synergy in High-Efficiency Thermoelectric Materials, Advanced Materials 29(14) (2017).
    [80] H.J. Goldsmid, R.W. Douglas, The use of semiconductors in thermoelectric refrigeration, British Journal of Applied Physics 5(11) (1954) 386.
    [81] Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks, Nano Letters 8(8) (2008) 2580-2584.
    [82] K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489(7416) (2012) 414-418.
    [83] A.D. Lalonde, Y. Pei, G.J. Snyder, Reevaluation of PbTe1-xIx as high performance n-type thermoelectric material, Energy and Environmental Science 4(6) (2011) 2090-2096.
    [84] J. Ma, O. Delaire, A.F. May, C.E. Carlton, M.A. McGuire, L.H. VanBebber, D.L. Abernathy, EhlersG, T. Hong, HuqA, W. Tian, V.M. Keppens, Y. Shao Horn, B.C. Sales, Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2, Nat Nano 8(6) (2013) 445-451.
    [85] H.-j. Wu, T.-W. Lan, S.-w. Chen, Y.-Y. Chen, T. Day, G.J. Snyder, State of the art Ag50-xSbxSe50-yTey alloys: Their high zT values, microstructures and related phase equilibria, Acta Materialia 93 (2015) 38-45.
    [86] B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z. Ren, Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites, Nano Letters 12(4) (2012) 2077-2082.
    [87] A.F. May, E. Flage-Larsen, G.J. Snyder, Electron and phonon scattering in the high-temperature thermoelectric La3Te4-zMz (M =Sb, Bi), Physical Review B 81(12) (2010) 125205.
    [88] C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials, Nature Communications 6 (2015).
    [89] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413(6856) (2001) 597-602.
    [90] L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Cretì, P. Siciliano, A. Perrone, Flexible thermoelectric generator for ambient assisted living wearable biometric sensors, Journal of Power Sources 196(6) (2011) 3239-3243.
    [91] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science 320(5876) (2008) 634-638.
    [92] H. Zhang, H.Y. Jing, Y.D. Han, L.Y. Xu, G.Q. Lu, Interfacial reaction between n- and p-type thermoelectric materials and SAC305 solders, Journal of Alloys and Compounds 576 (2013) 424-431.
    [93] C.-H. Chuang, Y.-C. Lin, C.-W. Lin, Intermetallic Reactions during the Solid-Liquid Interdiffusion Bonding of Bi2Te2.55Se0.45 Thermoelectric Material with Cu Electrodes Using a Sn Interlayer, Metals 6(4) (2016).
    [94] G.O. Cook Iii, C.D. Sorensen, Overview of transient liquid phase and partial transient liquid phase bonding, Journal of Materials Science 46(16) (2011) 5305-5323.
    [95] W. Liu, Q. Jie, H.S. Kim, Z. Ren, Current progress and future challenges in thermoelectric power generation: From materials to devices, Acta Materialia 87 (2015) 357-376.
    [96] D. Ebling, M. Jaegle, M. Bartel, A. Jacquot, H. Böttner, Multiphysics simulation of thermoelectric systems for comparison with experimental device performance, Journal of Elec Materi 38(7) (2009) 1456-1461.
    [97] H. Xia, F. Drymiotis, C.L. Chen, A. Wu, G.J. Snyder, Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications, Journal of Materials Science 49(4) (2014) 1716-1723.
    [98] J. Fan, L. Chen, S. Bai, X. Shi, Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer, Materials Letters 58(30) (2004) 3876-3878.
    [99] G.K. Reeves, H.B. Harrison, Obtaining the Specific Contact Resistance from Transmission Line Model Measurements, IEEE Electron Device Letters 3(5) (1982) 111-113.
    [100] A. Zhang, D. Chen, Z. Chen, Predicting the thermal stability of RE-based bulk metallic glasses, Intermetallics 18(1) (2010) 74-76.
    [101] D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses, Proceedings of the National Academy of Sciences of the United States of America 105(39) (2008) 14769-14772.
    [102] J. Antonaglia, W.J. Wright, X. Gu, R.R. Byer, T.C. Hufnagel, M. LeBlanc, J.T. Uhl, K.A. Dahmen, Bulk Metallic Glasses Deform via Slip Avalanches, Physical Review Letters 112(15) (2014) 155501.
