簡易檢索 / 詳目顯示

研究生: 游東穎
Dong-Ying You
論文名稱: 應用於數據中心之切換式電容轉換器研製
Switched Capacitor Converter for Data Center Application
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 龐敏熙
Man-Hay Pong
邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
王建民
Jian-Min Wang
林景源
Jing-Yuan Lin
劉邦榮
Pang-Jung Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 155
中文關鍵詞: 諧振切換式電容轉換器自適應恆定導通時間可控並聯均流軟充電高效率高功率密度三階層降壓式飛馳電容轉換器電流模式控制飛馳電容電壓平衡控制
外文關鍵詞: Ladder-type resonant switched capacitor converter, adaptive constant on-time, controlled current sharing, soft charging, high efficiency, high power density, three-level buck converter, current mode control, flying capacitor voltage-balancing control
相關次數: 點閱:877下載:122
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對48 V數據中心電源架構,研製了一款6:1可調壓中間匯流排轉換器(Intermediate Bus Converter, IBC)。為了兼具高效率、高功率密度與縮短產品上市時間,本文鼓勵採用兩級之切換式電容轉換器。非隔離、固定降壓比的轉換器適合作為IBC的後級,以應付大負載,其中具極高功率密度和峰值效率的諧振切換式電容轉換器為首選。因此,本文提出了一款具備高可擴展性的交錯式階梯型架構(Ladder-type Resonant Switched Capacitor Converter, LRSCC),其優勢還包括減緩傳導性電磁干擾(Electromagnetic Interference, EMI),允許使用成本效益高的低壓Class II多層陶瓷電容器(Multi-layer Ceramic Capacitor, MLCC)和主動開關來提供設計靈活性。在考慮損耗以及功率級別後,本文實現了3:1 LRSCC硬體原型,並在自適應恆定導通時間控制中導入死區時間調製,以獲得最佳效率和可控的輸出均流能力。至於IBC的前級,則由一款2:1可調壓之三階層降壓式飛馳電容轉換器(Three Level Buck, TLB)來實現。憑藉飛馳電容以及串聯開關的分壓特性,TLB允許使用較低耐壓之主/被動元件、縮小輸出濾波器的需求並提供更高的頻寬。然而,為了避免在連續導通模式(Continuous Conduction Mode, CCM)操作下飛馳電容電壓偏離而導致電路異常的可能性,本文在電流模式控制中引入了飛馳電容電壓平衡機制。最後,本文通過數位信號處理器(Digital Signal Processor, DSP)與現場可程式化邏輯閘陣列(Field Programmable Gate Array, FPGA)的主從架構,實現兩級串機。


This doctoral dissertation focuses on the development of a 6:1 regulated Intermedi-ate Bus Converter (IBC) tailored for 48V data center power architectures. To achieve a balance between efficiency, power density, and time-to-market, we encourage the use of a two-stage switched capacitor converter. A non-isolated, fixed step-down ratio converter is required as a post-IBC stage to handle large loads, and a resonant switched capacitor converter with extremely high power density and peak efficiency is pre-ferred. Accordingly, this work proposes a highly scalable interleaved Ladder-type Resonant Switched Capacitor Converter (LRSCC) designed to mitigate conductive Electromagnetic Interference (EMI), utilizing cost-effective low-voltage Class II Mul-ti-layer Ceramic Capacitors (MLCCs) and switches to provide design flexibility. A hardware prototype of a 3:1 LRSCC is implemented after careful consideration of losses and power requirements. The design incorporates dead time modulation in the adaptive constant on-time control to optimize efficiency and enable controllable out-put current sharing. For the pre-stage of the IBC, a regulated 2:1 Three-Level Buck (TLB) is implemented. Leveraging the voltage division capabilities of the flying ca-pacitor and series switches, the TLB allows for the use of active/passive components with lower voltage ratings, reduces the need for output filters, and offers the advantage of higher bandwidth. To prevent circuit abnormalities stemming from flying capacitor voltage deviations during Continuous Conduction Mode (CCM), a voltage balancing mechanism for the flying capacitor has been introduced into the current mode control. Finally, this work implements a two-stage cascade system using a master-slave archi-tecture with a Digital Signal Processor (DSP) and a Field Programmable Gate Array (FPGA).

論 文 摘 要 I ABSTRACT II 誌   謝 III 目   錄 IV 圖 索 引 VII 表 索 引 XIII 第一章 緒論 1 一. 研究動機與目的 1 二. 章節大綱 8 第二章 高降壓比之諧振切換式電容轉換器 10 一. 階梯形切換式電容轉換器介紹 10 (一). 傳統階梯形切換式電容轉換器(Ladder) 10 (二). 所提出之階梯形切換式電容轉換器(LRSCC) 13 (三). 與其他 RSCC 架構的比較 16 二. 所提出之LRSCC架構的特點與設計要點 26 (一). 改善電流應力和電流均流能力 26 (二). 具有高精細度轉換率的可擴展性 29 (三). 元件容差的抗擾度和控制機制 31 (四). 飛馳電容與諧振電感的最佳選擇 35 (五). 高效率閘極驅動電源設計 39 三. 硬體實作說明 42 (一). 硬體原型介紹 42 (二). 量測結果與硬體性能 47 (三). 與現有先進RSCC的研究比較 54 (四). 傳導電磁干擾(EMI)量測與分析 56 第三章 三階層降壓式飛馳電容轉換器 66 一. 三階層降壓式飛馳電容轉換器介紹 66 二. CCM電路動作分析 69 (一). 責任週期D > 50 %分析 70 (二). 責任週期D < 50 %分析 72 三. 硬體元件參數設計與選用 74 (一). 輸出電感 76 (二). 飛馳電容 77 (三). 輸出電容 79 (四). 輸入電容 80 (五). 功率開關 82 (六). 電壓偵測 84 (七). 電流偵測 85 四. 電流模式控制之小訊號分析 89 (一). 三階層降壓式飛馳電容轉換器之小訊號模型 89 (二). 平均電流模式控制(ACMC)補償設計 98 五. 飛馳電容電壓平衡之小訊號分析 102 (一). 飛馳電容電壓平衡控制(VBC)法 104 (二). 導入飛馳電容VBC於ACMC之小訊號模型 106 (三). 飛馳電容VBC補償設計 113 六. 預充電路與啟動機制 116 七. 硬體實作說明 120 (一). 硬體介紹 120 (二). 量測結果與硬體表現 123 第四章 6:1可調壓中間匯流排轉換器之整合 127 一. 系統韌體規劃 128 (一). SPI通訊協定 128 (二). FPGA (Slave)實現 131 (三). DSP (Master)實現 134 二. 系統硬體串機展示 136 第五章 結論與未來展望 141 一. 結論 141 二. 未來展望 143 參考文獻 145

[1] Masanet, E., Shehabi, A., Lei, N., Smith, S. and Koomey, J, " Recalibrating global data center energy-use estimates," Science(2020), 367(6481), 984-986.
[2] 蘇佳佑,輕油電系統應用之雙向多相電源轉換器,國立臺灣科技大學電子工程系碩士論文,2021年。
[3] S. Saggini, O. Zambetti, R. Rizzolatti, M. Picca and P. Mattavelli, "An Isolated Quasi-Resonant Multiphase Single-Stage Topology for 48-V VRM Applications," in IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 6224-6237, July 2018, doi: 10.1109/TPEL.2017.2740058.
[4] C. Fei, M. H. Ahmed, F. C. Lee and Q. Li, "Two-Stage 48 V-12 V/6 V-1.8 V Voltage Regulator Module With Dynamic Bus Voltage Control for Light-Load Efficiency Improvement," in IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5628-5636, July 2017, doi: 10.1109/TPEL.2016.2605579.
[5] M. H. Ahmed, F. C. Lee and Q. Li, "Two-Stage 48-V VRM With Intermediate Bus Voltage Optimization for Data Centers," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 702-715, Feb. 2021, doi: 10.1109/JESTPE.2020.2976107.
[6] M. H. Ahmed, F. C. Lee, Q. Li, M. de Rooij and D. Reusch, "GaN Based High-Density Unregulated 48 V to x V LLC Converters with 98% Efficiency for Future Data Centers," PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2019, pp. 1-8.
[7] Y. -C. Liu et al., "Quarter-Turn Transformer Design and Optimization for High Power Density 1-MHz LLC Resonant Converter," in IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1580-1591, Feb. 2020, doi: 10.1109/TIE.2019.2902821.
[8] 陳震,48 V-12 V 高功率密度LLC 諧振式轉換器之新型變壓器設計與研製,國立臺灣科技大學電子工程系博士論文,2021年。
[9] D. Huang, X. Wu and F. C. Lee, "Novel non-isolated LLC resonant converters," 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 2012, pp. 1373-1380, doi: 10.1109/APEC.2012.6165999.
[10] M. Chen and C. R. Sullivan, "Unified Models for Coupled Inductors Applied to Multiphase PWM Converters," in IEEE Transactions on Power Electronics, vol. 36, no. 12, pp. 14155-14174, Dec. 2021, doi: 10.1109/TPEL.2021.3088083.
[11] M. Ursino, S. Saggini, S. Jiang and C. Nan, "Vertical Power Flow 48 V to PoL VRM Architectures With Hybrid Pre-Regulator," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 5, pp. 4907-4917, Oct. 2023, doi: 10.1109/JESTPE.2023.3295843.
[12] P. Wang, Y. Chen, G. Szczeszynski, S. Allen, D. M. Giuliano and M. Chen, "MSC-PoL: Hybrid GaN–Si Multistacked Switched-Capacitor 48-V PwrSiP VRM for Chiplets," in IEEE Transactions on Power Electronics, vol. 38, no. 10, pp. 12815-12833, Oct. 2023, doi: 10.1109/TPEL.2023.3293022.
[13] R. C. N. Pilawa-Podgurski, D. M. Giuliano and D. J. Perreault, "Merged two-stage power converterarchitecture with softcharging switched-capacitor energy transfer," 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008, pp. 4008-4015, doi: 10.1109/PESC.2008.4592581.
[14] G. -S. Seo, R. Das and H. -P. Le, "Dual Inductor Hybrid Converter for Point-of-Load Voltage Regulator Modules," in IEEE Transactions on Industry Applications, vol. 56, no. 1, pp. 367-377, Jan.-Feb. 2020, doi: 10.1109/TIA.2019.2941945.
[15] Z. Ye, R. A. Abramson, Y. -L. Syu and R. C. N. Pilawa-Podgurski, "MLB-PoL: A High Performance Hybrid Converter for Direct 48 V to Point-of-Load Applications," 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), Aalborg, Denmark, 2020, pp. 1-8, doi: 10.1109/COMPEL49091.2020.9265870.
[16] R. Das, G. -S. Seo and H. -P. Le, "Analysis of Dual-Inductor Hybrid Converters for Extreme Conversion Ratios," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5249-5260, Oct. 2021, doi: 10.1109/JESTPE.2020.2985116.
[17] R. Das and H. -P. Le, "A Regulated 48V-to-1V/100A 90.9%-Efficient Hybrid Converter for POL Applications in Data Centers and Telecommunication Systems," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 1997-2001, doi: 10.1109/APEC.2019.8722246.
[18] Y. Chen, P. Wang, H. Cheng, G. Szczeszynski, S. Allen, D. M. Giuliano and M. Chen., "Virtual Intermediate Bus CPU Voltage Regulator," in IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 6883-6898, June 2022, doi: 10.1109/TPEL.2021.3130213.
[19] Y. Zhu, T. Ge, Z. Ye and R. C. N. Pilawa-Podgurski, "A Dickson-Squared Hybrid Switched-Capacitor Converter for Direct 48 V to Point-of-Load Conversion," 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 2022, pp. 1272-1278, doi: 10.1109/APEC43599.2022.9773567.
[20] J. Baek, Y. Elasser, K. Radhakrishnan, H. Gan, J. P. Douglas, H. K. Krishnamurthy, X. Li, S. Jiang, C. R. Sullivan and Chen, M., "Vertical Stacked LEGO-PoL CPU Voltage Regulator," in IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 6305-6322, June 2022, doi: 10.1109/TPEL.2021.3135386.
[21] S. Saggini, S. Jiang, M. Ursino and C. Nan, "A 99% Efficient Dual-Phase Resonant Switched-Capacitor-Buck Converter for 48 V Data Center Bus Conversions," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 482-487, doi: 10.1109/APEC.2019.8721860.
[22] R. Rizzolatti, C. Rainer, S. Saggini and M. Ursino, "Ultra-Low Profile Hybrid Switched Capacitor Converter with Matrix Multi-Tapped Autostransformer," 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 2021, pp. 869-874, doi: 10.1109/APEC42165.2021.9487347.
[23] X. Ren, J. Zhang, P. Xu and T. Long, "A Non-isolated Fixed-ratio DC-DC Converter Using Switched Auto-transformer (SATx) for Data Center Applications," 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 2023, pp. 3321-3324, doi: 10.1109/ECCE53617.2023.10362385.
[24] M. Qiu, M. Wei, X. Liu, H. Meng and D. Cao, "A Matrix Autotransformer Switched-Capacitor Converter for Data Center Application," in IEEE Transactions on Power Electronics, vol. 38, no. 12, pp. 14982-14999, Dec. 2023, doi: 10.1109/TPEL.2023.3308888.
[25] Y. Cai, M. H. Ahmed, Q. Li and F. C. Lee, " Optimal Design of Megahertz $LLC$ Converter for 48-V Bus Converter Application," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 1, pp. 495-505, March 2020, doi: 10.1109/JESTPE.2019.2939469.
[26] Patrizio Vinciarelli, Sergey Luzanov, "Digital control of resonant power converters," US9166481B1, March 2013.
[27] Vicor Inc., VTMTM Current Multiplier, VTM48Ex160y015A00 Data Sheet, 2021.
[28] Y. Lei, R. May and R. Pilawa-Podgurski, "Split-Phase Control: Achieving Complete Soft-Charging Operation of a Dickson Switched-Capacitor Converter," in IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 770-782, Jan. 2016, doi: 10.1109/TPEL.2015.2403715.
[29] R. A. Abramson, Z. Ye, T. Ge and R. C. N. Pilawa-Podgurski, "A High Performance 48-to-6 V Multi-Resonant Cascaded Series-Parallel (CaSP) Switched-Capacitor Converter," 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 2021, pp. 1328-1334, doi: 10.1109/APEC42165.2021.9487048.
[30] E. Candan, "Improving Data Center Power Delivery Efficiency with Differential Power Processing and Multi-level Power Converters", PhD dissertation, University of Illinois, 2018.
[31] M. Ursino, R. Rizzolatti, G. Deboy, S. Saggini and K. Zufferli, "Sigma Converter Family With Common Ground for the 48 V Data Center," in IEEE Transactions on Power Electronics, vol. 38, no. 9, pp. 10997-11009, Sept. 2023, doi: 10.1109/TPEL.2023.3281089.
[32] Y. He, S. Jiang and C. Nan, "Switched tank converter based partial power architecture for voltage regulation applications," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 2018, pp. 91-97, doi: 10.1109/APEC.2018.8340993.
[33] EPC Inc., High-Efficiency and High-Power-Density LLC Converter, Demonstration Kit EPC9159KIT Quick Start Guide, 2023.
[34] K. Hata, Y. Yamauchi, T. Sai, T. Sakurai and M. Takamiya, "48V-to-12V Dual-Path Hybrid DC-DC Converter," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020, pp. 2279-2284, doi: 10.1109/APEC39645.2020.9124077.
[35] Analog Device Inc., Hybrid Step-Down Synchronous Controller, LTC7821 Data Sheet, 2016.
[36] A. Kawa and R. Stala, "SiC-Based Bidirectional Multilevel High-Voltage Gain Switched-Capacitor Resonant Converter with Improved Efficiency," Energies. 2020; 13(10):2445.
[37] T. Yang et al., "Review of Topologies, Application Areas, Modeling, and Control Methods for Switched Capacitor Circuits," in IEEE Transactions on Power Electronics, vol. 39, no. 4, pp. 4091-4116, April 2024, doi: 10.1109/TPEL.2024.3350158.
[38] M. Wei, Z. Ni, S. Yang, M. Qiu, X. Liu and D. Cao, "Performance Evaluation and Analysis for Resonant Switched Capacitor Converter," 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 2021, pp. 1889-1893, doi: 10.1109/APEC42165.2021.9487181.
[39] Z. Ye, S. R. Sanders and R. C. N. Pilawa-Podgurski, "Modeling and Comparison of Passive Component Volume of Hybrid Resonant Switched-Capacitor Converters," in IEEE Transactions on Power Electronics, vol. 37, no. 9, pp. 10903-10919, Sept. 2022, doi: 10.1109/TPEL.2022.3160675.
[40] M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC–DC Converters," in IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 841-851, March 2008, doi: 10.1109/TPEL.2007.915182.
[41] Z. Ye, Y. Lei and R. C. N. Pilawa-Podgurski, "The Cascaded Resonant Converter: A Hybrid Switched-Capacitor Topology With High Power Density and Efficiency," in IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 4946-4958, May 2020, doi: 10.1109/TPEL.2019.2947218.
[42] Y. Li, X. Lyu and D. Cao, "A Zero-Current-Switching High Conversion Ratio Modular Multilevel DC–DC Converter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 1, pp. 151-161, March 2017, doi: 10.1109/JESTPE.2016.2623794.
[43] Z. Xia, K. Datta and J. T. Stauth, "State-Space Modeling and Control of Flying-Capacitor Multilevel DC–DC Converters," in IEEE Transactions on Power Electronics, vol. 38, no. 10, pp. 12288-12303, Oct. 2023, doi: 10.1109/TPEL.2023.3294061.
[44] Dong-Ying You, Shih-Hao Kuo, Yong-Long Syu, Huang-Jen Chiu, Kuo-Chi Liu and Ta-Yung Yang, "An Improved 48-to-12V Series-Parallel Resonant Switched-Capacitor Converter for Data Center Applications," 2021 IEEE International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, 2021, pp. 1-6, doi: 10.1109/IFEEC53238.2021.9661888.
[45] S. Jiang, S. Saggini, C. Nan, X. Li, C. Chung and M. Yazdani, "Switched Tank Converters," in IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5048-5062, June 2019, doi: 10.1109/TPEL.2018.2868447.
[46] X. Lyu, Y. Li, N. Ren, C. Nan, D. Cao and S. Jiang, "Optimization of High-Density and High-Efficiency Switched-Tank Converter for Data Center Applications," in IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1626-1637, Feb. 2020, doi: 10.1109/TIE.2019.2898589.
[47] Y. Li, X. Lyu, D. Cao, S. Jiang and C. Nan, "A 98.55% Efficiency Switched-Tank Converter for Data Center Application," in IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6205-6222, Nov.-Dec. 2018, doi: 10.1109/TIA.2018.2858741.
[48] M. Balutto, G. Ripamonti, P. D. Antoszczuk, S. Michelis, F. Iob, A. Dago and S. Saggini, "Switched Tank Converter: Quasi-Resonant Regulation for Soft Start and Mismatch Mitigation Technique," in IEEE Transactions on Power Electronics, vol. 38, no. 12, pp. 15016-15031, Dec. 2023, doi: 10.1109/TPEL.2023.3311231.
[49] K. Kesarwani, R. Sangwan and J. T. Stauth, "Resonant-Switched Capacitor Converters for Chip-Scale Power Delivery: Design and Implementation," in IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6966-6977, Dec. 2015, doi: 10.1109/TPEL.2014.2384131.
[50] A. Stillwell and R. C. N. Pilawa-Podgurski, "A resonant switched-capacitor converter with GaN transistors for series-stacked processors with 99.8% power delivery efficiency," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015, pp. 563-570, doi: 10.1109/ECCE.2015.7309739.
[51] M. M. Henriksen, D. Ø. Larsen and P. L. Muntal, "A Design Methodology for High-Voltage, Highly-Integrated Switched-Capacitor Power Converters, and Implementation At 48 V-12 V, 23 W/cm$^{3}$ and 93.5% Peak Efficiency," in IEEE Transactions on Power Electronics, vol. 38, no. 10, pp. 12254-12264, Oct. 2023, doi: 10.1109/TPEL.2023.3288592.
[52] A. Dago, M. Leoncini, S. Saggini, A. Brunero, A. Gasparini, O. Zambetti, S. Levantino and M. Ghioni, "A High-Power-Density Quasi-Resonant Switched-Capacitor DC–DC Converter With Single Semiperiod Tank Current Modulation," in IEEE Transactions on Power Electronics, vol. 39, no. 2, pp. 2100-2114, Feb. 2024, doi: 10.1109/TPEL.2023.3333696.
[53] W. Xie and K. M. Smedley, "Seven Switching Techniques for the Ladder Resonant Switched-Capacitor Converters With Full-Range Voltage Regulation," in IEEE Transactions on Industrial Electronics, vol. 69, no. 8, pp. 7897-7908, Aug. 2022, doi: 10.1109/TIE.2021.3106010.
[54] D. Cao, X. Yu, X. Lu, W. Qian and F. Z. Peng, "A double-wing multilevel modular capacitor-clamped dc-dc converter with reduced capacitor voltage stress," 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 2011, pp. 545-552, doi: 10.1109/ECCE.2011.6063817.
[55] N. M. Ellis and R. Amirtharajah, "Reducing COSS Switching Loss in a GaN-based Resonant Cockcroft-Walton Converter Using Resonant Charge Redistribution," 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020, pp. 158-164, doi: 10.1109/ECCE44975.2020.9235411.
[56] O. Jong, Q. Li and F. C. Lee, "Resonant Switched-Capacitor Converter with Multi-Resonant Frequencies," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 2177-2184, doi: 10.1109/APEC.2019.8722070.
[57] O. Jong, Q. Li, F. C. Lee and B. Carpenter, "Loss Model and Optimization Method for Switched-Capacitor Divider for POL Application," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 3844-3850, doi: 10.1109/ECCE.2018.8558151.
[58] Vishay Siliconix Inc., Power MOSFET Basics: Understanding Gate Charge and Using it to Assess Switching Performance, Device Application Note AN608A, 2016.
[59] ON Semiconductor Inc., MOSFET Gate-Charge Origin and its Applications, Application Note AND9083/D, 2016.
[60] Y. Lei and R. C. N. Pilawa-Podgurski, "A General Method for Analyzing Resonant and Soft-Charging Operation of Switched-Capacitor Converters," in IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5650-5664, Oct. 2015, doi: 10.1109/TPEL.2014.2377738.
[61] Y. Jiang, B. Hu, Y. Shen, X. Ren, S. Sandler, S. Hofmann and T. Long, "Loss Characterization and Modeling of Class II Multilayer Ceramic Capacitors: A Synergistic Material-Microstructure-Device Approach," in IEEE Transactions on Power Electronics, vol. 38, no. 11, pp. 13535-13554, Nov. 2023, doi: 10.1109/TPEL.2023.3286818.
[62] G. Sovik, T. Urkin, E. E. Masandilov and M. Mordechai Peretz, "Optimal Self-Tuning Control for Data-Centers’ 48V-12V ZCS-STC," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020, pp. 455-462, doi: 10.1109/APEC39645.2020.9124129.
[63] Y. Li, J. Chen, M. John, R. Liou and S. R. Sanders, "Resonant switched capacitor stacked topology enabling high DC-DC voltage conversion ratios and efficient wide range regulation," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, pp. 1-7, doi: 10.1109/ECCE.2016.7855401.
[64] Z. Ye, Y. Lei, W. -C. Liu, P. S. Shenoy and Robert C. N. Pilawa-Podgurski, "Improved Bootstrap Methods for Powering Floating Gate Drivers of Flying Capacitor Multilevel Converters and Hybrid Switched-Capacitor Converters," in IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 5965-5977, June 2020, doi: 10.1109/TPEL.2019.2951116.
[65] T. Ge, Z. Ye and R. C. N. Pilawa-Podgurski, "Geometrical State-Plane Analysis of Resonant Switched-Capacitor Converters: Demonstration on the Cascaded Multiresonant Converter," in IEEE Transactions on Power Electronics, vol. 38, no. 9, pp. 11125-11140, Sept. 2023, doi: 10.1109/TPEL.2023.3259951.
[66] S. Webb, T. Liu and Y. -F. Liu, "Zero Inductor-Voltage Multilevel Bus Converter," in IEEE Transactions on Power Electronics, vol. 36, no. 10, pp. 11565-11578, Oct. 2021, doi: 10.1109/TPEL.2021.3072542.
[67] P. H. McLaughlin, P. A. Kyaw, M. H. Kiani, C. R. Sullivan and J. T. Stauth, "A 48-V:16-V, 180-W Resonant Switched-Capacitor Converter With High-Q Merged Multiphase LC Resonator," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2255-2267, Sept. 2020, doi: 10.1109/JESTPE.2019.2934429.
[68] Neal Zhang, Daniel Li, Vincent Zhang and Andy Chen, “Reduce Conducted EMI in Automotive Buck Converter” Texas Instruments, Application Report SLVA886, Jul. 2019.
[69] Michele Sclocchi, “Input Filter Design for Switching Power Supplies” Texas Instruments, Literature Number SNVA538, 2010.
[70] V. Tarateeraseth, "EMI filter design: Part III: Selection of filter topology for optimal performance," in IEEE Electromagnetic Compatibility Magazine, vol. 1, no. 2, pp. 60-73, Second Quarter 2012, doi: 10.1109/MEMC.2012.6244975.
[71] S. Wang, P. Kong and F. C. Lee, "Common Mode Noise Reduction for Boost Converters Using General Balance Technique," in IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1410-1416, July 2007, doi: 10.1109/TPEL.2007.900503.
[72] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard and P. Barbosa, "Operation, Control, and Applications of the Modular Multilevel Converter: A Review," in IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 37-53, Jan. 2015, doi: 10.1109/TPEL.2014.2309937.
[73] Y. Lei et al., "A 2-kW Single-Phase Seven-Level Flying Capacitor Multilevel Inverter With an Active Energy Buffer," in IEEE Transactions on Power Electronics, vol. 32, no. 11, pp. 8570-8581, Nov. 2017, doi: 10.1109/TPEL.2017.2650140.
[74] Y. Lei, W. -C. Liu and R. C. N. Pilawa-Podgurski, "An Analytical Method to Evaluate and Design Hybrid Switched-Capacitor and Multilevel Converters," in IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2227-2240, March 2018, doi: 10.1109/TPEL.2017.2690324.
[75] 譚皓元,三階層飛馳電容式直流轉換器,國立臺灣科技大學電子工程系碩士論文,2021年。
[76] 林琨城,三階層降壓式直流轉換器分析與研製,國立臺灣科技大學電子工程系碩士論文,2023年。
[77] C. Parisi, “Multiphase Buck Design From Start to Finish (Part 1)” Texas Instruments, Application Report SLVA882, Apr. 2017.
[78] S. Tian et al., "A Novel DCR Current Sensing Scheme for Accurate Current Readback in Power uModule Applications," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020, pp. 2763-2765, doi: 10.1109/APEC39645.2020.9124555.
[79] Z. Ye, Y. Lei, W. -C. Liu, P. S. Shenoy and R. . Pilawa-Podgurski, "Improved Bootstrap Methods for Powering Floating Gate Drivers of Flying Capacitor Multilevel Converters and Hybrid Switched-Capacitor Converters," in IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 5965-5977, June 2020, doi: 10.1109/TPEL.2019.2951116.
[80] Z. Ye, Y. Lei, Z. Liao and R. C. N. Pilawa-Podgurski, "Investigation of capacitor voltage balancing in practical implementations of flying capacitor multilevel converters," 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, USA, 2017, pp. 1-7, doi: 10.1109/COMPEL.2017.8013368.
[81] P. Fang, "A Method of Reconfiguring Flying Capacitor Multilevel Input Stage for Wide Input Voltage Range Converter Design," in IEEE Transactions on Power Electronics, vol. 37, no. 2, pp. 1905-1925, Feb. 2022, doi: 10.1109/TPEL.2021.3105369.
[82] R. Rizzolatti, S. Saggini, C. Rainer and M. Ursino, "Novel highly efficient Two-stage regulated 48 V - to - 12 V converter with dual phase 3-level buck converter featuring natural voltage balancing," 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 2023, pp. 948-953, doi: 10.1109/APEC43580.2023.10131477.
[83] X. Liu, P. K. T. Mok, J. Jiang and W. -H. Ki, "Analysis and Design Considerations of Integrated 3-Level Buck Converters," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 5, pp. 671-682, May 2016, doi: 10.1109/TCSI.2016.2556098.
[84] H. -C. Chen, C. -Y. Lu, W. -H. Lien and T. -H. Chen, "Active Capacitor Voltage Balancing Control for Three-Level Flying Capacitor Boost Converter Based on Average-Behavior Circuit Model," in IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1628-1638, March-April 2019, doi: 10.1109/TIA.2018.2876031.
[85] S. Du, B. Wu and N. R. Zargari, "A Startup Method for Flying-Capacitor Modular Multilevel Converter (FC-MMC) With Effective Damping of LC Oscillations," in IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5827-5834, July 2017, doi: 10.1109/TPEL.2016.2613513.
[86] EPC Inc., 48 V Three-level Synchronous Buck Converter, Development Board EPC9148 Quick Start Guide, 2023.
[87] Vicor Inc., NBMTM Bus Converter, NBM6123x46C15A6yzz Data Sheet, 2017.
[88] Y. Guan et al., "A High-Performance 3:1 Conversion Ratio DC–DC Converter: Analysis Method and Modular Adoption," in IEEE Transactions on Power Electronics, vol. 39, no. 4, pp. 4412-4425, April 2024, doi: 10.1109/TPEL.2023.3342736.
[89] Dong-Ying You, Huang-Jen Chiu and Shih-Hao Kuo, "Ladder-Type Resonant Switched-Capacitor Converter Achieving 99.1% Peak Efficiency and 4750 w/in3 Power Density for High-Current Application," in IEEE Transactions on Power Electronics, vol. 39, no. 7, pp. 8040-8053, July 2024, doi: 10.1109/TPEL.2024.3388462.

QR CODE