簡易檢索 / 詳目顯示

研究生: 林大維
Ta-Wei Lin
論文名稱: 拉曼光纖放大器特性改良之研究
Optimum Investigation of CharacteristicsRaman Fiber Amplifier
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 王立康
Li-Kang Wang
董正成
Jeng-Cheng Dung
黃忠偉
Jong-Woei Whang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 95
中文關鍵詞: 拉曼放大器色散補償誤碼率
外文關鍵詞: BER, Dispersion Compensation, Raman Amplifier
相關次數: 點閱:277下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究是針對習用拉曼光纖放大器做提高增益、降低雜訊指數、減少色散和增益平坦化的改善,內容分為三個部份:第一部份為針對訊號與泵激光源經增益介質來回兩次放大的不同架構,對於其優缺點加以分析與探討,在架構中設置反射迴路(光循環器或寬頻譜光纖反射鏡),使訊號與泵激光源經增益介質來回兩次放大進而提高增益,並運用光循環器和極化控制器達到間接降低雜訊指數的目的。本論文建議架構與習用架構可觀察出光訊號及泵激光源能兩次通過放大機制架構於波長範圍1550~1590 nm的平均增益值為12.89dB比習用架構8.08 dB高出4.81 dB,而NF值相較約改善0.62 dB左右,可以說整體的特性都提昇了。
    第二部份為介紹色散所產生原因,並利用模擬軟體OptiSystem證實,如加上色散補償光纖在相同的接收光功率下,可得到較低的誤碼率,進而求得拉曼光纖放大器之色散補償最佳化的色散補償光纖長度。
    第三部份為利用拉曼光纖放大器的增益介質-色散補償光纖,來減少因分波多工頻道間之色散所造成的誤碼率,並調整光纖布拉格光柵的反射率來改善因分波多工頻道間之增益平坦的問題,利用色散補償光纖配合光纖布拉格光柵可使得分波多工頻道間之輸出功率由原先的6 dB的變動量降至1 dB之內,達到增益等化的目地。此外為在40 Gb/s x100 Km單模光纖的系統下降低誤碼率,我們達成Q value被改善2 dB左右。


    The work investigates on increasing gain, reducing noise figure and decreasing dispersion and gain equalization against conventional Raman fiber amplifier and the contents are divided into three sections:
    The first section focuses on analyzing and studying advantages and handicaps of various structures in which signal and pumping source pass through the gain medium twice. The structure is a double-pass structure with a reflection return path (using optical circulator or broadband fiber mirror) to increase the gain by passing the signal and pumping source twice through the gain medium, It utilizes an optical circulator and a polarization controller to reduce the noise figure indirectly. Comparing the suggested structure in this work with conventional structure, we find that the average gain of the double-pass structure is 12.89 dB in 1550~1590 nm wavelength region which shows 4.81 dB higher than the conventional structure of 8.08 dB. Moreover, the noise figure is better than conventional structure around 0.62 dB. So, the overall characteristics are improved as predicted.
    In the second section, this work discusses the cause of dispersion. By using the simulation software “OptiSystem”, the structure demonstrates lower bit error rate (BER) based on the same received optical power. If we add dispersion compensation fiber (DCF) on our system, then we find the optimum length of DCF of Raman fiber amplifier.
    In the third section, this work uses DCF which is also a gain medium of Raman fiber amplifier, to reduce BER caused by wavelength division multiplexer (WDM) dispersion, and adjusts reflection rate of fiber Bragg gratings (FBGs) to improve WDM gain equalization. In order to achieve gain equalization target, DCF and FBG are both used to reduce the of output power variations of each WDM channel from typical 6 dB to within 1 dB. Furthermore, in order to accomplish a lower BER at 40 Gb/s x 100 Km SMF system, we successfully improve the Q value by nearly 2 dB.

    目錄 摘要………………………………………………………………………I Abstract………………………………………………………………II 誌謝……………………………………………………………………III 目錄……………………………………………………………………IV 圖目錄……………………………………………………………… VI 表目錄………………………………………………………………… X 第一章 緒論……………………………………………………………1 1-1 前言……………………………………………………………1 1-2 研究動機………………………………………………………2 1-3 論文架構………………………………………………………3 第二章 光纖放大器的探討 ……………………………………4 2-1拉曼光纖放大器………………………………………………4 2-2 前向與後向拉曼光纖放大器的特性比較……………………12 2-3拉曼光纖放大器的分類………………………………………15 2-4 拉曼光纖簡介15 第三章 拉曼光纖放大器之泵激效益提升設計 …………………19 3-1習用的拉曼光纖放大器19 3-2 使用Circulator的Double-Pass 拉曼光纖放大器……………22 3-3 使用Mirror的Double-Pass 拉曼光纖放大器………………32 3-4 三種拉曼光纖放大器架構比較44 第四章 拉曼光纖放大器之降低色散設計 …………………………48 4-1 色散48 4-2 理論與模擬54 4-3 拉曼光纖放大器的模擬58 第五章 利用不同反射率的FBG做色散補償與增益平坦化之拉曼光纖放大器 …………………………………………………61 5-1光纖布拉格光柵的應用和原理61 5-2 理論與模擬68 5-3 模擬結果與討論……………………………………………71 第六章 結論與未來展望………………………………………………79 6-1 結論79 6-2 未來展望80 參考文獻……………………………………………………………82 圖目錄 圖 2.1 受激式拉曼散射………………………………………………5 圖 2.2 拉曼平移效應………………………………………………6 圖 2.3 拉曼增益定義圖………………………………………………8 圖 2.4 不同輸入光訊號功率之拉曼增益與泵激光功率的關係圖 ...10 圖 2.5 拉曼光纖放大器之增益飽和關係圖…………………………10 圖 2.6 前向拉曼光纖放大器架構圖…………………………………12 圖 2.7 後向拉曼光纖放大器架構圖…………………………………12 圖 3.1 習用前向泵激之拉曼光纖放大器……………………………20 圖 3.2 習用架構之增益圖……………………………………………21 圖 3.3 習用架構之輸出功率圖………………………………………21 圖 3.4 習用架構之NF圖…………………………………………22 圖 3.5 S-DP(Circulator)後向架構圖………………………………23 圖 3.6 S-DP(Circulator)後向架構之增益圖………………………24 圖 3.7 S-DP(Circulator)後向架構之輸出功率圖…………………24 圖 3.8 S-DP(Circulator)後向架構之NF圖………………………25 圖 3.9 S/P-DP(Circulator)前向架構圖………………………………26 圖 3.10 S/P-DP(Circulator)前向架構之增益圖……………………27 圖 3.11 S/P-DP(Circulator)前向架構之輸出功率圖………………27 圖 3.12 S/P-DP(Circulator)前向架構之NF圖……………………28 圖3.13 S/P-DP (Circulator)前向架構極化控制變動圖………………29 圖3.14 S/P-DP (Circulator)前向架構極化控制器更改前後比較圖…30 圖 3.15 S/P-DP前向和S-DP後向(Circulator)架構之增益圖………30 圖 3.16 S/P-DP前向和S-DP後向(Circulator)架構之輸出功率圖…31 圖 3.17 S/P-DP前向和S-DP後向(Circulator)架構之NF圖 ………31 圖 3.18 S-DP(Mirror)後向架構圖…………………………………34 圖 3.19 Mirror反射頻譜圖……………………………………………34 圖 3.20 S-DP(Mirror)後向架構之增益圖…………………………35 圖 3.21 S-DP(Mirror)後向架構之輸出功率圖……………………35 圖 3.22 S-DP(Mirror)後向架構之NF圖…………………………36 圖 3.23 Circulator和Mirror之S-DP後向增益比較圖 ……………36 圖 3.24 Circulator和Mirror之S-DP後向NF比較圖………………37 圖 3.25散射損失和吸收損失對波長變化圖…………………………37 圖 3.26 Circulator和Mirror之S-DP後向Output Power比較圖……38 圖 3.27 S/P-DP(Mirror)前向架構圖………………………………39 圖 3.28 S/P-DP(Mirror)前向架構之增益圖………………………40 圖 3.29 S/P-DP(Mirror)前向架構之輸出功率圖…………………40 圖 3.30 S/P-DP(Mirror)前向架構之NF圖………………………41 圖 3.31 Circulator和Mirror之S/P-DP前向增益比較圖……………41 圖 3.32 Circulator和Mirror之S/P-DP前向NF比較圖……………42 圖 3.33 Circulator和Mirror之S/P-DP前向輸出功率比較圖………42 圖 3.34 S/P-DP前向和S-DP後向(Mirror)架構之增益圖…………43 圖 3.35 S/P-DP前向和S-DP後向(Mirror)架構之輸出功率圖……43 圖 3.36 S/P-DP前向和S-DP後向(Mirror)架構之NF圖……………44 圖 3.37 三種架構增益比較圖………………………………………46 圖 3.38 三種架構輸出功率比較圖………………………………46 圖 3.39 三種架構NF比較圖…………………………………………47 圖 4.1 材料色散與矽折射率對波長曲線圖…………………………50 圖 4.2 極化模態色散示意圖………………………………………52 圖 4.3 NZDSF非零色散位移光纖總色散示意圖……………………53 圖 4.4 單模光纖設定示意圖………………………………………54 圖 4.5 單模光纖接收功率和誤碼率圖………………………………55 圖 4.6 單模光纖加色散補償光纖設定示意圖……………………56 圖 4.7 外加一段色散補償光纖後接收功率和誤碼率圖…………56 圖 4.8 整合圖4.5與圖4.7的重疊圖………………………………57 圖4.9 拉曼光纖放大器設定示意圖 ………………………………58 圖4.10 三種長度的色散補償光纖在拉曼光纖放大器的誤碼率圖…59 圖 5.1 貝索函數的分佈圖……………………………………………62 圖 5.2 FBG原理示意圖 …………………………………………63 圖 5.3 相位光罩法光纖布拉格光柵製作架構圖…………………65 圖 5.4 FBG之反射頻譜圖 …………………………………………66 圖 5.5 FBG之穿透頻譜圖 …………67 圖 5.6多通道之拉曼光纖放大器 …………69 圖 5.7 使用整段DCF與使用合適長度DCF之色散前後比較圖 …………72 圖 5.8 拉曼光纖放大器的輸出功率比信號波長圖 ………… ………… …………75 圖 5.9 通過DCF信號1的分佈式等效損失係數 ………… ………… …………75 圖 5.10 logBER和輸入信號波長圖 ………… ………… …………77 圖 5.11 Q value和輸入信號波長圖.......................................................77 表目錄 表 2.1前向泵激與後向泵激拉曼光纖放大器的特性比較表………14 表 3.1三種拉曼光纖放大器架構之參數比較表47

    [1].陳建村, “光纖拉曼放大器中OTDR即時監控技術之研究”, 國立中山大學碩士論文, 2003.
    [2].M. Nissov, C. R. Davidson, K. Rottwit, R. Menges, P. C. Corbett, D. Innis, and N. S. Bergano, “100 Gb/s (10 10 Gb/s) WDM transmission over 7200 km using distributed Raman amplification”, European Conference on Optical Communications, vol. 5, pp. 9-12, Edinburgh, Scotland, United Kingdom. September 1997.
    [3].S. Namiki and Y. Emori, “100 nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes”, Optical Fiber Communication Conference, vol. 39, no. 11, pp. 1444-1451, Atlanta, Georgia, USA. March 2003.
    [4].藍治平, “拉曼/摻鉺光纖混合型放大器增益平坦之研究”, 國立東華大學碩士論文, 2005.
    [5].S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes”, IEEE Journal of Quantum Electronics, vol. 7, pp. 3-14, 2001.
    [6].Y. R. Shen, “The Principles of Nonlinear Optics”, Wiley, 1984.
    [7].黃政凱, “前瞻型光纖放大器之研製”, 國立台灣科技大學碩士論文, 2005.
    [8].陳怡心, “非零色散位移光纖中使用多波長激發寬頻拉曼放大器之研究”, 國立東華大學碩士論文, 2005.
    [9].H. T. Friis, “Noise figures of radio receivers”, in Proc. IRE, vol. 32, no. 7, pp. 419-422, Arizona, Phoenix, USA. July 1944.

    [10].林志勳, “光纖拉曼放大器的設計與分析”, 國立台灣大學碩士論文, 2002.
    [11].高銘盛, “光纖拉曼放大器應用在光纖通訊系統之研究”, 國 立台灣大學博士論文, 1986.
    [12].Raman amplification design in WDM systems,www.iec.org
    [13].蕭淵隆, “高效益光纖放大器之研製”, 國立台灣科技大學碩士論文, 2006.
    [14].L. Dou, S. K. Liaw, M. Li, Y. T. Lin, and A. Xu, “Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations”, Optics Communications, vol. 273, pp. 149-152, 2007.
    [15].Y. Aoki,”Properties of fiber Raman amplifiers and their applicability to digital optical communication system”, Journal of Lightwave Thchnol., vol. 6, pp. 1225-1239, 1998.
    [16].R. S. Tucker and D. M. Baney, “Optical Noise Figure:Theory and Measurements”, European Conference on Optical Communications, vol. 3, pp. 1176-1184, Munich, Bavaria, Germany, September 2000.
    [17].Sihai Wang and Chongcheng Fan, “Distributed fiber Raman amplifiers: analytical expression of noise characteristics under complex conditions”, Optics Communications, vol. 198, pp. 65-70, 2001.
    [18].洪福春, “寬頻高增益之拉曼光纖放大器理論與實驗研究”, 國 立台灣科技大學碩士論文, 2003.
    [19].L. Dou, M. Li, G. Li, A. Xu, D. Lan and S.-K Liaw, “Characteristics improvement of distributed Raman fiber amplifier by using signal/pump double pass scheme”, Optical Engineering, vol. 45. No. 094201, pp. 1-4, Sep. 2006. (SCI)
    [20].G. P. Agrawal, “Nonlinear Fiber Optics”, second edition, academic press, New York, 1995.
    [21].B. Bristiel, P. Gallion, Y. Jaouen, and E. Pincemin, “Intrinsic noise figure derivation for fiber Raman amplifiers from equivalent noise figure measurement”, Lightwave Technologies in Instrumentation and Measurement Conference, pp. 135-140, Palisades, New York, USA. October 2004.
    [22].X. Liu and B. Lee, “A fast and stable method for Raman amplifier propagation equations”, Opt. Express, vol. 11, pp. 2163-2176, 2003.
    [23].J. Hecht, “ Understanding Fiber Optics”, Prentice Hall , 2002.
    [24].G. P. Agrawal, “ Nonlinear Fiber Optics”, Academic Press, 2001.
    [25].H. Kidorf, K. Rottwitt, M. Nissov, and M. Ma, “Pump interactions in a 100-nm bandwidth Raman amplifier”, IEEE Photonics Technology Letters, vol. 12, pp. 1486, 2000.
    [26].M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, “Analysis of a multiple-pump Raman amplifier”, Applied Physics Letters vol. 78, pp. 1322, 2001.
    [27].C. R. S. Fludger, V. Handerek, R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers”, Journal of Lightwave Technology, vol. 19, pp. 1140-1148, 2001.
    [28].P.B. Hansen, L. Eskildsen, J. Stentz, T. A. Strasser, J. Judkins, J. J. Demarco, J. J. DeMarco, J. R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers”, IEEE Photonics Technology Letters, vol. 10, pp. 159-161, 1998.
    [29].廖顯奎譯, “光纖通訊”, 高立圖書有限公司, 民國九十四年五月.
    [30].梁仲志, “摻鉺光纖環型雷射”, 中原大學碩士論文, 2005.
    [31].陳宣臣, “波長可調光纖光柵之研製與應用”, 國立台灣科技大學論文, 2004.

    [32].王俊容, “光纖光柵與光循環器組成之光纖雷射:研製與應用”, 國立台灣科技大學論文, 2005.
    [33].洪寬綸, “建構於光纖光柵之光纖雷射、光感測與光監控技術之研究”, 國立台灣科技大學碩士論文, 2006.
    [34].L. Dou, M. Li, Z. Li, A. Xu, C. Y. Lan, and S. K. Liaw, “Improvement in characteristics of a distributed Raman fiber amplifier by using signal pump double-pass scheme”, Optical Engineering, vol.45, pp. 9 , 2006.
    [35].Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. F. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80 nm ultra-wide-band erbium-doped silica fiber amplifier“, Electronics Letters, vol. 33, pp. 1965-1967, 1997.
    [36].S.-K Liaw, L. Dou, and Anshi Xu ,” Fiber-bragg-grating-based dispersion compensated and gain-flattened Raman fiber amplifier”, Optics Express, Vol. 15, Issue 19, pp. 12356-12361
    [37].J. Bromage, “Raman amplification for fiber communications systems”, Journal of Lightwave Technology, vol. 22, pp. 79-93, 2004.
    [38].Z. Xu, K. Rottwitt, C. Peucheret, and P. Jeppesen, “Optimization of pumping schemes for 160-Gb/s single-channel Raman amplified systems”, IEEE Photonics Technology Letters, vol. 16, pp. 329-331, 2004.
    [39].M. Tong, Y. D. Gong, and P. Shum, “Design of double-pass dispersion-compensated Raman amplifiers for improved efficiency”, Journal of Lightwave Technology, vol. 22, pp. 1899-1908, 2004.

    QR CODE