簡易檢索 / 詳目顯示

研究生: 王駿
Jun-Wang
論文名稱: 大面積還原氧化石墨烯薄膜之研究
Study of large-area reduced graphene oxide film
指導教授: 林舜天
Shun-Tian Lin
口試委員: 吳翼貽
Ye-Ee Wu
胡泉凌
Chuan-ling Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 69
中文關鍵詞: 氧化石墨烯石墨烯濺鍍真空熱還原拉曼光譜原子力顯微鏡熱重分析儀
外文關鍵詞: graphene oxide, graphene, sputtering, vacuum reduction, Raman spectroscopy, Thermogravimetry Analysis, Atomic Force Microscope
相關次數: 點閱:332下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於石墨烯在各方面的應用上皆表現出驚人的特性,人們對於石墨烯的研究及應用越來越重視,甚至有學者將它稱為能夠改變21世紀之材料。

本研究係使用PVD濺鍍配合高溫氧化及真空高溫處理之製程來製造石墨烯。在嘗試了不同濺鍍鍍層厚度、氧化處理時間、真空高溫還原溫度的實驗參數後,再利用拉曼光譜儀、熱重分析儀、原子力顯微鏡來分析,成功的在銅箔基板上製造出大面積且連續之石墨烯薄膜。

實驗結果顯示,多組實驗數據搭配皆能成功的製造出少層石墨烯,以銅箔為底材,利用原子力顯微鏡、熱重分析儀和拉曼光譜儀觀察並分析後,皆顯示出相當不錯的成果。


In recent years, the research and application of graphene becoming more and more popular. This two-dimensional material exhibits amazing properties on the application of all aspects, some scholars even say that graphene will change the way we live.

This study used PVD sputtering collocation high-temperature oxidation and high-temperature vacuum treatment to manufacture graphene. After trying different films thickness, oxidative induction time and high-temperature vacuum reducing, then use Raman spectroscopy, Thermogravimetry Analysis(TGA) and Atomic Force Microscope(AFM) to analyze. Finally succeed to manufacture large area of continuously graphene film.

In the result, most multiple groups of empirical data could succeed to manufacture grapheme. This empirical data had great achievement after using AFM, TGA and Raman spectroscopy to analyze.

摘要II AbstractIII 目錄IV 圖目錄VI 表目錄VIII 第一章 緒論1 1-1研究動機1 1-2 石墨烯之簡介1 1-3 石墨烯之結構與其特色2 第二章 文獻回顧6 2-1 石墨烯常見的製備方法6 2-2 檢測石墨烯所需之儀器與原理介紹11 2-2-1拉曼光譜儀 (Raman spectroscopy)11 2-2-2 掃描式電子顯微鏡(Scanning electron microscope)17 2-2-3原子力顯微鏡(Atomic Force Microscopy)20 2-2-4 熱重分分析儀(Thermogravimetric Analysis)22 第三章 實驗流程與儀器分析23 3-1 實驗材料23 3-1-1 試片鍍膜前處理23 3-1-2 試片鍍膜25 3-2 石墨烯製備方法26 3-2-1 高溫氧化石墨26 3-2-2 真空高溫還原27 3-3 石墨烯轉印方式28 3-3-1 轉印過程中可能的PMMA殘留29 3-4 表証石墨烯使用之儀器參數31 3-4-1 拉曼光譜儀31 3-4-2 熱重分析儀31 3-4-3 原子力顯微鏡31 3-4-4 掃描式電子顯微鏡32 第四章 結果與討論 33 4-1 熱重分析儀分析石墨烯各型態熱穩定性33 4-2 探討石墨氧化機制與拉曼光譜儀分析35 4-3 氧化石墨還原機制與拉曼光譜儀分析39 4-4 原子力顯微鏡檢測石墨烯厚度45 4-5 掃描式電子顯微鏡觀察少層石墨烯表面結構53 第五章 結論56 第六章 參考文獻57

[1] Jannik C. Meyer. The structure of suspended graphene sheets. Nature, 446:60,2007.
[2] A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nature Mater. 6, 183 (2007).
[3] P.R.Wallace. The band theory of graphite. Phys Rev,71:622, 1947.
[4] Nikolay Delibozov, “Analysis of Graphene Nanoribbons Passivated with Gold, Copper and Indium”, International Journal of Theoretical and Applied Nanotechnology, Volume 1, Issue 2( 2013).
[5] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science 320, 1308 (2008).
[6] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature 438, 197-200 (2005).
[7] P. W. Sutter, J. I. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium”, Nature Mater. 7, 406-411 (2008).
[8] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science 324, 1312-1314 (2009).
[9] X. Liang, Z. Fu, and S. Y. Chou, “Graphene Transistors Fabricated
via Transfer-Printing In Device Active-Areas on Large Wafer”, Nano
Lett. 7, 3840-3844 (2007).
[10] Y. Xu et al., “Flexible Graphene Films via the Filtration of
Water-Soluble Noncovalent Functionalized Graphene Sheets”, J. Am. Chem. Soc., 130, 5856 (2008).
[11] D. Li et al.,” Processable aqueous dispersions of graphene nanosheets”, Nature Nanotech., 3, 101 (2008).
[12] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films”, Nature Nanotech. 3, 538-542 (2008).
[13] Gao X F, Jang J, Nagase S. Density functional theory study of
catechol adhesion on silica surfaces [J]. J Phys Chem C, 2010,
114:832–842.
[14] Williams G, Seger B and Kamat P V. TiO2 –graphene
nanocomposites.UV -assisted photocatalytic reduction of graphene
oxide [J]. ACS Nano, 2008, 2: 1487-1491.
[15] G Placzek. Rayleigh-Streuung und Raman-Effekt. Akademische
Verlagsgesellschaft, 1934.
[16] John Strutt, “On the light from the sky, its polarization and colour”,
Philosophical Magazine, series 4, vol.41, pages 107-120, 274-279
(1871).
[17] J.Y.H. Fuh, L. Lu, C.C. Tan, Z.X. Shen, S. Chew, "Curing characteristics of acrylic photopolymer used in stereolithography process", Rapid Prototyping Journal, Vol. 5 Iss: 1, pp.27 – 34(1999).
[18] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri,
F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, PRL 97, 187401 (2006).
[19] A. C. “Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”, Solid State Communications 143, 47-57 (2007).
[20] A. C. Ferrari, et al., “Raman spectrum of graphene and graphene layers”. Physical Review Letters 97 (18) (2006).
[21] L.M. Malard, M.A.Pimenta, G.Dresselhausm and M.S. Dresselhaus.
Raman spectroscopy in graphene. Phys. Rep, 473:5187,2009.
[22] Andrea C. Ferrari. Raman spectroscopy of graphene and graphite:
Disorder, electron-phonon coupling, doping and nonadiabatic
effects. Solid State Communications, 143:47, 2007.
[23] Rahul Rao, Derek Tishler, Jyoti Katoch, and Masa Ishigami.
Multiphonon raman scattering in graphene. Phys. Rev.B, 84:113406,
2011.
[24] 林鶴南、許如宏. 原子力顯微技術於奈米加工之應用. 物理雙月
刊,二五捲五期:620, 2003.
[25] PerkinElmer, 熱重分析儀 TGA 簡介。
[26] X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via
transferprinting in device active-areas on large wafer, “Nano Lett.
Vol.7,no 12,pp.3840-3844, 2007.
[27] L.-H Liu and M. Yan, “simple method for the covalent
immobilization of graphene, “Nano Lett. Vol.9,no 9m pp,3375-3378,
2009.
[28] M. J. Allen, V.C. tung, L. Gomez, Z. Xu, L.-M. Chen, K.S. Nelson,
C.Zhou, R.B. Kaner, amd Y. Yang, “Soft transfer pringting of
chemically converted graphene, “Adv. Mater: vol.21, no. 20, pp.
2098-2102 , 2009.
[29] X. Li, W. Cai, J.An,S. Kim, J. Nah, D. Yang, R. Piner,
A.Velamakanni, I. Jung, E. Tutuc,et al. “Large-area synthesis of
high-quality and uniform graphene films on copper foils, “Science,
vol. 324, no. 5932, pp3 1312-1314, 2009.
[30] Y.-C Lin,C.Jin,J.-C. Lee,S.-F. Jen, K. Suenaga, and P.-W.Chiu,
“Clean transfer of graphene for isolation and suspension,” ACS
Nano, vol.5,no.3,pp.2362-2368,2011.
[31] L. Gao, W.Ren, H.Xu, L.Jin, Z.Wang, T.Ma,L.-P.Ma, Z.Zhang, Q.
Fu, L.-M Peng, et al. “Repeated growth and bubbling transfer of
graphene with millimetresize single-crystal grains using
platinum,”Nat. Commun. Vol.3, p. 699, 2012.
[32] Stoller M D, Ruoff R S, Best practice methods for determining an
electrode material's performance for ultracapacitors[J]. Energy -
Environ Sci, 2010, 3 (9): 1294-1301
[33] Wang, H.M. et al.. Electronic transport and layer engineering in
multilayer graphene structures. Applied Physics Letters. 2008, 92:
053504.
[34] Su C. Y, Xu Y, Zhang W, et al. Highly efficient restoration
of graphitic structure in graphene oxide using alcohol vapors
[J]. ACS Nano, 2010, 9:5285-5292.
[35] 劉燕珍,李永锋,楊永剛,等. 低温熱處理對氧化石墨烯薄膜的影響
[J]. 新型碳材料, 2011, 26(1): 41-45.
[36] K. P. Loh, Q.Bao, M. Chhowalla, Graphene Oxide as A Chemically
Tunable Platform for Optical Applications, Nature Chem. 907, 1015,
(2010).
[37] Nemes-Incze, P.; Osvath, Z.; Kamaras, K.; Biro, L. P. Anomalies in
Thickness Measurements of Graphene and Few Layer Graphite
Crystals by Tapping Mode Atomic Force Microscopy. Carbon 2008,
46, 1435–1442.

無法下載圖示 全文公開日期 2020/02/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE