簡易檢索 / 詳目顯示

研究生: 何禎哲
CHEN-CHE HO
論文名稱: 利用運行在近布拉格區之聲光偏轉器進行超短脈衝雷射的角度色散補償
The Angular Dispersion Compensation for Ultrashort-Pulsed Laser using an Acousto-Optic Deflectors Operated in the Near Bragg Region
指導教授: 譚昌文
Chen-Wen Tarn
口試委員: 黃柏仁
Bohr-Ran Huang 
陳鴻興
Hung-Shing Chen 
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 57
中文關鍵詞: 聲光效應聲光偏轉器超短脈衝雷射飛秒雷射近布拉格區角度色散角度色散補償
外文關鍵詞: Acousto-optic, Acousto-optic deflectors, Ultrashort-pulsed Laser, femtosecond Laser, Near-Bragg region, Angular dispersion, Angular dispersion compensation
相關次數: 點閱:363下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文中,利用理論模型探討當飛秒雷射(Femtosecond laser)經過運行在近布拉格區(Near-Bragg region)的聲光偏轉器(Acousto-optic deflector)產生角度色散(Angular dispersion)問題。飛秒雷射為超短脈衝(Ultrashort-pulsed),屬於寬頻譜光源(Broadband light source),不同頻率的光在經過聲光偏轉器時會產生不同之偏轉角度,故有角度色散之問題。透過波動方程式(Maxwell’s equations)可以推導出一組耦合方程式能具體描述飛秒雷射的光在聲光偏轉器裡的動態(dynamics),把耦合方程式經空間傅立葉轉換(Spatial Fourier transform)再用數值模擬出脈衝經過聲光偏轉器的角度變化。
    利用反向傳輸聲波的聲光偏轉器可以讓原本經過一個聲光偏轉器產生的擴散效果消失就能解決角度色散問題,數值模擬可以證明理論模型的有效性。


    In this thesis, a theoretical model is proposed to discuss the angular dispersion problem of a femtosecond laser using an acousto-optic deflectors operated under the near Bragg region. The ultra-pulsed laser has broadband optical spectrum and results in a problem of angular dispersion when a pulse passed through the acousto-optic deflector. Starting from the Maxwell’s equations, a set of coupled equations can be properly derived to describe the dynamics of a femtosecond laser light inside an acousto-optic deflector. Through these coupled equations, the angular dispersion phenomenon can be properly depicted. The coupled equations can be solved numerically with the spatial Fourier transformation.
    The angular dispersion problem can be properly solved by using a counter propagating sound wave inside the acousto-optic deflector to offset the effect of spreading that caused by the interaction with the propagating sound wave inside the acousto-optic deflectors. Numerical simulations are provided to prove the validity of our theoretical model.

    目 錄 頁次 摘 要………………………………………………………………………..I Abstract………………………………………………………………………..II 誌 謝………………………………………………………………………III 目 錄……………………………………………………………………....IV 圖 目 錄………………………………………………………………………VI 表 目 錄…………………………………………………………………….VIII 第一章 緒論 1.1研究背景........................................................................................................1 1.2研究動機與目的............................................................................................2 1.3論文架構........................................................................................................3 第二章 聲光效應 2.1 Maxwell方程式與光的調變….......……..………………………………..4 2.1.1 Maxwell方程式….……………………………………………….4 2.1.2 波動方程式……………………………………………………….7 2.1.3 晶體折射率與光的調變………………………………………….8 2.2 聲光效應…………………………………………………………………11 2.2.1 聲光效應原理…………………………………………………...11 2.2.2 布拉格繞射……………………………………………….……..15 第三章 雷射相關理論 3.1 Q開關…….……………………………………………………………....21 3.1.1 雷射速率方程式……………………………………………...…21 3.1.2 Q開關………………………………………………………...…26 3.2 鎖模………...………….……………………………………...………….32 3.2.1 主動鎖模…………..…………………………………………….32 3.2.2 振幅調變鎖模…………………………………………………...33 3.2.3 相位調變鎖模…………………………………………………...36 第四章 脈衝經聲光偏轉器與角度色散補償 4.1 近布拉格與耦合方程式…………………………………………………39 4.2 近布拉格數值分析模擬…………………………………………………44 4.3 角度色散補償模擬....................................................................................50 第五章 結論與未來展望 5.1 結論………………………………………………………………………54 5.2 未來展望…………………………………………………………………55 參考文獻 56

    [1] R.W. Hellwarth, in Advances in Quantum Electronics (Columbia University Press, New York, 1961)
    [2] J. R. Singer and S. Wang, in Advances in Quantum Electronics(Columbia University Press, New York, 1961).
    [3] W. Koechner, Solid-state Laser Engineering, springer, 1996.
    [4] R. L. Fork, B.I. Greene, and C.V. Shank, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking Appl. Phys. Lett. 38, 671 (1981).
    [5] F. J. McClung, R. W. Hellwarth, "Giant optical pulsations from ruby", J. Appl. Phys., vol. 33, pp. 828-829, Mar. 1962.
    [6] P. Maine, et al. "Generation of ultrahigh peak power pulses by chirped pulse amplification." IEEE Journal of Quantum electronics 24.2 (1988): 398-403.
    [7] E. Hecht, (1987). Optics (4th ed.). Addison Wesley. p. 337.
    [8] B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics, New York, John Wiley, 1991.
    [9] A. Yariv and A. P. Yeh, “Photonics: Optical Electronics in Modern Communications,” 6th Edition, Oxford University Press, New York, 2007. P.440.
    [10] W. R. Klein, and Bill D. Cook. "Unified approach to ultrasonic light diffraction." IEEE Transactions on sonics and ultrasonics14.3(1967):123-134.
    [11] A. Korpel,"Acousto-optics—a review of fundamentals." Proceedings of the IEEE 69.1 (1981): 48-53.
    [12] W. Koechner, Solid-state laser engineering. Vol. 1. Springer, 2013.
    [13] L. Xinju, Laser technology. CRC Press, 2010. P.89.
    [14] M. Roth, M. Tseitlin, and N. Angert. "Oxide crystals for electro-optic Q-switching of lasers." Glass physics and chemistry 31.1 (2005): 86-95.

    [15] T. Taira, and T. Kobayashi. "Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal." IEEE journal of quantum electronics 30.3 (1994): 800-804.
    [16] X. D. Wang,, et al. "Investigation of KTiOPO4 as an electro‐optic amplitude modulator." Applied physics letters 59.5 (1991): 519-521.
    [17] M.Delgado-Pinar, et al. "Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating." Optics express 14.3 (2006): 1106-1112.
    [18] W. A. Clarkson, and D. C. Hann,. "Acousto-optically induced unidirectional single mode operation of a Q-switched miniature Nd: YAG ring laser." Optics communications 81.6 (1991): 375-378.
    [19] J. Zhou, G. Taft, C. Shi, H. C. Kapteyn, and M. Murnane, in Ultrafast Phenomena, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper MA2.
    [20] F. Krauz, Ch. Spielmann, P. F. Curley, T. Brabec, S. M. J. Kelly, A. Stingl, R. Spizocs, E. Wintner, and A. J. Schmidt, in Ultrafast Phenomena, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper MAL
    [21] D. Kuizenga, and A. Siegman. "FM and AM mode locking of the homogeneous laser-Part I: Theory." IEEE Journal of Quantum Electronics 6.11 (1970): 694-708.
    [22] O. Svelto, "Principles of lasers." (1998): 1976.
    [23] C. C. Wang, and C. W. Tarn, "Theoretical and experimental analysis of the near-Bragg acousto-optic effect." Optical Engineering 37.1 (1998): 208-214.
    [24] A. E. Siegman, Lasers, Chap. 16, University Science Books, CA, 1986
    [25] M. D. McNeil and T.-C. Poon, ‘‘Gaussian-beam profile shaping by
    acousto-optic Bragg diffraction,’’ Appl. Opt. 33, 4508–4515 ~1994.
    [26] B. A. Ngoi, et al. "Angular dispersion compensation for acousto-optic devices used for ultrashort-pulsed laser micromachining." Optics Express 9.4 (2001): 200-206.

    QR CODE