    [103] Y.Q. Cheng, Z. Han, Y. Li, E. Ma, Cold versus hot shear banding in bulk metallic glass, Physical Review B 80(13) (2009) 134115.
    [104] J.J. Lewandowski, A.L. Greer, Temperature rise at shear bands in metallic glasses, Nature Materials 5(1) (2006) 15-18.
    [105] A.R. Yavari, K. Georgarakis, W.J. Botta, A. Inoue, G. Vaughan, Homogenization of plastic deformation in metallic glass foils less than one micrometer thick, Physical Review B 82(17) (2010) 172202.
    [106] S. Wang, Y.F. Ye, B.A. Sun, C.T. Liu, S.Q. Shi, Y. Yang, Softening-induced plastic flow instability and indentation size effect in metallic glass, Journal of the Mechanics and Physics of Solids 77(0) (2015) 70-85.
    [107] H. Guo, P.F. Yan, Y.B. Wang, J. Tan, Z.F. Zhang, M.L. Sui, E. Ma, Tensile ductility and necking of metallic glass, Nature Materials 6(10) (2007) 735-739.
    [108] C.C. Yu, C.M. Lee, J.P. Chu, J.E. Greene, P.K. Liaw, Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature, APL Mater. 4(11) (2016) 116101.
    [109] W. Chen, Z. Liu, J. Schroers, Joining of bulk metallic glasses in air, Acta Materialia 62(0) (2014) 49-57.
    [110] H. Somekawa, A. Inoue, K. Higashi, Superplastic and diffusion bonding behavior on Zr–Al–Ni–Cu metallic glass in supercooled liquid region, Scripta Materialia 50(11) (2004) 1395-1399.
    [111] F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H.R. Schober, S.K. Sharma, H. Teichler, Diffusion in metallic glasses and supercooled melts, Reviews of Modern Physics 75(1) (2003) 237-280.
    [112] H.J. Jin, J. Wen, K. Lu, Shear stress induced reduction of glass transition temperature in a bulk metallic glass, Acta Materialia 53(10) (2005) 3013-3020.
    [113] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research 19(1) (2004) 3-20.
    [114] C.E. Packard, C.A. Schuh, Initiation of shear bands near a stress concentration in metallic glass, Acta Materialia 55(16) (2007) 5348-5358.
    [115] I.C. Choi, Y. Zhao, Y.J. Kim, B.G. Yoo, J.Y. Suh, U. Ramamurty, J.-i. Jang, Indentation size effect and shear transformation zone size in a bulk metallic glass in two different structural states, Acta Materialia 60(19) (2012) 6862-6868.
    [116] A.C. Fischer-Cripps, A review of analysis methods for sub-micron indentation testing, Vacuum 58(4) (2000) 569-585.
    [117] B. McCarroll, G. Ehrlich, Trapping and Energy Transfer in Atomic Collisions with a Crystal Surface, The Journal of Chemical Physics 38(2) (1963) 523-532.
    [118] T.W. Barbee, W.H. Holmes, D.L. Keith, M.K. Pyzyna, G. Ilonca, Synthesis of amorphous niobium-nickel alloys by vapor quenching, Thin Solid Films 45(3) (1977) 591-599.
    [119] K.H. Müller, Ion-beam-induced epitaxial vapor-phase growth: A molecular-dynamics study, Physical Review B 35(15) (1987) 7906-7913.
    [120] Y.H. Liu, D. Wang, K. Nakajima, W. Zhang, A. Hirata, T. Nishi, A. Inoue, M.W. Chen, Characterization of Nanoscale Mechanical Heterogeneity in a Metallic Glass by Dynamic Force Microscopy, Physical Review Letters 106(12) (2011) 125504.
    [121] Y.H. Liu, T. Fujita, D.P.B. Aji, M. Matsuura, M.W. Chen, Structural origins of Johari-Goldstein relaxation in a metallic glass, Nature communications 5 (2014).
    [122] Z. Wang, B.A. Sun, H.Y. Bai, W.H. Wang, Evolution of hidden localized flow during glass-to-liquid transition in metallic glass, Nature Communications 5 (2014).
    [123] Z. Lu, W. Jiao, W.H. Wang, H.Y. Bai, Flow Unit Perspective on Room Temperature Homogeneous Plastic Deformation in Metallic Glasses, Physical Review Letters 113(4) (2014) 045501.
    [124] J.C. Ye, J. Lu, C.T. Liu, Q. Wang, Y. Yang, Atomistic free-volume zones and inelastic deformation of metallic glasses, Nature Materials 9(8) (2010) 619-623.
    [125] Z. Wang, P. Wen, L.S. Huo, H.Y. Bai, W.H. Wang, Signature of viscous flow units in apparent elastic regime of metallic glasses, Applied Physics Letters 101(12) (2012) 121906.
    [126] L.W. da Silva, M. Kaviany, Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport, International Journal of Heat and Mass Transfer 47(10–11) (2004) 2417-2435.
    [127] T. Benameur, K. Hajlaoui, A.R. Yavari, A. Inoue, B. Rezgui, On the characterization of plastic flow in Zr-based metallic glass through micro-indentation: An atomic force microscopy analysis, Materials Transactions 43(10) (2002) 2617-2621.
    [128] AgSbTe2 crystal structure, physical properties, in: O. Madelung, U. Rössler, M. Schulz (Eds.), Ternary Compounds, Organic Semiconductors, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 1-6.
    [129] O. Haruyama, A. Inoue, Free volume kinetics during sub-Tg structural relaxation of a bulk Pd40Ni40P20 metallic glass, Applied Physics Letters 88(13) (2006) 131906.
    [130] A. Slipenyuk, J. Eckert, Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass, Scripta Materialia 50(1) (2004) 39-44.
    [131] F. Laufek, M. Drábek, R. Skála, The system Ni-Sb-Te at 400°C, Canadian Mineralogist 48(5) (2010) 1069-1079.
    [132] C.C. Yu, H.J. Wu, P.Y. Deng, M.T. Agne, G.J. Snyder, J.P. Chu, Thin-film metallic glass: An effective diffusion barrier for Se-doped AgSbTe2 thermoelectric modules, Scientific Reports 7 (2017).
    [133] A.L. Greer, Through a glass, lightly, Nature 402(6758) (1999) 132-133.
    [134] V. Zöllmer, K. Rätzke, F. Faupel, A. Meyer, Diffusion in a metallic melt at the critical temperature of mode coupling theory, Physical Review Letters 90(19) (2003).
    [135] Y.C. Lan, D.Z. Wang, G. Chen, Z.F. Ren, Diffusion of nickel and tin in p -type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials, Applied Physics Letters 92(10) (2008).
    [136] R.O. Carlson, Anisotropic diffusion of copper into bismuth telluride, Journal of Physics and Chemistry of Solids 13(1-2) (1960) 65-70.
    [137] M. Chitroub, S. Scherrer, H. Scherrer, Anisotropy of the selenium diffusion coefficient in bismuth telluride, Journal of Physics and Chemistry of Solids 61(10) (2000) 1693-1701.
    [138] M. Yamasaki, S. Kagao, Y. Kawamura, Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass, Scripta Materialia 53(1) (2005) 63-67.
    [139] S.K. Bandyopadhyay, A.K. Pal, The effect of grain boundary scattering on the electron transport of aluminium films, Journal of Physics D: Applied Physics 12(6) (1979) 953.
    [140] J.P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J. O’Keefe, B. Johnson, C.H. Kuo, Annealing-induced full amorphization in a multicomponent metallic film, Physical Review B 69(11) (2004) 113410.
    [141] W. Fang, C. Y. Lo, On the thermal expansion coefficients of thin films, Sensors and Actuators A: Physical 84(3) (2000) 310-314.
    [142] B. Houston, R.E. Strakna, H.S. Belson, Elastic Constants, Thermal Expansion, and Debye Temperature of Lead Telluride, Journal of Applied Physics 39(8) (1968) 3913-3916.
    [143] H. Cordes, R. Schmid-Fetzer, Phase equilibria in the Ti Te system, Journal of Alloys and Compounds 216(2) (1995) 197-206.

    無法下載圖示 全文公開日期 2022/12/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE