研究生: |
李修竹 Xiu-Zhu Li |
---|---|
論文名稱: |
嵌入式類比快閃記憶體之低功耗智能感測電路與系統 Low Power Intelligence Sensing Circuits and Systems Using Embedded Analog Flash Memories |
指導教授: |
彭盛裕
Sheng-Yu Peng |
口試委員: |
彭盛裕
Sheng-Yu Peng 洪浩喬 Hao-Chiao Hong 鄭桂忠 Kea-Tiong Tang |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電機工程系 Department of Electrical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 144 |
中文關鍵詞: | 瞬時增強 、電流自適應放大器 、認知運算 、記憶內的計算 、 低功耗電路 |
外文關鍵詞: | transient enhancement, current adaptive amplifier, cognitive computation, computing in memories, low-power circuits |
相關次數: | 點閱:518 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Z.J. Lo et al., “A reconfigurable differentialtosingleended autonomous cur rent adaptation buffer amplifier suitable for biomedical applications,” IEEE Trans. Biomed. Circuits Syst., vol. 15, pp. 1405–1418, Dec 2021.
[2] 黃筠傑, ” 利用嵌入式類比快閃記憶體技術設計之暫態增強自適功率調變緩衝放大器積體電路設計”. 國立臺灣科技大學碩士論文, 2023.
[3] 蕭宗益, ” 類比記憶體編成之積體電路設計與系統整合”. 國立臺灣科技大學碩士論文, 2015.
[4] 黃惠群, ” 適用於生醫應用之低功耗可編程四通道類比感測前端電路與使用線性提升技術之轉導電容濾波器”. 國立臺灣科技大學碩士論文, 2019.
[5] Z.J. Lo et al., “A transientenhanced autonomous current adaptation buffer ampli fier,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 70, pp. 3727–3731, Oct 2023.
[6] Z.J. Lo et al., “A powerefficient autonomous current adaptation adc input driver,”IEEE Trans. Circuits Syst. I: Reg. Papers, 2024.
[7] V. Sharma, J. E. Kim, Y.J. Jo, Y. Chen, and T. T.H. Kim, “And8t sram macro with improved linearity for multibit inmemory computing,” in 2021 IEEE Inter national Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2021.
[8] S. Yin, Z. Jiang, J.S. Seo, and M. Seok, “Xnorsram: Inmemory computing sram macro for binary/ternary deep neural networks,” IEEE Journal of SolidState Cir cuits, vol. 55, no. 6, pp. 1733–1743, 2020.
[9] Q. Dong et al., “15.3 a 351tops/w and 372.4gops computeinmemory sram macro in 7nm finfet cmos for machinelearning applications,” 2020 IEEE International SolidState Circuits Conference (ISSCC), pp. 242–244, 2020.
[10] A. Biswas and A. P. Chandrakasan, “Convsram: An energyefficient sram with in memory dotproduct computation for lowpower convolutional neural networks,” IEEE Journal of SolidState Circuits, vol. 54, no. 1, pp. 217–230, 2019.
[11] S.Y. Peng et al., “An srambased reconfigurable cognitive computation matrix for sensor edge applications,” IEEE J. SolidState Circuits, vol. 59, pp. 636–648, Feb 2024.
[12] F. Kusumoto, ECG Interpretation: From Pathophysiology to Clinical Application.Berlin, Germany: Springer, 2020.
[13] D. Kahng and S. M. Sze, “A floatinggate and its application to memory devices,”Bell System Tech. J., vol. 46, no. 4, pp. 1288–1295, 1967.
[14] M. Holler et al., “An electrically trainable artificial neural network with 10240 floating gate synapses,” in Proceedings of the International Joint Conference on Neural Networks, (Washington, D.C.), 1989.
[15] A. Thomsen and M. A. Brooke, “A floating gate mosfet with tunneling injector fab ricated using a standard doublepolysilicon cmos process,” IEEE Electron Device Lett., vol. 12, pp. 111–113, 1991.
[16] C. Mead et al., Analog VLSI Implementation of Neural Systems. Kluwer Academic Publishers, 1989.
[17] T. Shibata and T. Ohmi, “A functional mos transistor featuring gatelevel weighted sum and threshold operations,” IEEE Trans. Electron Devices, vol. 39, no. 6, pp. 1444–1455, 1992.
[18] P. Hasler, Foundations of Learning in Analog VLSI. PhD thesis, California Institute of Technology, 1997.
[19] V. Srinivasan et al., “A precision cmos amplifier using floatinggate transistors for offset cancellation,” IEEE J. SolidState Circuits, vol. 42, pp. 280–291, Feb 2007.
[20] G. Serrano and P. Hasler, “A precision lowtc widerange cmos current reference,”IEEE J. SolidState Circuits, vol. 43, pp. 558–565, Feb 2008.
[21] D. W. Graham et al., “A lowpower programmable bandpass filter section for higher order filter applications,” IEEE Trans. Circuits Syst. I, vol. 54, Jun 2007.
[22] T. S. Hall et al., “Application performance of elements in a floatinggate fpaa,” in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 589– 592, Oct 2004.
[23] A. Basu et al., “A floatinggatebased fieldprogrammable analog array,” IEEE J. SolidState Circuits, vol. 45, pp. 1781–1794, Sept 2010.
[24] S. George et al., “A programmable and configurable mixedmode fpaa soc,” IEEE Trans. VLSI Syst., vol. 24, pp. 2253–2261, Jun 2016.
[25] S. Shah and J. Hasler, “Soc fpaa hardware implementation of a vmm+wta embedded learning classifier,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 8, Mar 2018.
[26] A. Natarajan and J. Hasler, “Hodgkin–huxley neuron and fpaa dynamics,” IEEE Trans. Biomed. Circuits Syst., vol. 12, pp. 918–926, Jul 2018.
[27] R. Guo, Y. Liu, S. Zheng, S. Wu, P. Ouyang, W. Khwa, X. Chen, J. Chen, X. Li, L. Liu, M. Chang, S. Wei, and S. Yin, “A 5.1 pj/neuron 127.3 us/inference rnn based speech recognition processor using 16 computinginmemory sram macros in 65 nm cmos,” in 2019 Symposium on VLSI Circuits, pp. C120–C121, 2019.
[28] D. Kadetotad, S. Yin, V. Berisha, C. Chakrabarti, and J. Seo, “An 8.93 tops/w lstm recurrent neural network accelerator featuring hierarchical coarsegrain sparsity for ondevice speech recognition,” IEEE Journal of SolidState Circuits, vol. 55, no. 7, pp. 1877–1887, 2020.
[29] K. Kim, C. Gao, R. Graça, I. Kiselev, H. Yoo, T. Delbruck, and S. Liu, “A 23μw solarpowered keywordspotting asic with ringoscillatorbased timedomain feature extraction,” in 2022 IEEE International SolidState Circuits Conference (ISSCC), vol. 65, pp. 1–3, 2022.
[30] C. Frenkel and G. Indiveri, “Reckon: A 28nm submm2 taskagnostic spiking recurrent neural network processor enabling onchip learning over secondlong timescales,” in 2022 IEEE International SolidState Circuits Conference (ISSCC), vol. 65, pp. 1–3, 2022.
[31] K.J. de Langen and J. H. Huijsing, “Compact lowvoltage powerefficient opera tional amplifier cells for vlsi,” IEEE J. SolidState Circuits, vol. 33, pp. 1482–1496, Oct 1998.
[32] J. R.Angulo, R. G. Carvajal, J. A. Galan, and A. J. L.Martin, “A free but efficient lowvoltage classab twostage operational amplifier,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 53, pp. 568–571, Jul 2006.
[33] P. R. Surkanti and P. M. Furth, “Converting a threestage pseudoclassab amplifier to a trueclassab amplifier,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 59, pp. 229–233, Apr 2012.
[34] C. G.Alberdi, J. A.Ruiz, A. J. L.Martin, and J. R.Angulo, “Micropower classab vga with gainindependent bandwidth,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 60, pp. 397–401, Jul 2013.
[35] F. E.Alfaro, S. Pennisi, G. Palumbo, and A. J. L.Martin, “Lowpower classab cmos voltage feedback current operational amplifier with tunable gain and band width,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 61, pp. 574–578, Aug 2014.
[36] E. C.Bernal, S. Pennisi, A. D. Grasso, A. Torralba, and R. G. Carvajal, “0.7v three stage classab cmos operational transconductance amplifier,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., vol. 63, pp. 1807–1815, Nov 2016.
[37] M. Degrauwe, J. Rijmenants, E. A. Vittoz, and D. Man, “Adaptive biasing cmos amplifier,” IEEE Journal of SolidState Circuits, vol. SC17, pp. 522–528, Jun. 1982.
[38] R. Kline, B. J. Hosticka, and H. J. Pfleiderer, “A veryhighslewrate cmos opera tional amplifier,” IEEE Journal of SolidState Circuits, vol. 24, pp. 744–760, Jun. 1989.
[39] L. Callewaert and W. Sansen, “Classab cmos amplifiers with high efficiency,”IEEE Journal of SolidState Circuits, vol. 25, pp. 684–691, Jun. 1990.
[40] A. J. LópezMartín, S. Baswa, J. R. RincónMora, and R. G. Carvajal, “Low voltage super classab cmos ota cells with very high slew rate and power effi ciency,” IEEE Journal of SolidState Circuits, vol. 40, pp. 1068–1077, May 2005.
[41] B. A. Minch, “A simple classab transconductor in cmos,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 69–72, 2008.
[42] D. Du and K. M. Odame, “A bandwidthadaptive preamplifier,” IEEE Journal of SolidState Circuits, vol. 48, pp. 2142–2153, Sep. 2013.
[43] R. Castello and P. R. Gray, “A highperformance micropower switchedcapacitor filter,” IEEE Journal of SolidState Circuits, vol. SC20, pp. 1122–1132, Dec. 1985.
[44] R. Harjani, R. Heineke, and F. Wang, “An integrated lowvoltage classab cmos ota,” IEEE Journal of SolidState Circuits, vol. SC34, pp. 134–142, Feb. 1999.
[45] A. J. LópezMartín, M. P. Garde, J. M. Algueta, C. A. C. Blas, R. G. Carvajal, and J. RincónMora, “Enhanced singlestage folded cascode ota suitable for large capacitive loads,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, pp. 441–445, Apr. 2018.
[46] M. P. Garde, A. J. LópezMartín, R. G. Carvajal, and J. RincónMora, “Super class ab recycling folded cascode ota,” IEEE Journal of SolidState Circuits, vol. 53, pp. 2614–2623, Sep. 2018.
[47] M. Garde, A. LopezMartin, R.G.Carvajal, and J.RamirezAngulo, “Super class AB recycling folded cascode OTA,” IEEE Journal of SolidState Circuits, vol. 53, no. 22, pp. 2614–2623, 2018.
[48] A. Paul, J. R.Angulo, A. D. Sanchez, A. J. L.Martin, R. G. Carvajal, and F. X. Li, “Supergainboosted ABAB fully differential miller OpAmp with 156dB open loop gain and 174MV/V MHz pF/µW figure of merit in 130nm CMOS technology,” vol. 9, pp. 57603–57617, 2021.
[49] J. B.Legarra, C. A. C.Blas, A. J. L.Martin, and J. R.Angulo, “Gainboosted super class AB OTA based on nested local feedback,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 68, no. 9, pp. 3562–3573, 2021.
[50] H. S. Bindra, J. Lechevallier, A. J. Annema, S. M. Louwsma, E. V. Tuijl, and B. Nauta, “Range preselection sampling technique to reduce input drive energy for sar adcs,” in IEEE Proceedings of the Asian SolidState Circuits Conference (ASSCC), pp. 217–220, 2017.
[51] L. Wei, X. H. Pan, C. H. Chan, Y. Zhu, and R. P. Martins, “Input correlated swap sampling technique for input driver power reduction in a 12b 25ms/s sar adc,” in IEEE Proceedings of the International Symposium on Circuits and Systems, pp. 1– 5, 2019.
[52] H. S. Bindra, A. J. Annema, S. M. Louwsma, E. V. Tuijl, and B. Nauta, “An energy reduced sampling technique applied to a 10bits 1ms/s sar adcs,” in IEEE European SolidState Circuits Conference, pp. 238–238, 2017.
[53] X. Zou et al., “A 100channel 1mw implantable neural recording ic,” IEEE Trans actions on Circuits and Systems I: Regular Papers, vol. 60, pp. 2584–2596, Oct 2013.
[54] M. J. Kramer, E. Janssen, K. Doris, and B. Murmann, “A 14 b 35ms/s sar adc achieving 75 db sndr and 99 db sfdr with loopembedded input buffer in 40 nm cmos,” IEEE Journal of SolidState Circuits, vol. 50, no. 12, pp. 2891–2900, 2015.
[55] T. Kim and Y. Chae, “A 2mhz bw bufferembedded noiseshaping sar adc achiev ing 73.8db sndr and 87.3db sfdr,” in IEEE Proceedings of the Custom Integrated Circuits Conference, pp. 1–4, 2019.
[56] J. Liu, X. Tang, W. Zhao, L. Shen, and N. Sun, “A 13bit 0.005mm² 40ms/s sar adc with kt/c noise cancellation,” IEEE Journal of SolidState Circuits, vol. 55, no. 12, pp. 3260–3270, 2020.
[57] S. Li, “A kt/cnoisecancelled noiseshaping sar adc with a dutycycled amplifier,” in IEEE Proceedings of the International Midwest Symposium on Circuits and Sys tems, pp. 758–761, 2020.
[58] T.H. Wang, R. Wu, V. Gupta, X. Tang, and S. Li, “A 13.8enob fully dynamic third order noiseshaping sar adc in a singleamplifier efciff structure with hardware reusing kt/ c noise cancellation,” IEEE Journal of SolidState Circuits, vol. 56, no. 12, pp. 3268–3680, 2021.
[59] M. Zhan, L. Jie, X. Tang, and N. Sun, “A 0.004mm² 200ms/s pipelined sar adc with kt/c noise cancellation and robust ringamp,” in IEEE Proceedings of the Interna tional SolidState Circuits Conference (ISSCC), vol. 65, pp. 164–166, 2022.
[60] Z.J. Lo, B. Nath, Y.C. Wang, Y.J. Haung, H.C. Haung, and S.Y. Peng, “A floatinggatebased fourchannel reconfigurable analog frontend integrated cir cuit,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 1–4, May 2021.
[61] H. S. Bindra, J. Lechevallier, A. J. Annema, S. M. Louwsma, E. V. Tuijl, and B. Nauta, “Range preselection sampling technique to reduce input drive energy for sar adcs,” IEEE Proceedings of the Asian SolidState Circuits Conference (A SSCC), pp. 217–220, 2017.
[62] H. S. Bindra, A. J. Annema, S. M. Louwsma, E. V. Tuijl, and B. Nauta, “An energy reduced sampling technique applied to a 10bits 1ms/s sar adcs,” pp. 238–238, 2017.
[63] X. Zou, L. Liu, J. H. Cheong, L.Yao, P. Li, M. Y. Cheng, W. L. Goh, R. Rajkumar, G. S. Dawe, K. W. Cheng, and M. Je, “A 100channel 1mw implantable neural recording ic,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 60, no. 10, pp. 2584–2596, 2013.
[64] T. Kim and Y. Chae, “A 2mhz bw bufferembedded noiseshaping sar adc achieving 73.8db sndr and 87.3db sfdr,” IEEE Proceedings of the Custom Integrated Circuits Conference, pp. 1–4, 2019.
[65] Y. M. Chae, W. Liu, Z. Yang, T. Chen, J. Kim, M. Sivaprakasam, and M. Yuce, “A 128channel 6 mw wireless neural recording ic with onthe fly spike sorting and uwb transmitter,” pp. 146–147, 2008.
[66] K. M. A.Ashmouny, S. I. Chang, and E. Yoon, “A 4µw/ch analog frontend mod ule with moderate inversion and powerscalable sampling operation for 3d neural microsystems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 5, pp. 403–413, 2012.
[67] C. M. Lopez, D. Prodanov, D. Braeken, I. Gligorijevic, E. Eberle, C. Bartic, R. Puers, and G. Gielen, “A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 2, pp. 101–110, 2012.
[68] C.Y. Wu, C.H. Cheng, and Z.X. Chen, “16channel cmos chopperstabilized ana log frontend ecog acquisition circuit for a closedloop epileptic seizure control system,” IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 3, pp. 543–553, 2018.
[69] J. Zhang, Z. Wang, and N. Verma, “Inmemory computation of a machinelearning classifier in a standard 6t sram array,” IEEE Journal of SolidState Circuits, vol. 52, no. 4, pp. 915–924, 2017.
[70] W.S. Khwa, J.J. Chen, J.F. Li, X. Si, E.Y. Yang, X. Sun, R. Liu, P.Y. Chen, Q. Li, S. Yu, and M.F. Chang, “A 65nm 4kb algorithmdependent computinginmemory sram unitmacro with 2.3ns and 55.8tops/w fully parallel productsum operation for binary dnn edge processors,” in 2018 IEEE International SolidState Circuits Conference (ISSCC), pp. 496–498, 2018.
[71] R. Liu, X. Peng, X. Sun, W.S. Khwa, X. Si, J.J. Chen, J.F. Li, M.F. Chang, and S. Yu, “Parallelizing sram arrays with customized bitcell for binary neural net works,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6, 2018.
[72] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A mixedsignal bina rized convolutionalneuralnetwork accelerator integrating dense weight storage and multiplication for reduced data movement,” in 2018 IEEE Symposium on VLSI Circuits, pp. 141–142, 2018.
[73] A. Agrawal, A. Jaiswal, D. Roy, B. Han, G. Srinivasan, A. Ankit, and K. Roy, “Xcelram: Accelerating binary neural networks in highthroughput sram compute arrays,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 8, pp. 3064–3076, 2019.
[74] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64tile 2.4mb inmemory computing cnn accelerator employing chargedomain compute,” IEEE Journal of SolidState Circuits, vol. 54, no. 6, pp. 1789–1799, 2019.
[75] J. Yang, Y. Kong, Z. Wang, Y. Liu, B. Wang, S. Yin, and L. Shi, “24.4 sandwich ram: An energyefficient inmemory bwn architecture with pulsewidth modu lation,” in 2019 IEEE International SolidState Circuits Conference (ISSCC), pp. 394–396, 2019.
[76] Z. Jiang, S. Yin, J.S. Seo, and M. Seok, “C3sram: An inmemorycomputing sram macro based on robust capacitive coupling computing mechanism,” IEEE Journal of SolidState Circuits, vol. 55, no. 7, pp. 1888–1897, 2020.
[77] J. Mu, H. Kim, and B. Kim, “Srambased inmemory computing macro featuring voltagemode accumulator and rowbyrow adc for processing neural networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 6, pp. 2412–2422, 2022.
[78] C. Yu, T. Yoo, K. T. C. Chai, T. T.H. Kim, and B. Kim, “A 65nm 8t sram compute inmemory macro with column adcs for processing neural networks,” IEEE Journal of SolidState Circuits, pp. 1–1, 2022.
[79] X. Si, J.J. Chen, Y.N. Tu, W.H. Huang, J.H. Wang, Y.C. Chiu, W.C. Wei, S.Y. Wu, X. Sun, R. Liu, S. Yu, R.S. Liu, C.C. Hsieh, K.T. Tang, Q. Li, and M.F. Chang, “A twin8t SRAM computationinmemory unitmacro for multibit CNN based AI edge processors,” IEEE Journal of SolidState Circuits, vol. 55, no. 1, pp. 189–202, 2020.
[80] X. Si, Y.N. Tu, W.H. Huang, J.W. Su, P.J. Lu, J.H. Wang, T.W. Liu, S.Y. Wu,R. Liu, Y.C. Chou, Y.L. Chung, W. Shih, C.C. Lo, R.S. Liu, C.C. Hsieh, K.T. Tang, N.C. Lien, W.C. Shih, Y. He, Q. Li, and M.F. Chang, “A local computing cell and 6t SRAMbased computinginmemory macro with 8b MAC operation for edge AI chips,” IEEE Journal of SolidState Circuits, vol. 56, no. 9, pp. 2817–2831, 2021.
[81] M. E. Sinangil, B. Erbagci, R. Naous, K. Akarvardar, D. Sun, W.S. Khwa, H.J. Liao, Y. Wang, and J. Chang, “A 7nm computeinmemory SRAM macro sup porting multibit input, weight and output and achieving 351 TOPS/W and 372.4 GOPS,” IEEE Journal of SolidState Circuits, vol. 56, no. 1, pp. 188–198, 2021.
[82] H. Fujiwara, H. Mori, W.C. Zhao, M.C. Chuang, R. Naous, C.K. Chuang, T. Hashizume, D. Sun, C.F. Lee, K. Akarvardar, S. Adham, T.L. Chou, M. E. Sinangil, Y. Wang, Y.D. Chih, Y.H. Chen, H.J. Liao, and T.Y. J. Chang, “A 5 nm 254tops/w 221tops/mm² fullydigital computinginmemory macro support ing widerange dynamicvoltagefrequency scaling and simultaneous mac and write operations,” in 2022 IEEE International SolidState Circuits Conference (ISSCC), vol. 65, pp. 1–3, 2022.
[83] P.-C. Wu, J.-W. Su, Y.-L. Chung, L.-Y. Hong, J.-S. Ren, F.-C. Chang, Y. Wu, H.-Y. Chen, C.-H. Lin, H.-M. Hsiao, S.-H. Li, S.-S. Sheu, S.-C. Chang, W.-C. Lo, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, C.-I. Wu, and M.-F. Chang, “A 28nm 1mb time-domain computing-in-memory 6t-sram macro with a 6.6ns latency, 1241gops and 37.01tops/w for 8b-mac operations for edge-ai devices,” in 2022 IEEE Inter national SolidState Circuits Conference (ISSCC), vol. 65, pp. 1–3, 2022.
[84] B. Yan, J.-L. Hsu, P.-C. Yu, C.-C. Lee, Y. Zhang, W. Yue, G. Mei, Y. Yang, Y. Yang, H. Li, Y. Chen, and R. Huang, “A 1.041-mb/mm² 27.38-tops/w signed- int8 dynamic-logic-based adc-less sram compute-in-memory macro in 28nm with reconfigurable bitwise operation for ai and embedded applications,” in 2022 IEEE International SolidState Circuits Conference (ISSCC), vol. 65, pp. 188–190, 2022.
[85] H. Fujiwara, H. Mori, W.-C. Zhao, M.-C. Chuang, R. Naous, C.-K. Chuang, T. Hashizume, D. Sun, C.-F. Lee, K. Akarvardar, S. Adham, T.-L. Chou, M. E. Sinangil, Y. Wang, Y.-D. Chih, Y.-H. Chen, H.-J. Liao, and T.-Y. J. Chang, “A 5- nm 254-TOPS/W 221-TOPS/mm² fully-digital computing-in-memory macro sup- porting wide-range dynamic-voltage-frequency scaling and simultaneous MAC and write operations,” in 2022 IEEE International SolidState Circuits Conference (ISSCC), vol. 65, pp. 1–3, 2022.
[86] J. Ramirez-Angulo, R. Carvajal, and A. Torralba, “Low supply voltage high performance CMOS current mirror with low input and output voltage requirements,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 51, no. 3, pp. 124–129, 2004.
[87] T. Delbruck, ““bump” circuits for computing similarity and dissimilarity of analog voltages,” in Proc. Int. Neural Netw. Soc., vol. 1, pp. 475–479, Oct 1991.
[88] X. Qiao, J. Song, X. Tang, H. Luo, N. Pan, X. Cui, R. Wang, and Y. Wang, “A 65 nm 73 kb sram-based computing-in-memory macro with dynamic-sparsity controlling,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 6, pp. 2977–2981, 2022.
[89] A. Canhoto and S. Arp, “Exploring the factors that support adoption and sustained use of health and fitness wearables,” J. Marketing Manage., vol. 33, pp. 32–60, 2017.
[90] Y. Gao, H. Li, and Y. Luo, “An empirical study of wearable technology acceptance in healthcare,” Ind. Manage. Data Syst., vol. 115, no. 9, pp. 1704–1723, 2015.
[91] L. Dunne et al., “The social comfort of wearable technology and gestural interaction,” in Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 4159–4162, 2014.
[92] B. Hensel, G. Demiris, and K. Courtney, “Defining obtrusiveness in home tele-health technologies: A conceptual framework,” J. Amer. Med. Inform. Assoc., vol. 13, pp. 428–431, 2006.
[93] M. Nyamukuru and K. Odame, “Tiny eats: Eating detection on a microcontroller,” in Proc. IEEE 2nd Workshop Mach. Learn. Edge Sensor Syst., pp. 19–23, 2020.
[94] J. Amoh and K. Odame, “An optimized recurrent unit for ultra-low-power keyword spotting,” in Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., vol. 3, pp. 1–17, 2019.
[95] I. Jordan and I. Park, “Birhythmic analog circuit maze: A nonlinear neurostimula- tion testbed,” Entropy, vol. 22, p. 537, 2020.
[96] K. Adam, K. Smagulova, and A. James, “Memristive lstm network hardware architecture for time-series predictive modeling problems,” in Proc. IEEE Asia Pacific Conf. Circuits Syst., pp. 459–462, 2018.
[97] O. Krestinskaya, K. Salama, and A. James, “Learning in memristive neural network architectures using analog backpropagation circuits,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 66, pp. 719–732, Feb 2019.
[98] J. Han, H. Liu, M. Wang, Z. Li, and Y. Zhang, “Eralstm: An efficient reram- based architecture for long short-term memory,” IEEE Trans. Parallel Distrib. Syst., vol. 31, pp. 1328–1342, Jun 2020.
[99] Z. Zhao, A. Srivastava, L. Peng, and Q. Chen, “Long short-term memory network design for analog computing,” ACM J. Emerg. Technol. Comput. Syst., vol. 15, pp. 1–27, 2019.
[100] K. Odame, M. Nyamukuru, M. Shahghasemi, S. Bi, and D. Kotz, “Analog gated recurrent unit neural network for detecting chewing events,” IEEE Transactions on Biomedical Circuits and Systems, vol. 16, no. 6, pp. 1106–1115, 2022.
[101] F. Adil, G. Serrano, and P. Hasler, “Offset removal using floating-gate circuits for mixed-signal systems,” in IEEE Southwest Symposium on MixedSignal Design, pp. 190–195, 2003.
[102] A. Basu, R. Robucci, and P. Hasler, “A low-power, compact, adaptive logarithmic transimpedance amplifier operating over seven decades of current,” IEEE Trans actions on Circuits and Systems I: Regular Papers, vol. 54, pp. 2167–2177, Oct 2007.
[103] C. Schlottmann, C. Petre, and P. Hasler, “Vector matrix multiplier on field programmable analog array,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1522–1525, Mar 2010.
[104] B. A. Minch, “A low-voltage mos cascode bias circuit for all current levels,” in 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353), pp. III–III, IEEE, 2002.
[105] B. A. Minch, “Analysis and synthesis of static translinear circuits,” School of Elec trical and Computer Engineering, Cornell University, NY, pp. 95–1, 2000.
[106] J. S. P. Giraldo, S. Lauwereins, K. Badami, and M. Verhelst, “Vocell: A 65-nm speech-triggered wake-up soc for 10- µ w keyword spotting and speaker verification,” IEEE Journal of SolidState Circuits, vol. 55, no. 4, pp. 868–878, 2020.
[107] Q. Li, C. Liu, P. Dong, Y. Zhang, T. Li, S. Lin, M. Yang, F. Qiao, Y. Wang, L. Luo, and H. Yang, “Nsfdn: Near-sensor processing architecture of feature- configurable distributed network for beyond-real-time always-on keyword spotting,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 5, pp. 1892–1905, 2021.
[108]K. Kim, C. Gao, R. Graça, I. Kiselev, H.-J. Yoo, T. Delbruck, and S.-C. Liu, “A 23μw solar-powered keyword-spotting asic with ring-oscillator-based time-domain feature extraction,” in 2022 IEEE International Solid State Circuits Conference (ISSCC), vol. 65, pp. 1–3, 2022.