簡易檢索 / 詳目顯示

研究生: 高頡
Chieh Kao
論文名稱: 聚合物波導與多纖芯光纖之光學特性與高速傳輸之研究
Study of Optical Characteristics and High-speed Transmission for Multichannel Polymer Waveguide and Multi-core Fibers
指導教授: 廖顯奎
Shien-Kuei Liaw
莊為群
Wei-Ching Chuang
口試委員: 廖顯奎
Shien-Kuei Liaw
莊為群
Wei-Ching Chuang
徐世祥
Shih-Hsiang Hsu
張勝良
Sheng-Lyang Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 高分子波導多纖芯光纖透鏡光纖光纖通訊誤碼率
外文關鍵詞: Polymer waveguide, Multi-core fiber, Lensed fiber, Optical fiber communication, Bit error rate
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為解決現今資料中心發收端擁擠與增加傳輸效率,本論文內容介紹了三種特殊光波導元件:高分子波導、多纖芯光纖以及透鏡光纖,高分子波導與多纖芯光纖針對光通訊部分進行基本特性以及通訊品質量測,並在論文中對此兩種光波導進行結構與原理的分析,量測插入損耗、串擾、彎曲、溫度、誤碼率等量測實驗,並與現今使用之光纖進行優劣比較。透鏡光纖則為了因應尺寸越來越小之光波導,在自由空間中的耦合效率。本論文主要分成兩個部份,第一部分本論文針對兩種特殊光波導進行結構與原理分析,對於高分子波導之材料與製程進行討論,並針對高分子波導進行各項特性之量測。分別使用三種光源:980 nm雷射、1310 nm雷射、1550 nm 雷射,量測各項參數特性如:插入損耗、串擾、彎曲、扭曲、溫度、誤碼率,實驗結果發現聚合物波導在980 nm與1310 nm波段具有較低損耗。而對於多纖芯光纖的文獻進行探討並量測其插入損耗、串擾及誤碼率,實驗結果發現其傳輸損耗都較低。至於雙向傳輸的部分本論文探討了帶內串擾與帶間串擾對系統性能之影響,而實驗結果得知帶內串擾為兩輸入相同波長相互影響造成系統品質不佳且功率償付較大,而帶間串擾容易被濾波器濾除,因此對系統品質影響較小且功率償付較小,由於高分子波導材料於1550 nm時損耗很大,因此相較於多纖芯光纖通訊系統品質較差。第二部分本論文對透鏡光纖進行文獻探討並量測其焦距與利用Matlab 模擬耦合效率,透鏡光纖可以藉由製程方式的不同而達到不同的透鏡半徑與形狀,可以改變模態形狀來調整透鏡光纖與待測波導之間的模態匹配程度,進而提升與待測波導之間的耦合效率。而模擬結果為工作距離為10 μm,最佳偶合效率為61.7631%。最後利用透鏡光纖與高分子波導提出一個架構進行討論及評估。


    To solve out the congestion control at data centers and enhance the transmission efficiency, we introduce three types of special optical waveguide components in this thesis: polymer waveguide, multi-core fiber, and lensed fiber. Polymer waveguide and multi-core fiber are mainly used to measure the basic characteristics in optical communication and the quality of it. We compare these two waveguides structurally and analyze them theoretically, including measuring insertion loss (IL), crosstalk, bending, temperature, bit error rate (BER), and comparing them with optical fibers to realize the pros and cons. Lensed fiber is used to improve the coupling efficiency in free space for the smaller size optical waveguide. The thesis is mainly separated into two parts. The first is to investigate these two special waveguides structurally and theoretically, discuss the materials of the polymer waveguide and its processing, and measure its different characteristics. Using three types of light sources: 980nm laser, 1310nm laser, 1550 nm laser, we measure the characteristics like IL, crosstalk, bending, twisting, temperature, BER. The result shows that it has lower loss in 980 nm and 1310 nm band. For the investigation into the literatures related to multi-core fiber, we measure IL, crosstalk, BER, and we find out that its transmission loss is relatively lower than polymer waveguide. As for bi-directional transmission, we explore the impacts about how inter-band and intra-band crosstalk have on the system efficiency, and the result shows that intra-band crosstalk makes two same wavelengths light sources affect each other and that influences the quality of the system and higher power penalty; on the other hand, inter-band crosstalk is easily eliminated by the filter, so it has lower impact on the quality of the system and lower power penalty. Due to the materials of polymer waveguide has high loss at 1550 nm
    , the loss of it is so big that it has worse communication system quality than multi-core fiber. The second part is to investigate the literatures related to lensed fiber, measure its focal length, and simulate coupling efficiency of it through Matlab. Lensed fiber with different radiuses and shapes could be achieved through different processing methods. By doing so, the mode distribution will be tuned to the better condition for lensed fiber and waveguide under test and that will enhance the overall coupling efficiency. The simulation result shows that the best coupling efficiency is 61.7631% when the focal length is 10 μm. Finally, we use lensed fiber and polymer waveguide to develop an architecture to have a discussion and an evaluation.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1. 1 光波導簡介 1 1. 2 研究動機 2 1. 3 論文架構 3 第二章 光波導原理 4 2. 1 高分子波導結構與介紹 4 2. 2 高分子波導材料與製程分析 5 2.2.1 多種高分子波導之材料文獻探討 6 2.2.2 光波導製程介紹與文獻探討 11 2. 3 多纖芯光纖之介紹與文獻探討 14 2.3.1 光纖介紹與原理 14 2.3.2 多纖芯光纖介紹與結構 16 2.3.3 多纖芯光纖製程文獻探討 17 2.3.4 多纖芯光纖文獻探討 18 2. 4實驗相關儀器與原理 20 2.4.1 調變原理 20 2.4.2 誤碼率原理 21 2.4.3 偽隨機二進制數列 22 2.4.4 光檢測器 23 2.4.5 眼圖 24 第三章 高分子波導特性量測 26 3. 1 PMT連接器之高分子波導量測 27 3.1.1 高分子波導插入損耗 27 3.1.2 高分子波導彎曲損耗 30 3.1.3 高分子波導扭曲損耗 33 3.1.4 高分子波導水溫損耗 36 3. 2高分子波導之單向傳輸 38 3.2.1 實驗系統架構 38 3.2.2 傳輸實驗結果 39 3. 3高分子波導之雙向傳輸 40 3.3.1 同波長調變雙向傳輸 40 3.3.2不同波長雙向傳輸 44 第四章 多纖芯光纖特性量測 52 4. 1 多纖芯光纖特性量測 53 4.1.1 多纖芯光纖基本特性量測 53 4.1.2基本特性量測結果 54 4. 2多纖芯光纖之單向傳輸 55 4.2.1 實驗系統架構 55 4.2.2 傳輸實驗結果 56 4. 3多纖芯光纖之雙向傳輸 57 4.3.1 同波長雙向傳輸 57 4.3.2 不同波長雙向傳輸 62 第五章 光波導耦合之設計 70 5. 1 透鏡光纖理論分析 72 5.1.1 透鏡光纖之設計 72 5.1.2 透鏡光纖耦合理論分析 73 5. 2 透鏡光纖實驗量測 76 5.2.1 透鏡光纖基本量測 76 5.2.2 透鏡光纖量測結果 77 5. 3 透鏡光纖耦合模擬 78 5. 4 光波導耦合設計 79 第六章 結論與未來展望 82 6. 1 結論 82 6. 2 未來展望 84 參考文獻 85

    [1] Jiubing Mao, Wei Yang, Xiaojuan Feng, and Jianping Li, “Research Status of Flexible Electro-Optical Circuit for Interconnection,” Laser & Optoelectronics Progress, vol. 53, no. 8, p. 080004, 2016.
    [2] Gerd Keiser, Optical Fiber Communications, 5 edition, 2014
    [3] J. Moisel, “Optical backplanes with integrated polymer waveguides,” Optical Engineering, vol. 39, no. 3, p. 673, 2000.
    [4] K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Optics Express, vol. 18, no. 8, p. 8392, 2010.
    [5] J. Kim, D. Kim, B. Lee, and K. Oh, “Arrayed Multimode Fiber to VCSEL Coupling for Short Reach Communications Using Hybrid Polymer-Fiber Lens,” IEEE Photonics Technology Letters, vol. 19, no. 13, pp. 951–953, 2007.
    [6] R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. L. Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Optics Express, vol. 23, no. 4, p. 4736, 2015.
    [7] P.-K. Shen, C.-T. Chen, R.-H. Chen, S.-S. Lin, C.-C. Chang, H.-L. Hsiao, H.-C. Lan, Y.-C. Lee, Y.-S. Lin, and M.-L. Wu, “Chip-Level Optical Interconnects Using Polymer Waveguide Integrated With Laser/PD on Silicon,” IEEE Photonics Technology Letters, vol. 27, no. 13, pp. 1359–1362, 2015.
    [8] Sumitomo Bakelite Co., Ltd, Polymer waveguide structure, 2018
    [9] 丁怡嘉,“兩中新穎光波導(聚合物波導與多纖芯光纖)之研究與評估,”台灣科技大學光電工程研究所碩士論文,2018
    [10] A. Yeniay, R. Gao, K. Takayama, and A. Garito, “Ultra-Low-Loss Polymer Waveguides,” Journal of Lightwave Technology, vol. 22, no. 1, pp. 154–158, 2004.
    [11] Youjun Hou, “Study Progress of Organic Polymeric Optical Waveguides,” Laser & Optoelectronics Progress, vol. 54, no. 5, p. 050005, 2017.
    [12] Changli Wen, Jiarong Ji, Wenhua Dou, and Yansheng Song, “Polymer Material for Optical Waveguide Used in Integrated Circuit,” Laser & Optoelectronics Progress, vol. 46, no. 7, pp. 36–40, 2009.
    [13] Sumitomo Bakelite Co., Ltd, High Speed Practical Polymer Optical Waveguides Demonstrated in 24 Demonstrated in 24 ch x 16 Gbps Optical Optical Interconnection Module for Interconnection Module for Computercom Computercom System, 2013
    [14] Sumitomo Bakelite https://www.sumibe.co.jp/english/product/coin/how-to-opto/index.html
    [15] R. Pitwon, K. Wang, A. Yamauchi, T. Ishigure, H. Schröder, M. Neitz, and M. Singh, “Competitive Evaluation of Planar Embedded Glass and Polymer Waveguides in Data Center Environments,” Applied Sciences, vol. 7, no. 9, p. 940, 2017.
    [16] R. Bruck, P. Muellner, N. Kataeva, A. Koeck, S. Trassl, V. Rinnerbauer, K. Schmidegg, and R. Hainberger, “Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process,” Applied Optics, vol. 52, no. 19, p. 4510, 2013.
    [17] K. Kao and G. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers, vol. 113, no. 7, pp. 1151–1158, 1966.
    [18] J. Hecht, Understanding fiber optics. Auburndale, MA: Laser Light Press, 2015
    [19] K. Saitoh and S. Matsuo, “Multicore Fiber Technology,” Journal of Lightwave Technology, vol. 34, no. 1, pp. 55–66, 2016.
    [20] FIBERCORE, Multicore fiber,
    https://www.fibercore.com/product/multicore-fiber
    [21] S.-H. Cho, H. Kumagai, and K. Midorikawa, “Fabrication of multi-core structures in an optical fiber using plasma self-channeling,” Optics Express, vol. 11, no. 15, p. 1780, 2003.
    [22] T. Umezawa, P. T. Dat, K. Kashima, A. Kanno, N. Yamamoto, and T. Kawanishi, “100-GHz Radio and Power Over Fiber Transmission Through Multicore Fiber Using Optical-to-Radio Converter,” Journal of Lightwave Technology, vol. 36, no. 2, pp. 617–623, 2018.
    [23] H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” Journal of Optics, vol. 18, no. 8, p. 085705, 2016.
