簡易檢索 / 詳目顯示

研究生: 黃郁文
Yu-Wen Huang
論文名稱: 振盪器及注入鎖定除二除頻器之研究
Oscillator and Divide-by 2 Injection-Locked Frequency Divider
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 莊敏宏
Miin-Horng Juang 
徐世祥
Shih-Hsiang Hsu 
徐敬文
Ching-Wen Hsue
張勝良
Sheng-Lyang Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 148
中文關鍵詞: 振盪器除頻器
外文關鍵詞: Oscillator, Divider
相關次數: 點閱:183下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 首先,第一部分我們研究class-D n-core振盪器在低電壓工作時具有高電壓擺幅屬性,並使用交叉耦合整流器提供更高的直流輸出。此振盪器實現於台積電矽鍺0.18 μm製程,晶片的面積為1.1×0.88mm2。該振盪器在2.38 GHz提供基頻,並使用三組雙電容交叉耦合和兩顆晶片內部的電感來提升閘極電壓及降低閘極導通電壓,在供應電壓為0.5 V時,輸出電壓為0.87 V。振盪器在供應電壓2V的情況下,觀察高電壓擺幅的影響,發現相位雜訊,頻率,功耗和輸出功率有明顯的下降。
    接著,第二部份我們研究一個寬頻帶除二注入鎖定除頻器的除頻範圍屬性,主要的注入功率為-20dBm到10dBm。此除頻器由三路互感耦合諧振器和一組電容交叉耦合與4階RLC共振腔組成以及一個諧波混波MOSFET。第二級電感是由三路徑電感組成可經由MOSFET開關,主要電感是由兩圈單路電感組成,單頻段的鎖頻範圍從4.9GHz到12.71GHz。功率消耗為8.72mW。鎖頻範圍從6.1GHz到12.1GHz。功率消耗為2.6mW。
    最後,這篇論文提出一個穩懋氮化鎵 0.25微米製程的振盪器,此電路使用1個GaN HEMT放大器組成一個右手回授振盪器,在供應電壓1 V時,振盪器的電流和功率消耗分別為4.24 mA和4.24 mW。其產生之單端信號輸出頻率為9.171GHz,輸出功率為-10.64 dBm。相位雜訊在1MHz offset為-119.2dBc/Hz,FOM=-192.175 dBc/Hz,晶片面積為2x1 mm2。


    First, a class-D n-core oscillator operated at low voltage with high voltage swing and the oscillator uses a cross-coupled rectifier to supply a higher dc output. The chip with an area of 1.1×0.88 mm2 was implemented in the TSMC standard 0.18 μm BiCMOS processes. The oscillator supplies a fundamental at 2.38 GHz and it uses three capacitive cross-coupled pairs with three gate control biases and two on-chip inductors to boost gate voltage for lower gate bias. At the supply voltage of 0.5 V, the converter voltage is 0.87 V. The oscillator was biased at 2 V supply voltage to see the effect of high voltage swing. Degradation in phase noise, frequency, power consumption and output power are found.
    Secondly, a wide-band divide-by-2 injection-locked frequency divider (ILFD) in the 0.18 μm CMOS process. The ILFD uses 3-path transformer-coupled resonator and the secondary inductor can be turned on/off by a MOSFET switch. The secondary is made of a three-path inductor and the primary is made of a two-turn single-path inductor. The single-band-like locking range is from 4.9 GHz to 12.71 GHz at the power consumption of 8.72 mW and the locking range is from 6.1 GHz to 12.1 GHz at the power consumption of 2.6 mW. The circuit also shows two non-overlapped locking ranges, which is attributed to the transformer-based 4th order resonator.
    Finally, a feedback GaN HEMT oscillator implemented with the WIN 0.25 μm GaN HEMT technology. The oscillator consists of a HEMT amplifier with a right-handed LC feedback network. With the supply voltage of VDD = 1 V, the GaN oscillator-core current and power consumption of the oscillator are 4.24 mA and 4.24 mW, respectively. The oscillator can generate single-ended signal at 9.171 GHz and it also supplies output power -10.64 dBm. At 1MHz frequency offset from the carrier the phase noise is -119.2 dBc/Hz, the FoM of the proposed oscillator is -192.175 dBc/Hz. The die area of the GaN HEMT oscillator is 2×1 mm2.

    摘要 I Abstract III 致謝 V Table of Contents VI List of Figures X List of Tables XVIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 5 Chapter 2 Overview of the Voltage-Controlled Oscillators 7 2.1 Introduction 7 2.2 Theory of Oscillators 9 2.2.1 Positive Feedback (Two-Port) Oscillators 10 2.2.2 Negative Resistance (One-Port) Oscillators 13 2.3 The Classification of Oscillators 16 2.3.1 Ring Oscillator 16 2.3.2 LC-Tank Oscillator 20 2.3.3 Research of RLC Tank 24 2.3.4 Type of LC Oscillator 28 2.4 Design Parameter of Voltage-Controlled Oscillator 36 2.5 Significant Issue of Voltage-Controlled Oscillator 40 2.5.1 Phase Noise 40 2.5.2 The LTI (Linear Time-Invariant) Phase Noise Model 42 2.5.3 The LTV (Linear Time-Variant) Phase Noise Model 43 2.5.4 Quality Factor 47 2.5.5 Figure of Merit [dBc/Hz] 48 2.6 Elements of Semiconductor Process 49 2.6.1 Resistor 49 2.6.2 Inductor 51 2.6.3 Capacitor 61 2.6.4 Varactor 64 Chapter 3 Design of Injection Locked Frequency Divider 71 3.1 Principle of Injection Locked Frequency Divider 73 3.2 Locking Range 75 3.3 A single injection of ILFD 78 Chapter 4 Effect of Overvoltage Bias on the Triple Capacitive Cross-Coupled Class D Oscillator 80 4.1 Introduction 80 4.2 Circuit Design 82 4.3 Measurement Results and Discussion 91 Chapter 5 Double-Cross-Coupled Divide-by-2 Injection-Locked Frequency Dividers Using 3-path Transformer-Coupled Resonator 98 5.1 Introduction 98 5.2 Circuit Design 100 5.3 Measurement Results and Discussion 105 Chapter 6 A X-band Feedback GaN HEMT Oscillator with Right-handed Filter 113 6.1 Introduction 113 6.2 Circuit Design 114 6.3 Measurement Results 115 Chapter 7 Conclusions 120 References 122

    [1] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [2] S. Smith, “Microelectronic Circuit 4th edition,” Oxford University Press 1998.
    [3] J. Roggers, C. Plett, “Radio frequency integrated circuit design,” Artech House, 2003.
    [4] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810-820, May 1992.
    [5] B. Razavi, “Design of Integrated Circuits for Optical Communications,” Mc Graw Hill.
    [6] S. J. Lee, B. Kim, K. Lee, “A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme,” IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
    [7] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design,” Prentice Hall, 1997.
    [8] S. H. Lee, S. L. Jang, “Implementation of New High Frequency CMOS VCOs and Injection-Locked Frequency Dividers,” April 2007.
    [9] J. Aguilera, and R. Berenguer, “Design and test of integrated inductors for RF applications,” Kluwer Academic Publishers, 2004.
    [10] B. De Muer, M. Borremans, M. Steyaert, and G. Li. Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
    [11] S.Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5GHz CMOS VCOs: impact on tuning range and flicker noise upconversion, ” IEEE J. Solid-State Circuits, vol. 37, pp. 1001-1003, 2002.
    [12] T. H. Lee, “The Design of CMOS Radio Frequency Integrated Circuits,” Cambridge University Press, 1998.
    [13] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
    [14] J. J. Kim, B. Kim, “A low-phase-noise CMOS LC oscillators with a ring structure,” ISSCC Digest of Technical Papers, pp. 430-431, Feb. 2000.
    [15] J. Savoj, B. Razavi, “High-Speed CMOS Circuits for Optical Receivers, “Kluwer Academic Publishers, 2001.
    [16] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE ISSCC Dig. Tech. Papers, pp. 392-393, Feb. 1996.
    [17] T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [18] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [19] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [20] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, April 2001.
    [21] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996
    [22] A. Hajimiri, and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
    [23] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Springer 1999.
    [24] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sep. 2000.
    [25] Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.
    [26] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [27] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [28] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [29] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [30] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [31] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [32] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOSinjection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [33] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [34] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-lockeddividers in 0.25μm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [35] S. Naseh, M. J. Deen and O. Marinov, “Effects of hot-carrier stress on the performance of the LC-Tank CMOS oscillators,” IEEE Trans. Electron Devices, vol. 50, no. 5, pp. 1334-1339, May 2003.
    [36] E. Xiao, J. S. Yuan and H. Yang, “Hot-carrier and soft-breakdown effects on VCO performance,” IEEE Trans. Microwave Theory and Techniques, vol. 50, no. 11, pp. 2453-2458, November 2002.
    [37] J-T. Park, B-J. Lee, D-W. Kim, C-G. Yu and H-K. Yu, “RF performance degradation in nMOS transistors due to hot-carrier stress,” IEEE Trans. Electron Devices, vol. 47, no. 5, pp. 1068-1072, May 2000.
    [38] L. Fanori and P. Andreani, “Class-D CMOS Oscillators,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3105–3119, Dec. 2013.
    [39] D. Park and S. Cho, “An adaptive body-biased VCO with voltage boosted switching tuning in 0.5-V supply,” in Proc. Eur. Solid-Stat Cir. Conf., Sep. 2006, pp. 444–447.
    [40] S.-L. Jang, K.-C. Shen, and C.-C. Liu,” A 5.2 GHz low power VCO in 0.18 μm CMOS process,” Microw. Opt. Technol. Lett., pp. 1052-1055, April 2009.
    [41] K. Okada et al., “A 0.114mW dual-conduction Class-C CMOS VCO with 0.2V Power Supply,” IEEE VLSI, pp. 228–229, June 2009.
    [42] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
    [43] C.-F. Lee and S.-L. Jang,” A low voltage divide-by-3 injection-locked frequency divider,” Microw. Opt. Technol. Lett., pp. 1905-1908, July, 2008.
    [44] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
    [45] S.-L. Jang, M.-H. Suchen, and C.-F. Lee” Colpitts injection locked frequency divider implemented with a 3D helical transformer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp.410-412, June, 2008.
    [46] S.-L. Jang, F.-H. Chen, and J.-F. Huang,” A transformer-coupled LC-tank injection locked frequency divider,” Microw. Opt. Technol. Lett. Vol. 50, no. 3, pp.592-595, Mar. 2008.
    [47] S.-L. Jang, R.-K. Yang, C.-W. Chang, M.-H. Juang, and C.-C. Liu,” Dual-band transformer-coupled quadrature injection-Locked frequency dividers,” Microw. Opt. Technol. Lett. , pp.1561-1564, July, 2011.
    [48] S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang,” Quadrature injection-locked frequency dividers using dual-resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, Jan. 2011.
    [49] C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shin, “Dual resonance LC-tank frequency divider implemented with switched varactor bias,” in Proc. IEEE Int. Symp. VLSI Design, Autom. Test, Apr. 2011, pp. 1–4.
    [50] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electron. Lett., vol. 51, 23, pp.1888-1889, 2015.
    [51] S.-L. Jang and Y.–C. Lin,” Low power three-path inductor Class-C VCO without any dynamic bias circuit,” Electron. Lett., vol. 53, 1186 – 1188, 2017.
    [52] S.-L. Jang, and C.-Y. Lin,” A wide-locking range Class-C injection-locked frequency divider,” Electron. Lett., vol. 50, 23, pp.1710-1712, 2014.
    [53] Jacob H. Leach, and Hadis Morkoc, "Status of Reliability of GaN-Based Heterojunction Field Effect Transistors", Proceedings of the IEEE, vol. 98, pp. 1127-1139, 2010, ISSN 0018-9219.
    [54] S.–L. Jang, Y.-H. Chang, and W.-C. Lai,” A feedback GaN HEMT oscillator,” (ICIMMT 2018) Chengdu, Sichuan, China, May 6-9, 2018.
    [55] S.–L. Jang, Y.-H. Chang, J.-S. Chiou and W.-C. Lai, “A single GaN HEMT oscillator with 4-path inductors,”IEEE ISNE-2018, Taipei, Taiwan 2018.
    [56] Z. Q. Cheng, Y. Cai, J. Liu, Y.-G. Zhou, K. M. Lau, and K. J. Chen, “A low phase-noise X-Band MMIC VCO using high-linearity and low-noise composite-channel Al0.3Ga0.7N/ Al0.05Ga0.95N/GaN HEMTs,” IEEE Trans. Microwave Theory & Tech. vol. 55, issue 1, pp. 23-29,2007.
    [57] C. Sanabria, H. Xu, S. Heikman, U. K. Mishra, and R. A. York, “A GaN differential oscillator with improved harmonic performance,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 463–465, Jul. 2005.
    [58] S.-L. Jang, Ke Jen Lin, Wen Cheng Lai, and M.-H. Juang,” A capacitive cross-coupled GaN HEMT injection-locked frequency divider,” Int. Symp. VLSI Design, Automation and Test (VLSI-DAT), 2018.
    [59] S. Lai, D. Kuylenstierna, M. Ozen, M. Horberg, N. Rorsman, I. Angelov, and H. Zirath, “Low phase noise GaN HEMT oscillators with excellent figures of merit,” IEEE Microw. Wireless Compon. Lett., vol. PP, pp. 1, Apr. 2014.
    [60] W. Wohlmuth, M.-H. Weng, C.-K. Lin, J.-H. Du, S.-Y. Ho, T.-Y. Chou, S. M. Li, C. Huang, W.-C. Wang, and W.-K. Wang, “AlGaN/GaN HEMT development targeted for X band applications,” 2013 IEEE Int. Conf. Microwaves, Communications, Antennas and Electronic Systems pp.1-4.
    [61] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331–343, Mar. 1996.
    [62] H. Liu, X. Zhu, C. C. Boon, X. Yi, M. Mao, and W. Yang, “Design of ultra-low phase noise and high power integrated oscillator in 0.25µm GaN-on-SiC HEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 24, pp. 120–122, 2014.
    [63] Z. Herbert, S. Lai, K. Dan, F. Jonathan, A. Kristoffer and R. Niklas, ” An X-band low phase noise AlGaN-GaN-HEMT MMIC push-push oscillator,” in Proc. IEEE Compound Semicond. Integr. Circuit Symp. (CSICS), Oct. 16–19, 2011, pp. 1–4.
    [64] G. Soubercaze-Pun, J. G. Tartarin, L. Bary, J. Rayssac, E. Morvan, B. Grimbert, S. L. Delage, J.-C. De Jaeger, and J. Graffeuil, “Design of a X-band GaN oscillator: From the low frequency noise device characterization and large signal modeling to circuit design,” in IEEE MTT-S Int. Dig., Jun. 11–16, 2006, pp. 747–750.
    [65] V. S. Kaper, V. Tilak, H. Kim, A. V. Vertiatchikh, R. M. Thompson, T.R.Prunty, L.F.Eastman, andJ. R.Shealy,“High-power monolithic AlGaN/GaN HEMT oscillator,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1457–1461, Sep. 2003.
    [66] S.–L. Jang, et al,” An 4.7 GHz low power cross-coupled GaN HEMT oscillator,”Microw. Opt. Technol. Lett. Accepted 2018.

    QR CODE