簡易檢索 / 詳目顯示

研究生: 石鈞緯
Chun-Wei Shih
論文名稱: 用於WiMAX應用的5.8 GHz頻段之可調式Gm-C分數型頻率合成器晶片設計
A 5.8 GHz Fractional-N Frequency Synthesizer with Tunable Gm-C Chip Design for WiMAX Application
指導教授: 黃進芳
Jhin-Fang Huang
劉榮宜
Ron-Yi Liu
口試委員: 張勝良
none
徐敬文
none
陳國龍
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 96
中文關鍵詞: 頻率合成器分數型
外文關鍵詞: fractional-N
相關次數: 點閱:174下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,以鎖相迴路為主的頻率合成器大量被使用在無線通訊系統中。相對地,各式各樣的頻率合成器就被研發出來。在本篇論文中,設計了一個分數型的頻率合成器,主要是利用了三角積分調變器去實現分數的除數,而三角積分調變器可將量化雜訊移往高頻,再藉由鎖相迴路中迴路頻寬的特色將雜訊濾除,而壓控振盪器的雜訊與充電幫浦和相位頻率檢測器的雜訊的取捨,由迴路頻寬來決定,在晶片實作完成後,為了解決製程變異所造成的誤差,本論文還加入一個可調式的迴路濾波器,並使用考畢子振盪器來降低電路的相位雜訊。

    在本論文中,此頻率合成器使用台積電所提供0.18微米CMOS製程以1.8伏特來完成晶片研製與量測。量測結果顯示頻率鎖定於5.68GHz時,距離主頻1MHz處的相位雜訊為 -112.1 dBc/Hz晶片面積包含pads為1.06 mm2,總消耗功率為56 mW。


    Recently, the PLL-based frequency synthesizers are widely used in wireless communication systems, however, many of PLL architectures are created. In this thesis, we utilized the sigma-delta modulator to perform the fractional-N frequency synthesizer, sigma-delta modulator has high-pass noise shaping ability, and filters high-pass noise through the loop filter of characteristic of phase-locked loop, in addition, the noise of voltage-controlled oscillator and the noise of charge pump and phase frequency detector is a trade-off that is determined by loop bandwidth, in order to solve the problems of variation after implementation of tape out, we added a tunable loop filter, finally the Colpitts voltage-controlled oscillator is adopted to reduce the phase noise.

    In this thesis, the proposed frequency synthesizer is fabricated in a TSMC 0.18-um CMOS process with 1.8 V supply voltage. The measured results show phase noise is -112.1 dBc/Hz at 1 MHz offset from locked in 5.68 GHz. The chip area of the frequency synthesizer is smaller than 1.06 mm2 including the pads. The power consumption is 56 mW from a 1.8-V supply.

    Contents List of Figures III List of Tables VI CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Focus and Contributions 2 1.3 Organization of This Thesis 3 CHAPTER 2 The PLL-Based Frequency Synthesizers 4 2.1 Wireless Transceiver 4 2.2 Phase-Locked Loop 5 2.2.1 Integer-N Frequency Synthesizer 6 2.2.2 Fraction-N Frequency Synthesizer 7 2.3 Building Blocks of Frequency Synthesizer 8 2.3.1 Phase Frequency Detector (PFD) 8 2.3.2 Charge Pump (CP) 11 2.3.3 Loop Filter 11 2.3.4 Voltage-Controlled Oscillator (VCO) 12 2.3.5 Frequency Divider 13 2.4 Loop Filter Design 13 2.4.1 First-Order Loop Filter 13 2.4.2 Second-Order Loop 15 2.4.3 Third-Order Loop 17 2.5 Figures of Merit of a Frequency Synthesizer 18 2.5.1 Jitter 18 2.5.2 Phase Noise 19 2.5.3 Spurs 20 2.6 Frequency Synthesizer Paper Survey 21 2.7 Summary 35 CHAPTER 3 Circuits Implementation 36 3.1 Voltage-Controlled Oscillator (VCO) 36 3.1.1 Operation Principle of Oscillator 37 3.1.2 Ring Oscillator 38 3.1.3 LC-Tank Oscillator 39 3.1.4 Passive Components in LC-Tank VCO 42 3.1.5 Switched-Capacitors VCO 48 3.2 Frequency Divider 49 3.2.1 Programmable Frequency Divider 49 3.2.2 Logic Implementation of Frequency Divider 52 3.3 S-D Modulator 53 3.3.1 1st-Order 砥-岛 Modulator 53 3.3.2 Higher-Order 砥-岛 Modulator 56 3.4 Summary 58 CHAPTER 4 5.8 GHz Fractional-N Frequency Synthesizer Chip Design with Tunable Gm-C Loop Filter 59 4.1 Introduction 59 4.2 System Block Diagram 61 4.3 Buliding Block and Simulation 62 4.3.1 Phase Frequency Detector (PFD) 62 4.3.2 Charge Pump (CP) 63 4.3.3 Voltage-Controlled Oscillator 65 4.3.4 Frequency Divider 68 4.3.5 MASH 1-1-1 砥-岛汹Modulator 71 4.3.6 Gm-C Loop Filter 73 4.4 Overall System Simulation Results and Specification 77 4.5 Summary 80 CHAPTER 5 Chip Measurement Results 81 5.1 RF Chip Layout Considerations 81 5.2 RF Chip Measurement Considerations 82 5.2.1 Chip Floor Plan and PCB Design 82 5.2.2 Test Environment Setup 84 5.3 Measurement Results 85 5.4 Performance Summary and Comparison 87 CHAPTER 6 Conclusions and Future Work 89 6.1 Conclusions 89 6.2 Future Work 89 Reference 91

    [1] Shen-Iuan Liu, “Design and Realization of CMOS RF Frequency Synthesizer” Master Thesis, 2001.
    [2] A.L. Lacaita, S. Levantino and C. Samori, Integrated Frequency Synthesizers for Wireless Systems, Cambridge University Pres, 2007.
    [3] A. Mohammadi, A. Ayatollahi, A. Abrishamifar and A. Beygi, “Frequency Synthesizer Settling Time and Phase Noise Issues For WLAN Transceiver Application in IEEE 802.11n Standard,” International Conference on ICEE '07 pp.1-5, April. 2007.
    [4] Pei-Jiuan Shie, “UWB RF Receiver Front-end Chip Design with On-Chip Transformer Circuit,” Master Thesis, 2008.
    [5] H. de Bellescize, “La reception synchrone”, L’onde electrique, vol. 11, pp.225-240, May 1932.
    [6] Finden, H. J., “The frequency synthesizer”, Journal IEE, Part III, vol. 90, pp.165-80, 1943.
    [7] M. Kozak and I. Kale, “A pipelined noise shaping coder for fractional-N frequency synthesis,” IEEE Trans. Instrum. Meas., vol. 50, pp. 1154–1161, Oct. 2001.
    [8] B. Razavi, RF Microelectronics, Prentice Hall, NY, 1998.
    [9] S. H. Yang, C. H. Lee, and K. R. Cho, “A CMOS Dual Modulus Prescaler Based on a New Charge Sharing Free D-Flip-Flop,” Prec. 14th Annual IEEE International ASIC/SOC Conf., pp.276-280, 2001.
    [10] Ping-Yuan Deng, Jean-Fu Kiang, “A 5-GHz CMOS Frequency Synthesizer With an Injection-Locked Frequency Divider and Differential Switched Capacitors,” IEEE Trans. Circuits Syst. I, vol. 56, no. 2, pp. 320-326, Feb. 2009.
    [11] Sheng-Lyang Jang, Chien-Feng Lee and Jhong-Chen Luo, ”A CMOS LC Injection-Locked Frequency Divider with the Division Ratio of 2 and 3,” Microwave and Optical Technology Lett.,pp. 1263-1267, May 2009.
    [12] F. M. Gardner, “Charge-Pump Phase-Locked Loops,” IEEE Trans. On Communications, vol. 28, pp. 1849-1858, Nov. 1980.
    [13] W. O. Keese, An analysis and performance evaluation of a passive filter design technique for charge pump phase-locked loops, National Semiconductor Application Note, no. 1001, May 1996.
    [14] J. Hancock, “Jitter-Understanding it, Measuring it, Eliminating it Part 3: Causes of Jitter,” High Frequency Electronics, pp.28-44, June 2004.
    [15] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” Proc. Custom IC Conf. Orlando, FL, pp. 569-572, 2000.
    [16] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LCD VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896-909, Jun. 2001.
    [17] Ali Hajimiri, and Thomas H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
    [18] T.-H. Lin, C.-L. Ti, and Y.-H. Liu, “Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-sigma Fractional-N PLLs,” IEEE Trans. Circuits Syst. I, vol. 56, no. 6, pp. 877-885, May 2009.
    [19] Y.-C. Yang, S.-A. Yu, Y.-H. Liu, T. Wang, and S.-S. Lu, “A Quantization Noise Suppression Techniuqe for SD Fractional-N Frequency Synthesizers,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2500-2511, Nov. 2006.
    [20] H. Hedayati, W. Khalil and B. Bakkaloglu, “A 1 MHz Bandwidth, 6 GHz 0.18 um CMOS Type-I SD Fractional-N Synthesizer for WiMAX Applications,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3244-3252, Dec. 2009.
    [21] M. H. Perrott, S. Pamarti, E. G. Hoffman, F. S. Lee, S. Mukherjee, C. Lee, V. Tsinker, S. Perumal, B. T. Soto, N. Arumugam and B. W. Garlepp, “A Low Area, Switched-Resistor Based Fractional-N Synthesizer Applied to a MEMS-Based Programmable Oscillator,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2566-2581, Dec. 2010.
    [22] J. Savoj and B. Razavi, High-Speed CMOS Circuits for Optical Receivers, Kluwer, 2001.
    [23] B. Razavi, Design of Analog CMOS Integrated Circuits, New York, NY: McGraw Hill, 2000.
    [24] H. Zhang, G. Chen and N. Li, “A 2.4-GHz linear-tuning CMOS LC voltage-controlled oscillator,” Proceedings of the ASP-DAC, vol. 2, pp. 799-802, 2005.
    [25] Adin Kanli’c, “A 3.8 GHz Temperature Compensated CMOS LC-VCO for DECT Applications,” Master’s Thesis 2007.
    [26] A. Hajimiri and T. H. Lee, ”Design issues in CMOS differential LC oscillators,” IEEE J. of Solid-State Circuits, vol. 34, no. 5, pp.717-724, May 1999.
    [27] S. Levantino, et. al., “Frequency Dependence on Bias Current in 5-GHz CMOS VCOs: Impact on Tuning Range and Flicker Noise Up conversion,” IEEE J. of Solid-State Circuits, vol. 37, no. 8, pp.1003-1011, Aug. 2002.
    [28] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. of Solid State Circuits, vol. 36, no.6, pp.896–909, June 2001.
    [29] M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE J. of Solid State Circuits, vol. 36, no. 11, pp.1018–1024, Jul. 2001.
    [30] A. Goel, and H. Hashemi, “Frequency Switching in Dual-Resonance Oscillators,” IEEE J. of Solid State Circuits, vol. 42, no. 3, pp.571-582, Mar. 2007.
    [31] T. H. LEE, The Design of CMOS Radio-Frequency Integrated Circuit Second Edition, Cambridge, pp 136-141, 2004.
    [32] Daniel Kehrer, Design of Monolithic Integrated Lumped Transformers in Silicon-based Technologies up to 20 GHz, Ph.D. Thesis, 2000.
    [33] Kral, A., Behbahani, F., and Abidi, A.A, “RF-CMOS oscillators with switched tuning,” Proc. IEEE Custom IC Conference, pp. 555-558, May 1998.
    [34] Z. Li and K. K. O., “A 1-V Low Phase Noise Multi-Band CMOS Voltage-Controlled Oscillator with Switched Inductors and Capacitors,” IEEE RFIC Symposium, pp.467-470, June 2004.
    [35] S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegeli, and Z. Wang, “A Family of Low-Power Truly Modular Programmable Dividers in Standard 0.35-贡m CMOS Technology,” IEEE J. of Solid-State Circuits, vol. 35, no. 7, pp.1039-1045, Jul. 2000.
    [36] S. T. Lee, S. J. Fang, D. J. Allstot, A. Bellaouar, A. Fridi, and P. Fontaine, “A 1.5V 28mA fully-integrated fast-locking quad-band GSM-GPRS transmitter with digital auto-calibration in 130nm CMOS,” ISSCC Dig. Tech. Papers, Paper No. 10.4, Feb. 2004.
    [37] J. Yuan and C. Svensson, “High-Speed CMOS Circuit Technique,” IEEE, J. of Solid-State Circuits, vol. 24, pp.62-70, Feb. 1989.
    [38] K. Woo, Y. Liu, E. Nam and D. Ham, “Fast-Lock Hybrid PLL Combining Fractional-N and Integer Modes of Differing Bandwidths,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 379-389, Feb. 2008.
    [39] T. A. D. Riley, M. A. Copeland, T. A. Kwasniewski, "Delta-Sigma Modulation in Fractional-N Frequency Synthesis," IEEE J. Solid-State Circuits, vol. 28, no. 5, pp. 553-559, May 1993.
    [40] H. Adrang and H. M. Naeimi, “ A Type III Fast Locking Time PLL with Transconductor-C Structure,” Proc. Midwest Symp. on Circuits and Systems, pp. 58-61, Aug. 2009.
    [41] W.-H. Chiu, Y.-H. Huang, and T.-H. Lin, “A 5GHz Phase-Locked Loop Using Dynamic Phase-Error Compensation Technique for Fast Settling in 0.18-贡m CMOS,” IEEE Symposium on VLSI Circuits, pp. 128-129, Jun. 2009.
    [42] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331–343, Mar. 1996.
    [43] A and Differential Colpitts VCO/QVCO in 0.18-贡m CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
    [44] X. Li, S. Shekhar and D. J. Allstot, “Gm-Boosted Common-Gate LNT. Y. Lo and C. C. Hung “A Wide Tuning Range Gm-C Continuous-Time Analog Filter,” IEEE Tran. on Circuits and Systems, vol. 54, no. 4, pp. 713-722, Apr. 2007.
    [45] A. Swaminathan, K. J. Wang, and I. Galton, “A wide-bandwidth 2.4 GHz ISM band fractional-N PLL with adaptive phase noise cancellation,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2639–2650, Dec. 2007.

    QR CODE