    [24] A. Yariv and P. Yeh, Photonics: optical electronics in modern communications. New York: Oxford University Press, 2007.
    [25] L. Vivien and L. Pavesi, Handbook of silicon photonics. Boca Raton, FL: CRC Press, 2013.
    [26] A. Fairweather, M. Foster, and D. Stone, “Battery parameter identification with Pseudo Random Binary Sequence excitation (PRBS),” Journal of Power Sources, vol. 196, no. 22, pp. 9398–9406, 2011.
    [27] S. Kasap, Optoelectronics and photonics: principles and practices. Boston: Pearson, 2013.
    [28] D. Derickson and C. Hentschel, Fiber optic test and measurement. Upper Saddle River, NJ: Prentice-Hall, 1998.
    [29] F. Shi, N. Bamiedakis, P. P. Vasilev, R. V. Penty, I. H. White, and D. Chu, “Flexible Multimode Polymer Waveguide Arrays for Versatile High-Speed Short-Reach Communication Links,” Journal of Lightwave Technology, vol. 36, no. 13, pp. 2685–2693, 2018.
    [30] I. T. Monroy and E. Tangdiongga, Crosstalk in WDM communication networks. Boston: Kluwer Academic, 2002.
    [31] S.-K. Liaw and K.-P. Ho, “Polarization Control Technique to Reduce, Power Penalty in Tri-Directional, Transmission Systems,” Fiber and Integrated Optics, vol. 22, no. 4, pp. 275–282, 2003.
    [32] K. Shiraishi, N. Oyama, K. Matsumura, I. Ohishi, and S. Suga, “A fiber lens with a long working distance for integrated coupling between laser diodes and single-mode fibers,” Journal of Lightwave Technology, vol. 13, no. 8, pp. 1736–1744, 1995.
    [33] J. V. Zantvoort, S. Plukker, E. Dekkers, G. Petkov, G. Khoe, A. Koonen, and H. Waardt, “Lensed Fiber-Array Assembly With Individual Fiber Fine Positioning in the Submicrometer Range,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 5, pp. 931–939, 2006.
    [34] R. A. Modavis and T. W. Webb, “Anamorphic Microlens for Laser Diode to
    Single-Mode Fiber Coupling, ” IEEE Photonics Technology Letters, vol.7, pp.
    798-800, 1995.
    [35] J. W. Goodman, Introduction to Fourier Optics, San Francisco, CA, McGraw-Hill,Ch. 4-5, 1968.
    [36] 林育民,“高容量無線光通訊用於接取網路與橋梁備用路由之設計研究,”台灣科技大學光電工程研究所碩士論文, 2014
    [37] T.-C. Poon and T. Kim, Engineering optics with MATLAB. Singapore: World Scientific, 2010.
    [38] K. Yasuhara, S. Yoshida, F. Yu, and T. Ishigure, “Low-loss circular core single-mode polymer optical waveguide compatible with Si photonics chips for off-chip interconnects,” 2016 IEEE Optical Interconnects Conference (OI), 2016.
    [39] R. Dangel, A. L. Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer Waveguides Enabling Scalable Low-Loss Adiabatic Optical Coupling for Silicon Photonics,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 4, pp. 1–11, 2018.
    [40] G. Son, S. Han, J. Park, K. Kwon, and K. Yu, “High-efficiency broadband light coupling between optical fibers and photonic integrated circuits,” Nanophotonics, vol. 7, no. 12, pp. 1845–1864, 2018.
    [41] K. Soma and T. Ishigure, “Fabrication of a Graded-Index Circular-Core Polymer Parallel Optical Waveguide Using a Microdispenser for a High-Density Optical Printed Circuit Board,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 2, pp. 3600310–3600310, 2013.
    [42] F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), 2011.
    [43] X. Xu, L. Ma, M. Immonen, X. Shi, B. W. Swatowski, J. V. Degroot, and Z. He, “Practical Evaluation of Polymer Waveguides for High-Speed and Meter-Scale On-Board Optical Interconnects,” Journal of Lightwave Technology, vol. 36, no. 16, pp. 3486–3493, 2018.

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE