簡易檢索 / 詳目顯示

研究生: 鍾秉翰
PING-HAN,CHUNG
論文名稱: 碳黑應用於氯丁橡膠影響效應之研究
The performance and application of carbon black for chloroprene rubber
指導教授: 游進陽
Chin-Yang Yu
口試委員: 邱顯堂
Shen-Tarng Chiou
邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 69
中文關鍵詞: 碳黑氯丁橡膠
外文關鍵詞: carbon black, chloroprene rubber
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以氯丁橡膠(CR, Chloroprene Rubber)作為主膠,其兼具各項機械性質,用途十分廣泛,主要用做電線批覆、膠管、醫療用或工業用手套、膠粘劑等。為了補強橡膠的拉伸性能、抗撕裂能力和耐磨性等性能,本研究以碳黑作為主要填料,透過碳黑粒徑大小和用量來調節補強橡膠的效果。
首先以微型混煉機依不同碳黑粒徑大小、碳黑份量之配方製作出橡膠試片,並透過硫化試驗及木尼黏度試驗分析其硫化膠性質,再進行物理機械性質分析比較配方間差異,如比重、硬度、拉伸強度、熱老化、耐油性、耐磨耗及撕裂強度,並由上述實驗歸納出兩種變因對於氯丁橡膠之影響效應。
由實驗得知填料份量之增加對木尼黏度、硫化速率、硬度、比重、耐磨性、耐油性呈正相關效應;對伸長率呈現負相關效應。而隨著粒徑越小,其對木尼黏度、硫化速率、硬度、拉伸強度、耐磨性及撕裂強度呈正相關效應;對伸長率則呈現負相關效應。


This study uses chloroprene rubber as the main rubber. It has various mechanical properties and has a wide range of uses. It is mainly used for wire coating, hose, medical or industrial gloves, adhesives, etc. In order to strengthen the rubber's tensile properties, tear resistance and wear resistance, this study uses carbon black as the main filler, and adjusts the effect of reinforcing rubber through the size and dosage of carbon black.
First, use a micro-mixer to make rubber test pieces according to different carbon black particle size and carbon black content formulas, and analyze the properties of the vulcanized rubber through a vulcanization test and a woody viscosity test, and then analyze the physical and mechanical properties to compare the differences between the formulas , Such as specific gravity, hardness, tensile strength, thermal aging, oil resistance, abrasion resistance and tear strength, and summarized the effects of two variables on the chloroprene rubber from the above experiments.
It is clear from the experiment that the increase in filler content has a positive correlation effect on mooney viscosity, vulcanization rate, hardness, specific gravity, abrasion resistance and oil resistance. In addition, it has a negative correlation effect on elongation. With the smaller particle size, it has a positive correlation effect on mooney viscosity, vulcanization rate, hardness, tensile strength, abrasion resistance and tear strength. Moreover, it has a negative correlation effect on elongation.

摘要 i Abstract ii 誌謝 iv 目錄 v 圖索引 vii 表索引 ix 第壹章 緒論 1 1.1 前言 1 1.2 研究動機 2 第貳章 文獻回顧 3 2.1 橡膠硫化歷史 3 2.1.1 橡膠硫化歷史 3 2.1.2 橡膠硫化體系 4 2.2 氯丁橡膠 9 2.3 碳黑 11 第參章 實驗材料與方法 13 3.1 實驗架構 13 3.2 實驗材料及配方 14 3.2.1 實驗材料 14 3.2.2 配方 15 3.3 實驗方法與步驟 17 3.3.1 硫化膠製備 17 3.3.2 硫化性質測試 19 3.3.2.1 木尼黏度試驗 (Mooney Viscosity) 19 3.3.2.2 硫化試驗 (Vulcanization) 20 3.3.3 機械性質測試 21 3.3.3.1 比重試驗 (Specific Gravity) 21 3.3.3.2 硬度試驗 (Hardness) 22 3.3.3.3 拉伸強度及伸長率試驗 (Stress and Strain) 23 3.3.3.4 熱老化試驗 (Aging Test) 24 3.3.3.5 耐油性試驗 (Oil Resistance Test) 25 3.3.3.6 撕裂強度試驗 (Tear Strain) 26 3.3.3.7 耐磨耗試驗 (Wear Resistance Test) 28 第肆章 結果與討論 29 4.1 硫化性質分析 29 4.1.1 木尼黏度試驗 (Mooney Viscosity) 29 4.1.2 硫化曲線 (Vulcanization Curve) 32 4.2 機械性質分析 36 4.2.1 比重試驗 (Specific Gravity) 36 4.2.2 硬度試驗 (Hardness) 39 4.2.3 拉伸強度及伸長率試驗 (Stress and Starin) 41 4.2.4 熱老化試驗 (Aging Test) 44 4.2.5 耐油性試驗 (Water Absorption Test) 47 4.2.6 耐磨耗試驗 (Wear Resistance Test) 50 4.2.7 撕裂強度試驗 (Tear strength) 52 第伍章 結論 54 參考文獻 55

[1] C. Wang, C .I. Chang, Fracture energies and tensile strength of an EPDM/PP thermoplastic elastomer, Journal of Applied Polymer Science, 75 (2000) 1033-1044.
[2] R. Greco, H. Hopfenberg, E. Martusgelli, G. Ragosta, G. Demma, Thermal and swelling properties of polystyrene‐polyolefin blends, Polymer Engineering & Science, 18 (1978) 654-659.
[3] P. Corish, Fundamental studies of rubber blends, Rubber Chemistry and Technology, 40 (1967) 324-340.
[4] I. S. Saad, M. S. Fayed, E. M. Abdel-Bary, Effects of Carbon Black Content on Cure Characteristics, Mechanical Properties and Swelling Behaviour of 80/20 NBR/CIIR Blend, Aerospace Sciences & Aviation Technology, 13 (2009) 1-9.
[5] V. Jovanović, S. Samaržija-Jovanović, J. Budinski-Simendić, G. Marković, M. Marinović-Cincović, Composites based on carbon black reinforced NBR/EPDM rubber blends, Composites Part B: Engineering, 45 (2003) 333-340.
[6] S. Wolff, Chemical aspects of rubber reinforcement by fillers. Rubber Chemistry and Technology 69 (1996) 325-346.
[7] R. N. Datta, Rubber curing systems, iSmithers Rapra Publishing 2002.
[8] H. Ismail, H. Chia, The effects of multifunctional additive and vulcanization systems on silica filled epoxidized natural rubber compounds, European Polymer Journal, 34 (1998) 1857-1863.
[9] H. Ismail, H. Leong, Curing characteristics and mechanical properties of natural rubber/chloroprene rubber and epoxidized natural rubber/chloroprene rubber blends, Polymer Testing 20 (2001) 509-516.
[10] A. O. Patil, T. S. Coolbaugh, Elastomers: a literature review with emphasis on oil resistance, Rubber Chemistry and Technology 78 (2005) 516-535.
[11] A. Mostafa, A. Abouel-Kasem, M. Bayoumi, M. El-Sebaie, The influence of CB loading on thermal aging resistance of SBR and NBR rubber compounds under different aging temperature. Materials & Design 30 (2009) 791-795.
[12] J. Maláč, Mooney viscosity, mooney elasticity and procesability of raw natural rubber, Journal of Materials Science and Engineering with Advanced Technology, 3 (2011) 67-87.
[13] Y. Minoura, S. Yamashita, H. Okamoto, T. Matsuo, M. Izawa, S. I. Kohmoto, Y. Minoura, S. Yamashita, H. Okamoto, T. Matsuo, Crosslinking and mechanical property of liquid rubber. I. Curative effect of aliphatic diols, Journal of Applied Polymer Science 22 (1978) 1817-1844.
[14] H. Ismail, H. C. Leong, Curing characteristics and mechanical properties of natural rubber/chloroprene rubber and epoxidized natural rubber/chloroprene rubber blends, Polymer Testing, 20 (2005) 509-516.
[15] I. Surya, M. Ginting, H. Ismail, Cure characteristics, swelling behaviour and tensile properties of carbon black-filled Natural Rubber (NR)/Chloroprene Rubber (CR) blends in the presence of alkanolamide, MATEC Web Conf., 197 (2018) 12005.
[16] E. Osabohien, S. H. O. Egboh, Utilization of bowstring hemp fiber as a filler in natural rubber compounds, Applied Polymer Science, 107 (2008) 210-214.
[17] N. S. M. El-Tayeb, R. M. Nasir, Effect of soft carbon black on tribology of deproteinised and polyisoprene rubbers, Wear, 262 (2007) 350-361.
[18] G. R. Hamed, B. H. Park, The Mechanism of Carbon Black Reinforcement of SBR and NR Vulcanizates, Rubber Chemistry and Technology , 72 (1999) 946-959.
[19] S. Kawabata, Y. Yamashita, H. Ooyama, S. Yoshida, Mechanism of Carbon-Black Reinforcement of Rubber Vulcanizate, Rubber Chemistry and Technology, 68 (1995) 311-329.
[20] W. Niedermeier, J. Frohlich, H. D. Luginsland, Reinforcement mechanism in the rubber matrix by active fillers, Kautschuk Gummi Kunststoffe, 55 (2002) 356-356.
[21] Z. Rigbi, Reinforcement of rubber by carbon black, Polymers, 36 (2005) 21-68.
[22] M. Knörgen, U. Heuert, H. Schneider, P. Bargh, W. Kuhn, Spatially resolved and integral NMR investigation of the aging process of carbon black filled natural rubber, Polymer Bulletin, 38 (1997).
[23] S. He, F. Bai, S. Liu, H. Ma, J. Hu, L. Chen, J. Lin, G. Wei, X. Du, Aging properties of styrene-butadiene rubber nanocomposites filled with carbon black and rectorite, Polymer Testing, 64 (2017) 92-100.
[24] M. T. Ramesan, The effects of filler content on cure and mechanical properties of dichlorocarbene modified styrene butadiene rubber/carbon black composites, Polymer Research, 11 (2005) 333-340.

無法下載圖示 全文公開日期 2025/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE