簡易檢索 / 詳目顯示

研究生: 卡拉尤-梅肯嫩阿比特
Kalayu Mekonen Abate
論文名稱: 以積層製造方式製作的生物醫學細胞結構之設計、優化及評估(髖關節植入和髖臼杯)
DESIGN, OPTIMIZATION, AND EVALUATION OF CELLULAR STRUCTURES USING ADDITIVE MANUFACTURING FOR BIOMEDICAL APPLICATION (HIP IMPLANT AND ACETABULAR CUP)
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 鄭逸琳
Yih-Ling Cheng
蔡明忠
Ming-Jong Tsai
鄭中緯
Zhong-wei Zheng
傅建中
Chien-Chung Fu
黃聖杰
Sheng-jye Hwang
鄭正元
Jeng-ywan Jeng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 182
中文關鍵詞: 積層製造細胞結構孔隙率設計和優化有限元素分析細胞植入物髖關節細胞植入髖臼杯細胞植入
外文關鍵詞: Additive manufacturing, Cellular Structure, Porosity, Design and Optimization, Finite element analysis, Cellular implant, Hip cellular implant, Acetabular cup cellular implant
相關次數: 點閱:519下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 蜂窩狀結構是由內部網格相互連接之板、單一晶格或支柱狀所組成的結構,並具有顯著的優勢如高能量吸收、高強度重量比和最少的材料需求。此外,由於其具有多孔性和輕量化的特點,是相較於實心固體的優勢所在,多孔隙的特性能滿足生物醫學應用及物理上的需求。甚至其機械性質也可以有所變化。

    使用AM製造的細胞生物材料為承重的骨科植入物提供了新的機會。本文的第一部分提出了一種新穎的葡萄狀細胞結構,該結構具有五個不同的細胞結構,分別是立方體、四面體、六面體、八面體和菱形十二面體,進行模擬和實驗工作以了解單位尺寸、晶格拓撲、孔隙率和孔徑之間的關係。

    Material Jetting(Projet 3510 HDMax 3D打印機)製程用於處理試片,其孔徑通過電光顯微鏡測量。結果表明,具有Vintiles晶格拓撲的孔結構比其他孔結構具有較小的應力和較小的變形。

    這項研究不僅限於生物醫學應用之細胞結構,還比較了均勻密度和可變密度細胞結構的機械性能。最後,通過有限元分析測試了未優化和優化的Vintiles細胞結構,並使用Material jetting列印的試片進行了實驗,兩個結果均表明,優化後的細胞結構比未優化的細胞結構具有更低的應力和變形。
    在本論文的第二部分中,將設計的Vintiles細胞結構引入髖臼和髖臼杯(AC)的置換中以減少應力屏蔽。整形外科中使用的最新型(髖關節和AC植入物)由更堅硬的材料製成,比天然骨骼堅固得多。剛度的急劇變化導致周圍骨組織的應力降低,這表示植入物周圍骨密度下降。骨量的減少會導致嚴重的交錯,例如人工關節周圍骨折。由蜂窩結構工程微體系結構製成的髖關節置換植入物能夠在考慮骨生長和製造限制的情況下減少應力屏蔽。第二部分著重於通過結合細胞結構允許骨組織生長並減少應力來設計和優化髖關節植入物。蜂窩狀髖關節植入物結合了具有特定支桿厚度和晶胞大小的晶格的拓撲結構,以滿足骨骼生長和生物力學仿製強度的要求。通過選擇雷射燒熔(SLM)使用Ti6Al4V材料開發了具有不同晶胞尺寸和孔隙率的優化細胞髖關節植入物。有限元分析(FEA)用於預測髖關節細胞植入物的機械性能,優化方法用於增強髖關節細胞植入物的機械效率。根據ISO 7206-4(2010)在靜態負載條件下進行了研究,以確保髖關節植入物的剛性降低。力-位移實驗和模擬結果表明,優化的蜂窩髖關節植入物的剛性比其固體同類物低62%相比之下,蜂窩式髖關節關節植入物的重量比實心髖關節植入物低50%。

    最後,這項研究的結果顯示,孔隙率56%和58%的細胞植入物具有潛力用於修復和整形外科領域,以改善骨整合。此外,髖關節臼杯(AC)細胞植入物的結果表明,其優化的AC細胞植入物的剛度分別比通過模擬和實驗工作證實的非優化AC植入物高69%和71%。最後,我們開發了一種具有與人體骨骼相似的可接受的機械性能的交流植入物。


    Abstract
    Cellular structures are defined as structures made up of an interconnected network of plates, small unit cells, or struts, and acquire significant benefits such as excellent energy absorption, high strength-to-weight ratio and minimizing material requirements. Besides, cellular structures are promising applicants for biomedical applications due to their best capabilities over solid ones because of having porosity and light in weight. Cellular structure made with additive manufacturing provide an exciting potential for orthopedic load-bearing applications. The first portion of this dissertation presents a design of a novel vintiles cellular structure with existing five different cellular structures namely cubic, tetrahedron, hexagon, octagon, and rhombic dodecahedron were designed. Simulation and experimental work was conducted to understand the relationship between lattice topology, unit cell size, porosity and pore size. Material jetting (Projet 3510 HDMax 3D printer) process is used for produced samples, and their pore size are measure via electro-optical microscopic. The results show that the cellular structure with vintiles lattice topology performs less stress and less deformation than the other cellular structures. This study is not only limited to cellular structure design for biomedical applications but also compared the mechanical performance of uniform density and variable density cellular structures. Both non-optimized and optimized vintiles cellular structures are finally tested with FEA and experiments have been carried out on samples fabricated by material jetting, and both results have shown that the optimized cellular structure had much less stress and lower deformation than the non-optimized.

    In the second portion of this dissertation, the developed vintiles cellular structure is introduced to Hip and Acetabular Cup (AC) replacement to reduces stress shielding. The current implants that are used in the orthopedic application (Hip and AC implant) are made from stiffer (solid) materials and are much more robust than the natural bone. The dramatic change in stiffness results in decreased stress on the surrounding bone tissue, which is expressed as a decline in bone density around the implant. The decrease in bone stock can prompt serious intricacies, for example, periprosthetic fracture. A hip replacement implant made of cellular structure engineered microarchitecture enables the stress shield to be reduced respecting bone growth and fabricating limitations. The optimized cellular hip implant incorporating with vintiles lattice topologies having specific strut thickness, unit cell sizes, and porosity to meet the requirements of bone growth and biomechanical imitation strength. Only optimized and selected porosities samples are manufactured using selective laser melting (SLM), and their morphological are assessed using Scanning Electron Microscopes (SEM). Finite element analysis (FEA) was used to predict the mechanical property of the hip cellular implant, and methods of optimization were used to enhance the mechanical efficiency of the hip cellular implant. Experimental studies were conducted under static loading conditions based on ISO 7206-4(2010) to determine the reduction in stiffness of hip cellular implants. The results shown that optimized cellular hip implant has 62% lower stiffness than its solid counterpart. In comparison, the weight of the cellular hip implant was 50% lower than the solid implant. Lastly, the findings of this study indicate that cellular implants with 56% porosity, and 58% have the potential to be used in prosthetic and orthopedic applications to improve osseointegration. Besides, the result for cellular acetabular cup (AC) implant shown that the optimized cellular AC implant is 69% and 71% higher stiffness than non-optimized AC implant confirmed by simulation and experimental work respectively. Finally, we developed an AC implant with acceptable mechanical performance similar to that of human bone.

    Contents 摘要 I Abstract III Acknowledgments V Table of Contents VI List of Figures XII List of Tables XVII Chapter 1 Introduction 1 1.1 Background 1 1.2 A general overview of bone and implant 2 1.3 Statement Problem and Motivation 3 1.4 Objective 4 1.5 Outline of this dissertation 5 Chapter 2 Literature Review 8 2.1 The need bone replacements 8 2.2 Structural and Mechanical and Properties of Bones 9 2.3 Body structural properties and Bone Substitute Requirements 10 2.3.1 Bone mechanical properties and Bone Replacement Requirements 11 2.4 Bone Interfacing Implant 12 2.5 Factors Affecting Bone Ingrowth 15 2.6 Cellular Structures from Natural Occurrence to Engineering Applications 16 2.6.1 Natural Occurrences 16 2.6.2 Artificial Cellular Structures 18 2.7 Engineering Approaches to Cellular Material Selection 20 2.7.1 Figures of Merit 20 2.8 Relative Density Scaling Laws 24 2.9 Cellular Structures Manufacturing using AM 29 2.10 Commercial Software Tools for Generating Cellular Structure 31 2.11 Cellular Structure Analysis 32 2.12 Methods of design and optimization cellular structure 33 2.12.1 Classification of for the design of a cellular structure 33 2.12.2 Size, Shape, and Topology Optimization 34 2.12.3 Topology Optimization 36 2.12.4 Multivariable Optimization 38 2.13 Additive Manufacturing Technologies – State of The Art 39 2.14 Additive Manufacturing Processes 40 2.14.1 Material extrusion processes (e.g. FDM) 41 2.14.2 Stereolithography (SLA) 42 2.14.3 Selective Laser Sintering (SLS) 43 2.14.4 Material jetting (e.g. Objet, Solid scape) 43 2.14.5 Binder jetting (e.g. Z-corp, Voxeljet) 45 2.14.6 Sheet lamination (e.g. LOM) 45 2.14.7 Selective Laser melting (SLM) 46 2.15 Benefits and Limitations of AM Processes 48 2.15.1 Benefits 48 2.15.2 Limitations 49 2.16 Importance of AM for Fabricating Cellular Structures 51 Chapter 3 Design of cellular structure and cellular implant 52 3.1 Introduction 52 3.2 Methods for design of the cellular structure 54 3.2.2 Design of cellular structure samples 60 3.3 The design process of cellular implant 62 3.3.1 Unit cell type 62 3.3.2 Design of cellular hip implant using vintiles cellular structure 63 3.3.3 Design of acetabular cup implant using vintiles cellular structure 65 3.3.4 Identifying pores size and porosity 66 Chapter 4 Materials and Methods, Preliminary experiments 69 4.1 Introduction 69 4.2 Materials and methods 69 4.2.1 VisiJet M3 Crystal material 69 4.2.2 Ti-6Al-4V powder material 70 4.3 Machine set-up 71 4.3.1 ProJet 3500HD max 71 4.3.2 SLM MCP-Realizer 125 for fabricating cellular Hip implant 73 4.4 Post-processing 74 4.4.1 Heat treatment 74 4.4.2 Wire-Electric Discharge Machine (Wire- EDM) 75 4.4.3 Bead blasting - finishing 75 4.5 Measurements Characterization 76 4.5.1 Optical Electron Microscopy 76 4.5.2 Weighing Machine 76 4.5.3 Scanning Electron Microscopy (SEM) 77 4.5.4 Uni-axial compression test 78 Chapter 5 Simulation, Optimization and experimental Based Evaluation of the Mechanical property of Cellular Structures 79 5.1 Introduction 79 5.2 Design of cellular structure samples 79 5.2.1 Finite Element Analysis (FEA) 81 5.2.2 Optimization of cellular structures 82 5.2.3 Cellular structures Manufacturing Using Material Jetting AM 84 5.2.4 Sample preparation and fabrication 85 5.2.5 Mechanical testing 86 5.3 Results and Discussion 87 5.3.1 Simulation results of different cellular structure 87 5.3.2 The Effect of optimization on mechanical performance based on simulation 89 5.3.3 Effect of cell size, lattice topology and porosity on compressive behavior 90 5.3.4 Experimental results of optimized vs non-optimized vintiles cellular structures 92 5.4 Chapter Summary 93 Chapter 6 Develops A Novel Application of Vintiles Cellular Structure as Biomedical Implant for Metallic AM Parts 95 6.1 Introduction 95 6.2 Stress Shielding in Total Hip Replacements 95 6.3 Design and Experimental Procedure 97 6.3.1 Material 97 6.3.2 Design process 97 6.3.3 Finite Element analysis simulation of biomedical implants 101 6.3.4 Optimization process 103 6.4 Additive Manufacturing of cellular implants (Hip and Acetabular Cup) 105 6.5 Uniaxial compression test of cellular implant 107 6.6 Results and Discussion 109 6.6.1 SEM analysis of cellular implants 109 6.6.2 Finite element analysis (FEA) result 112 6.6.3 Mechanical Properties 116 6.6.4 Optimization results for cellular implants 121 6.7 Chapter Summary 122 Chapter 7 Conclusion and Future Work 124 Reference 127 APPENDIX 150 Article No. 1 150 Article No. 2 150 Article No. 3 151 Article No. 4 151 Appendix A 152 Design CAD files of six different lattice topology with unit cell size 4 × 4 × 4 mm 152 and various porosity a) vintiles, b) hexagonal, c) rhombic dodecahedron, d), tetra 152 e) octagonal, and f) cubic. 152 Appendix B 153 Design CAD files of six different lattice topology with unit cell size 5 × 5 × 5 mm 153 and various porosity a) vintiles, b) hexagonal, c) rhombic dodecahedron, d), tetra 153 Appendix C 154 Design CAD files of six different lattice topology with unit cell size 6 × 6 × 6 mm 154 and various porosity a) vintiles, b) hexagonal, c) rhombic dodecahedron, d), tetra 154 e) octagonal, and f) cubic. 154 Appendix D 155 Design CAD files of six different lattice topology with unit cell size 7 × 7 × 7 mm 155 and various porosity a) vintiles, b) hexagonal, c) rhombic dodecahedron, d), tetra 155 e) octagonal, and f) cubic. 155 Appendix E 156 Simulation result on stress and deformation in unit size 6 × 6 × 6mm lattice topology 156 a) vintiles, b) hexagonal, c) rhombic dodecahedron, d) tetra, e) octagonal, and 156 f) cubic. 156 Appendix F 157 Simulation result on stress and deformation in unit size 5 × 5 × 5mm lattice topology 157 a) vintiles, b) hexagonal, c) rhombic dodecahedron, d) tetra, e) octagonal, and 157 f) cubic. 157 Appendix G 158 Simulation result on stress and deformation in unit size 4 × 4 × 4mm lattice topology 158 a) vintiles, b) hexagonal, c) rhombic dodecahedron, d) tetra, e) octagonal, and 158 f) cubic. 158 Appendix H 159 Simulation result on stress and deformation in unit size 4 × 4 × 4mm lattice topology 159 a) vintiles, b) hexagonal, c) rhombic dodecahedron, d) tetra, e) octagonal, and 159 f) cubic. 159 Appendix I 160 Results of FEA (a) unit cell size 6 × 6 × 6 mm non-optimized, (b) 6 × 6 × 5 mm 160 optimized 160 Appendix J 161 Results of FEA (a) unit cell size 6 × 6 × 6 mm non-optimized, (b) 6 × 6 × 5 mm 161 optimized. 161

    1. “MANUFACTURING : Moving Beyond Rapid Prototyping he evolution of additive manufacturing.” Edison Weld. Inst. 2015.
    2. CustomPart “DMLS - Direct Metal Laser Sintering,” .[Online] . Available: http://www.custompartnet.com/wu/direct-metal-laser-sintering 2009.
    3. Bombardier, C., Hawker, G., and Mosher, D. The impact of arthritis in Canada: today and over the next 30 years. Arthritis Alliance of Canada 2011, Fall, 52.
    4. Public Health Agency of Canada Life Arthritis Canada. Public Health 2010.
    5. MacDonald, K. V.; Sanmartin, C.; Langlois, K.; Marshall, D.A. Symptom onset, diagnosis and management of osteoarthritis. Heal. Reports 2014, 25, 10–17.
    6. CJRR 2014 Annual Report_EN-web.pdf. 2014.
    7. Canadian Institute for Health Information Hip and Knee Replacements in Canada - Canadian Joint Replacement Registry (CJRR) 2017-2018 Annual Report; 2019; ISBN 978-1-77109-821-2.
    8. Sundfeldt, M.; Carlsson, L. V.; Johansson, C.B.; Thomsen, P.; Gretzer, C. Aseptic loosening, not only a question of wear: A review of different theories. Acta Orthop. 2006, 77, 177–197.
    9. Hutchinson, M.R. The Burden of Musculoskeletal Diseases in the United States: Prevalance, Societal and Economic Cost, 1st Edition. J. Am. Coll. Surg. 2009, 208, e5–e6.
    10. Gikas, P.D.; Bayliss, L.; Bentley, G.; Briggs, T.W.R. An overview of autologous chondrocyte implantation. J. Bone Joint Surg. Br. 2009, 91, 997–1006.
    11. Koh, J.L.; Wirsing, K.; Lautenschlager, E.; Zhang, L.-O. The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study. Am. J. Sports Med. 2004, 32, 317–320.
    12. Bohner, M.; Loosli, Y.; Baroud, G.; Lacroix, D. Commentary: deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater. 2011, 7, 478–484.
    13. Butscher, A.; Bohner, M.; Hofmann, S.; Gauckler, L.; Müller, R. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 2011, 7, 907–920.
    14. Rho, J.Y.; Kuhn-Spearing, L.; Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998, 20, 92–102.
    15. Ma, P.X. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 2008, 60, 184–198.
    16. Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491.
    17. Frost, H.M. Bone’s mechanostat: a 2003 update. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. An Off. Publ. Am. Assoc. Anat. 2003, 275, 1081–1101.
    18. Mehrali, M.; Shirazi, F.S.; Mehrali, M.; Metselaar, H.S.C.; Kadri, N.A. Bin; Osman, N.A.A. Dental implants from functionally graded materials. J. Biomed. Mater. Res. Part A An Off. J. Soc. Biomater. Japanese Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2013, 101, 3046–3057.
    19. Porter, J.R.; Ruckh, T.T.; Popat, K.C. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol. Prog. 2009, 25, 1539–1560.
    20. Silver, Julie K., and T.D.R. Essentials of physical medicine and rehabilitation: musculoskeletal disorders, pain, and rehabilitation; 2008;
    21. FELSON, D.T. EPIDEMIOLOGY OF HIP AND KNEE OSTEOARTRRITIS 1. Epidemiol. Rev. 1988, 10, 1–28.
    22. Crawford, R.W.; Murray, D.W. Total hip replacement: Indications for surgery and risk factors for failure. Ann. Rheum. Dis. 1997, 56, 455–457.
    23. Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. - Ser. A 2007, 89, 780–785.
    24. CIHI Hip and Knee Replacements in Canada: Canadian Joint Replacement Registry 2013 Annual Report. 2013.
    25. Hooper, G.J.; Rothwell, A.G.; Stringer, M.; Frampton, C. Revision following cemented and uncemented primary total hip replacement: A seven-year analysis from the New Zealand joint registry. J. Bone Jt. Surg. - Ser. B 2009, 91, 451–458.
    26. Kim, Y.H.; Kim, J.S.; Park, J.W.; Joo, J.H. Comparison of total hip replacement with and without cement in patients younger than 50 years of age : The results at 18 years. J. Bone Jt. Surg. - Ser. B 2011, 93 B, 449–455.
    27. Tang, L.; Eaton, J.W. Inflammatory responses to biomaterials. Am. J. Clin. Pathol. 1995, 103, 466–471.
    28. Murray, D.W.; Rushton, N. Macrophages stimulate bone resorption when they phagocytose particles. J. Bone Jt. Surg. - Ser. B 1990, 72, 988–992.
    29. Keegan, G.M.; Learmonth, I.D.; Case, C.P. Orthopaedic metals and their potential toxicity in the arthroplasty patient. A review of current knowledge and future strategies. J. Bone Jt. Surg. - Ser. B 2007, 89, 567–573.
    30. Paul, J.P. Force actions transmitted by joints in the human body. Proc. R. Soc. London. Ser. B, Biol. Sci. 1976, 163–172.
    31. Cheal, E.J.; Spector, M.; Hayes, W.C. Role of Loads and Prosthesis Material Properties on the Mechanics of the Proximal Femur After Total Hip Arthroplasty. 1992, 405–422.
    32. Bergmann, G.; Graichen, F. HIP JOINT LOADING DURING WALKING AND RUNNING ,. 1993, 26, 969–990.
    33. Morrey, B.F.; Askew, L.J.; Chao, E.Y. A biomechanical study of normal functional elbow motion. J. Bone Joint Surg. Am. 1981, 63, 872—877.
    34. Ead, J.H.T.R.; Rticle, C.R.A.; Hurov, J. FOR Anatomy and Mechanics of the Shoulder : Review of Current Concepts. J. Hand Ther. 22, 328–343.
    35. Styles, C.M.; Evans, S.L.; Gregson, P.J. Development of fatigue lifetime predictive test methods for hip implants : Part I . Test methodology. 1998, 19, 1057–1065.
    36. SCHMALZRIED, T.P.; SZUSZCZEWICZ, E.S.; NORTHFIELD, M.R.; AKIZUKI, K.H.; FRANKEL, R.E.; BELCHER, G.; AMSTUTZ, H.C. Quantitative Assessment of Walking Activity after Total Hip or Knee Replacement*. JBJS 1998, 80.
    37. Pilliar, R.M.; Lee, J.M.; Maniatopoulos, C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin. Orthop. Relat. Res. 1986, 108—113.
    38. Cook, STEPHEN D., and K.A.T. Fatigue failure of noncemented porous-coated implants. A retrieval study. J. bone Jt. Surg. 1991, 73, 20–24.
    39. Engh, C.A.; O’Connor, D.; Jasty, M.; McGovern, T.F.; Bobyn, J.D.; Harris, W.H. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clin. Orthop. Relat. Res. 1992, 13—29.
    40. Fini, M.; Giavaresi, G.; Torricelli, P.; Borsari, V.; Giardino, R.; Nicolini, A.; Carpi, A. Osteoporosis and biomaterial osteointegration. 2004, 58, 487–493.
    41. Mavrogenis, A.F.; Dimitriou, R.; Parvizi, J.; Babis, G.C. Biology of implant osseointegration. J Musculoskelet Neuronal Interact 2009, 9, 61–71.
    42. Bobyn, J.D.; Pilliar, R.M.; Cameron, H.U.; Weatherly, G.C. The optimum pore size for the fixation of porous surfaced metal implants by the ingrowth of bone. Clin. Orthop. Relat. Res. 1980, NO. 150, 263–270.
    43. Engh, C.A.; Bobyn, J.D.; Glassman, A.H. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J. Bone Joint Surg. Br. 1987, 69, 45–55.
    44. Bobyn, J.D.; Stackpool, G.J.; Hacking, S.A.; Tanzer, M.; Krygier, J.J. Characteristics of bone ingrowth and interface mechanics of a new porous. 907–914.
    45. Shalabi, M.M.; Gortemaker, A.; Hof, M.A.V.; Jansen, J.A.; Creugers, N.H.J. Implant surface roughness and bone healing: a systematic review. J. Dent. Res. 2006, 85, 496–500.
    46. Hollister, B.S.J. Scaffold Design and Manufacturing : From Concept to Clinic. 2009, 3330–3342.
    47. Bragdon, C.R.; Jasty, M.; Greene, M.; Rubash, H.E.; Harris, W.H. Biologic fixation of total hip implants: Insights gained from a series of canine studies. JBJS 2004, 86, 105–117.
    48. Harrysson, O.L.A.; Cansizoglu, O.; Marcellin-Little, D.J.; Cormier, D.R.; West, H.A. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater. Sci. Eng. C 2008, 28, 366–373.
    49. Carlsson, L.; Röstlund, T.; Albrektsson, B.; Albrektsson, T. Implant fixation improved by close fit cylindrical implant–bone interface studied in rabbits. Acta Orthop. Scand. 1988, 59, 272–275.
    50. Jasty, M.; Bragdon, C.R.; Haire, T.; Mulroy, R.D.; Harris, W.H. Comparison of bone ingrowth into cobalt chrome sphere and titanium fiber mesh porous coated cementless canine acetabular components. 1993, 27, 639–644.
    51. Jasty, M.; Bragdon, C.; Burke, D.; O’CONNOR, D.; Lowenstein, J.; Harris, W.H. In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. JBJS 1997, 79, 707–714.
    52. Gibson, L.; Ashby, M. Cellular solids: structure and properties; SySyndicate of the University of Cambridge, Cambridge, UK, 1999;
    53. Abdelhamid, M.; Czekanski, A. Impact of the lattice angle on the effective properties of the octet-truss lattice structure. J. Eng. Mater. Technol. Trans. ASME 2018, 140, 1747–1769.
    54. Deshpande, V.S.; Ashby, M.F.; Fleck, N.A. Foam topology: Bending versus stretching dominated architectures. Acta Mater. 2001.
    55. Wang, A.J.; McDowell, D.L. Optimization of a metal honeycomb sandwich beam-bar subjected to torsion and bending. Int. J. Solids Struct. 2003, 40, 2085–2099.
    56. Wicks, N.; Hutchinson, J.W. Performance of sandwich plates with truss cores. Mech. Mater. 2004, 36, 739–751.
    57. Xue, Z.; Hutchinson, J.W. Preliminary assessment of sandwich plates subject to blast loads. Int. J. Mech. Sci. 2003, 45, 687–705.
    58. Kota, S.; Joo, J.; Li, Z.; Rodgers, S.M.; Sniegowski, J. Design of compliant mechanisms: Applications to MEMS. Analog Integr. Circuits Signal Process. 2001, 29, 7–15.
    59. Howell, L. L. Compliant mechanisms; 2001;
    60. Midha, Ashok, T. W. Norton, and L.L.H. On the nomenclature, classification, and abstractions of compliant mechanisms. ASME J. Mech. Des. 1994, 116, 270–279.
    61. Marieb, E. N., J. Mallatt, et al Human Anatomy. Benjamin-Cummings Publ. Co.
    62. Bhate, D.; Penick, C.; Ferry, L.; Lee, C. Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches. Designs 2019, 3, 19.
    63. Mcnulty, T.; Bhate, D.; Zhang, A.; Kiser, M.A.; Ferry, L.; Suder, A.; Bhattacharya, S. A Framework for the Design of Biomimetic Cellular Materials for Additive Manufacturing. Solid Free. Fabr. Symp. 2017, 2188–2200.
    64. Gibson, L.J.; Ashby, M.F.; Harley, B.A. Cellular materials in nature and medicine; Cambridge University Press, 2010; ISBN 0521195446.
    65. Yan, C.; Hao, L.; Hussein, A.; Raymont, D. Evaluations of cellular lattice structures manufactured using selective laser melting. Int. J. Mach. Tools Manuf. 2012.
    66. Rajak, N.K.; Kaimkuriya, P.A. Design and Development of Honeycomb Structure for Additive Manufacturing. Int. J. Trend Sci. Res. Dev. 2018, Volume-2, 1198–1203.
    67. M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H.N.G.W. Metals Foams. AWoburn, MA Butterworth-Heinemann 2000, 0, 0.
    68. Chu, J.; Engelbrecht, S.; Graf, G.; Rosen, D.W. A comparison of synthesis methods for cellular structures with application to additive manufacturing. Rapid Prototyp. J. 2010, 16, 275–283.
    69. Panda, B.N.; Technology, O.F. Design and Development of Cellular Structure for Additive Manufacturing. 2015, 83.
    70. Ashby, M.F.; Cebon, D. Materials selection in mechanical design. Le J. Phys. IV 1993, 3, C7-1.
    71. Berger, J.B.; Wadley, H.N.G.; McMeeking, R.M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 2017, 543, 533–537.
    72. Maxwell, J.C. XLV. On reciprocal figures and diagrams of forces. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1864, 27, 250–261.
    73. Gümrük, R.; Mines, R.A.W. Compressive behaviour of stainless steel micro-lattice structures. Int. J. Mech. Sci. 2013, 68, 125–139.
    74. Yan, C.; Hao, L.; Hussein, A.; Young, P.; Huang, J.; Zhu, W. Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Mater. Sci. Eng. A 2015, 628, 238–246.
    75. Cheng, L.; Zhang, P.; Biyikli, E.; Bai, J.; Robbins, J.; To, A. Efficient design optimization of variable-density cellular structures for additive manufacturing: Theory and experimental validation. Rapid Prototyp. J. 2017, 23, 660–677.
    76. NTopology. Element; NTopology: New York, NY, USA, 2018. accessed 22 August 2018 2018.
    77. Sigmund, O.; Aage, N.; Andreassen, E. On the (non-)optimality of Michell structures. Struct. Multidiscip. Optim. 2016, 54, 361–373.
    78. Osanov, M.; Guest, J.K. Topology Optimization for Architected Materials Design. Annu. Rev. Mater. Res. 2016, 46, 211–233.
    79. Cadman, J.E.; Zhou, S.; Chen, Y.; Li, Q. On design of multi-functional microstructural materials. J. Mater. Sci. 2013, 48, 51–66.
    80. M. P. Bendsoe and O. Sigmund; Topology Optimization: Theory, Methods and Applications. Berlin: Springer 2003.
    81. Sigmund, O. Design of material structures using topology optimization. Dep. Solid Mech. 1994.
    82. Cheng, L.; Zhang, P.; Biyikli, E.; Bai, J.; Robbins, J.; To, A.C. Efficient Design Optimization of Variable-Density Cellular Structures for Additive Manufacturing : Theory and Experimental Validation. Rapid Prototyp. J. 2017, 23, 1–31.
    83. Basanta, D.; Bentley, P.J.; Miodownik, M.A.; Holm, E.A. Evolving cellular automata to grow microstructures. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2003, 2610, 1–10.
    84. Gu, G.X.; Chen, C.-T.; Richmond, D.J.; Buehler, M.J. Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater. Horizons 2018, 5, 939–945.
    85. Feng, J.; Fu, J.; Lin, Z.; Shang, C.; Li, B. A review of the design methods of complex topology structures for 3D printing. Vis. Comput. Ind. Biomed. Art 2018, 1, 1–16.
    86. Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632.
    87. Wadley, H.N.G. Cellular metals manufacturing. Adv. Eng. Mater. 2002, 4, 726–733.
    88. Valdevit, L.; Jacobsen, A.J.; Greer, J.R.; Carter, W.B. Protocols for the optimal design of multi-functional cellular structures: From hypersonics to micro-architected materials. J. Am. Ceram. Soc. 2011, 94, s15–s34.
    89. Sypeck, D.J. Cellular truss core sandwich structures. Appl. Compos. Mater. 2005, 12, 229–246.
    90. Kooistra, G.W.; Wadley, H.N.G. Lattice truss structures from expanded metal sheet. Mater. Des. 2007, 28, 507–514.
    91. Wang, J.; Evans, A.G.; Dharmasena, K.; Wadley, H.N.G. On the performance of truss panels with Kagomé cores. Int. J. Solids Struct. 2003, 40, 6981–6988.
    92. Deshpande, V.S.; Fleck, N.A. Collapse of truss core sandwich beams in 3-point bending. Int. J. Solids Struct. 2001, 38, 6275–6305.
    93. Hutchinson, J.W.; Wicks, N.; Chiras, S.; Fichter, S.; Wadley, H.N.G.; Dharmasena, K.; Mumm, D.R.; Evans, A.G. The structural performance of near-optimized truss core panels. Int. J. Solids Struct. 2002, 39, 4093–4115.
    94. Sypeck, D.J.; Wadley, H.N.G. Multifunctional microtruss laminates: Textile synthesis and properties. J. Mater. Res. 2001, 16, 890–897.
    95. Queheillalt, D.T.; Wadley, H.N.G. Cellular metal lattices with hollow trusses. Acta Mater. 2005, 53, 303–313.
    96. Queheillalt, D.T.; Wadley, H.N.G. Pyramidal lattice truss structures with hollow trusses. Mater. Sci. Eng. A 2005, 397, 132–137.
    97. Bitzer, T.N. Honeycomb technology: materials, design, manufacturing, applications and testing; Elsevier Ltd, 1997;
    98. Santorinaios, M.; Brooks, W.; Sutcliffe, C.J.; Mines, R.A.W. Crush behaviour of open cellular lattice structures manufactured using selective laser melting. WIT Trans. Built Environ. 2006, 85, 481–490.
    99. H. Wang, S. Johnston, and D.R. DESIGN OF A GRADED CELLULAR STRUCTURE FOR AN ACETABULAR HIP REPLACEMENT COMPONENT Hongqing Vincent Wang. 111–123.
    100. Williams, C.B.; Cochran, J.K.; Rosen, D.W. Additive manufacturing of metallic cellular materials via three-dimensional printing. Int. J. Adv. Manuf. Technol. 2011, 53, 231–239.
    101. Park, S.I.; Rosen, D.W.; Choi, S. kyum; Duty, C.E. Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing. Addit. Manuf. 2014, 1, 12–23.
    102. Kadkhodapour, J.; Montazerian, H.; Darabi, A.C.; Anaraki, A.P.; Ahmadi, S.M.; Zadpoor, A.A.; Schmauder, S. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell. J. Mech. Behav. Biomed. Mater. 2015.
    103. Sercombe, T.B.; Xu, X.; Challis, V.J.; Green, R.; Yue, S.; Zhang, Z.; Lee, P.D. Failure modes in high strength and stiffness to weight scaffolds produced by Selective Laser Melting. Mater. Des. 2015, 67, 501–508.
    104. Amirkhani, S.; Bagheri, R.; Zehtab Yazdi, A. Effect of pore geometry and loading direction on deformation mechanism of rapid prototyped scaffolds. Acta Mater. 2012, 60, 2778–2789.
    105. Amirkhani, S.; Bagheri, R.; Zehtab Yazdi, A. Manipulating failure mechanism of rapid prototyped scaffolds by changing nodal connectivity and geometry of the pores. J. Biomech. 2012, 45, 2866–2875.
    106. Heinl, P.; Müller, L.; Körner, C.; Singer, R.F.; Müller, F.A. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008, 4, 1536–1544.
    107. Mullen, L.; Stamp, R.C.; Fox, P.; Jones, E.; Ngo, C.; Sutcliffe, C.J. Selective laser melting: A unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures. J. Biomed. Mater. Res. - Part B Appl. Biomater. 2010, 92, 178–188.
    108. Murr, L.E.; Gaytan, S.M.; Medina, F.; Martinez, E.; Martinez, J.L.; Hernandez, D.H.; Machado, B.I.; Ramirez, D.A.; Wicker, R.B. Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 2010, 527, 1861–1868.
    109. Ramirez, D.A.; Murr, L.E.; Li, S.J.; Tian, Y.X.; Martinez, E.; Martinez, J.L.; Machado, B.I.; Gaytan, S.M.; Medina, F.; Wicker, R.B. Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 2011, 528, 5379–5386.
    110. Hussein, A.; Hao, L.; Yan, C.; Everson, R.; Young, P. Advanced lattice support structures for metal additive manufacturing. J. Mater. Process. Technol. 2013, 213, 1019–1026.
    111. Yan, C.; Hao, L.; Hussein, A.; Young, P.; Raymont, D. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater. Des. 2014, 55.
    112. Dassault Systems 2018 Solidworks. https//www.solidworks.com/. Accessed 18 Jun 2019.
    113. (2017), M. Materialise Mimics. https://www.materialise.com/en/medical/software/mimics 2019.
    114. Chang, P.S.; Rosen, D.W. The size matching and scaling method: A synthesis method for the design of mesoscale cellular structures. Int. J. Comput. Integr. Manuf. 2013, 26, 907–927.
    115. Chu, C.; Graf, G.; Rosen, D.W. Design for additive manufacturing of cellular structures. Comput. Aided. Des. Appl. 2008, 5, 686–696.
    116. Wang, H.; Chen, Y.; Rosen, D.W. A hybrid geometric modeling method for large scale conformal cellular structures. Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. - DETC2005 2005, 3 A, 421–427.
    117. Rosen, D.W. Design for additive manufacturing: A method to explore unexplored regions of the design space. 18th Solid Free. Fabr. Symp. SFF 2007 2007, 402–415.
    118. Wang, H.; Rosen, D.W. Parametric modeling method for truss structures. Proc. ASME Des. Eng. Tech. Conf. 2002, 1, 759–767.
    119. Wang, H. Computer-Aided Design Methods For\rThe Additive Fabrication Of Truss Structure. Departmnet Mech. Eng. 2001, 171.
    120. Gorguluarslan, R.M.; Gandhi, U.N.; Mandapati, R.; Choi, S.K. Design and fabrication of periodic lattice-based cellular structures. Comput. Aided. Des. Appl. 2016, 13, 50–62.
    121. Chen, V.C.P.; Tsui, K.L.; Barton, R.R.; Meckesheimer, M. A review on design, modeling and applications of computer experiments. IIE Trans. (Institute Ind. Eng. 2006, 38, 273–291.
    122. Dressler, M.M. Art of Surface Interpolation. Kun?` Tát 2009, 1–80.
    123. Sakata, S.; Ashida, F.; Zako, M. An efficient algorithm for Kriging approximation and optimization with large-scale sampling data. Comput. Methods Appl. Mech. Eng. 2004, 193, 385–404.
    124. Generator, K. 3d surface http://k3dsurf.sourceforge.net/. http://k3dsurf.sourceforge.net/ 2019, 301–321.
    125. Within Medical Medical 3D Printing Software & Implant Design | Autodesk. Autodesk. https//www.autodesk.com/products/within-medical/overview Accessed 21 Feb 2019 2019.
    126. Hyper work Hyper work. https://web.altair.com/altair-acquires-simsolid. Accessed 21 Feb 2019. https://web.altair.com/altair-acquires-simsolid 2019.
    127. Netfabb Autodesk Autodesk Additive Manufacturing and Design Software. https//www.autodesk.com/products/netfabb/overview. Accessed 21 Feb 2019 2019.
    128. Synopsys 3D Image Processing. https://www.synopsys.com/simpleware.html. Accessed 21 Feb 2019. 2019.
    129. Materialise Materialise | 3D Printing Innovators. https://www.materialise.com/. Accessed 21 Feb 2019.
    130. PARAMOUNTIND. https://www.paramountind.com/. Accessed 21 Feb 2019.
    131. Paramatters. https://paramatters.com/. Accessed 21 Feb 2019.
    132. Li, S.J.J.; Xu, Q.S.S.; Wang, Z.; Hou, W.T.T.; Hao, Y.L.L.; Yang, R.; Murr, L.E.E. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method. Acta Biomater. 2014, 10, 4537–4547.
    133. Campanelli, S.L.; Contuzzi, N.; Ludovico, A.D.; Caiazzo, F.; Cardaropoli, F.; Sergi, V. Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting. Materials (Basel). 2014, 7, 4803–4822.
    134. Wallach, J.C.; Gibson, L.J. Mechanical behavior of a three-dimensional truss material. Int. J. Solids Struct. 2001, 38, 7181–7196.
    135. Johnston, S.R.; Reed, M.; Wang, H. V.; Rosen, D.W. Analysis of mesostructure unit cells comprised of octet-truss structures. 17th Solid Free. Fabr. Symp. SFF 2006 2006, 421–432.
    136. Wang, H.V. A Unit Cell Approach for Lightweight Structure and Compliant Mechanism. Dep. Mech. Eng. 2005, PhD, 304.
    137. Karamooz Ravari, M.R.; Kadkhodaei, M.; Badrossamay, M.; Rezaei, R. Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling. Int. J. Mech. Sci. 2014, 88, 154–161.
    138. Chang, P.S.; Rosen, D.W. An improved size, matching, and scaling synthesis method for the design of meso-scale truss structures. Asme Idetc/Cie 2011 2011.
    139. Achtziger, W. On simultaneous optimization of truss geometry and topology. Struct. Multidiscip. Optim. 2007, 33, 285–304.
    140. Pedersen, P. On optimal shapes in materials and structures. Struct. Multidiscip. Optim. 2000, 19, 169–182.
    141. Allaire, G. Shape Optimization by the Homogenization Method; Springer Science & Business Media, 2012;
    142. Bendsøe, M.P. Optimization of structural topology, shape, and material. Berlin etc Springer. 1995, 414.
    143. Lewinski, T.; Czarnecki, S.; Dzierzanowski, G.; Sokól, T. Topology optimization in structural mechanics. Bull. Polish Acad. Sci. Tech. Sci. 2013, 61, 23–37.
    144. Arora, J.. Introduction to Optimum Design 3rd revised edition,. McGraw-Hill, New York, NY. 2011.
    145. Sanfelice Bazanella, A.; Campestrini, L.; Eckhard, D. Iterative optimization. Commun. Control Eng. 2012, 69–88.
    146. Zhou, M., Fleury, R., Shyy, Y. K., Thomas, H., & Brennan, J. Progress in topology optimization with manufacturing constraints. 9th AIAA/ISSMO Symp. Multidiscip. Anal. Optim. 2002, 5614.
    147. OptiStruct v13.0, Altair HyperWorks, 2015, “Optistruct User Manual,” https://connect.altair.com/CP/kb-view.html?kb=82167.
    148. Rao, S.S. Engineering Optimization: Theory and Practice; 4th ed.; 2009; Vol. 4;.
    149. Griffiths, D.V.; Smith, I.M. Numerical Methods for Engineers. Numer. Methods Eng. 2006.
    150. Rozvany, G.I.N.; Zhou, M. The COC algorithm, part I: Cross-section optimization or sizing. Comput. Methods Appl. Mech. Eng. 1991, 89, 281–308.
    151. Hassani, B.; Hinton, E. A review of homogenization and topology optimization I - Homogenization theory for media with periodic structure. Comput. Struct. 1998, 69, 707–717.
    152. Upcraft, S.; Fletcher, R. The rapid prototyping technologies. Assem. Autom. 2003, 23, 318–330.
    153. Armano, L. Lehigh Preserve Rapid prototyping technologies and build time models. 2001.
    154. Mahapatra, S.S.; Panda, B.N. Benchmarking of rapid prototyping systems using grey relational analysis. Int. J. Serv. Oper. Manag. 2013, 16, 460–477.
    155. Noorani, R. “Rapid Prototyping-Principles and Application,.” John Wiley Sons Inc. 2006.
    156. Masood, S.H.; Song, W.Q. Development of new metal/polymer materials for rapid tooling using Fused deposition modelling. Mater. Des. 2004, 25, 587–594.
    157. “Image: FDM Process Flow,.” ed. http//chuansong.me/n/492448.
    158. Jacobs, P.F. Rapid prototyping & manufacturing— Fundamentals of stereolithography. J. Manuf. Syst. 1993, 12, 430–433.
    159. Arfina “Image: Siemens hearing aid,” ed. http://www.medical.siemens.com.
    160. “Image: Invisalign braces,” ed. http://www.invisalign.com.
    161. Ian Gibson · David Rosen Brent Stucker Additive Manufacturing Technologies; 2015; ISBN 9781493921126.
    162. Wooten, J., Hopkinson, N., Hague, R., & Dickens, P. “Aeronautical case studies using rapid manufacture.” Rapid Manuf. Ind. Revolut. Digit. Age Weinheim, Wiley Verlag 2006, 233–239.
    163. Leap, M.J. “Image: Material jetting Process Flow,” ed. http://chuansong.me/n/492448.
    164. “Image: Laminated Object Manufacturing Process Flow,” ed. http://chuansong.me/n/492448.
    165. Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. - Manuf. Technol. 2016, 65, 737–760.
    166. Hague, R.; Mansour, S.; Saleh, N. Design opportunities with rapid manufacturing. Assem. Autom. 2003, 23, 346–356.
    167. Spierings, A.B.; Levy, G.; Labhart, L.; Wegener, K. Production of functional parts using SLM - Opportunities and limitations. Innov. Dev. Virtual Phys. Prototyp. - Proc. 5th Int. Conf. Adv. Res. Rapid Prototyp. 2012, 785–790.
    168. Mansour, S., & Hague, R. Impact of rapid manufacturing on design for manufacture for injection moulding. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2003, 217, 453–461.
    169. Rannar, L.E.; Glad, A.; Gustafson, C.G. Efficient cooling with tool inserts manufactured by electron beam melting. Rapid Prototyp. J. 2007, 13, 128–135.
    170. Taylor, P.; Rosen, D.W. Computer-Aided Design and Applications Computer-Aided Design for Additive Manufacturing of Cellular Structures Computer-Aided Design for Additive Manufacturing of Cellular Structures. Comput. Des. Appl. Vol. 4, No. 5, 2007, pp 585-594 2013, 37–41.
    171. Kruth, J.P.; Froyen, L.; Van Vaerenbergh, J.; Mercelis, P.; Rombouts, M.; Lauwers, B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004, 149, 616–622.
    172. Childs, T.H.G.; Hauser, G.; Badrossamay, M. Selective laser sintering (melting) of stainless and tool steel powders: Experiments and modelling. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2005, 219, 339–357.
    173. Tang, X.R.; Li, Y.K.; Xia, H.X.; Zeng, L.W.; Wu, X.Y.; Zhang, Y.; Wang, X.F.; Tang, L.; Zhou, G.J. Fundamentals of Selective Laser Melting of alloyed steel powders. For. Res. 2016, 29, 436–441.
    174. Amato, K.N.; Gaytan, S.M.; Murr, L.E.; Martinez, E.; Shindo, P.W.; Hernandez, J.; Collins, S.; Medina, F. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 2012, 60, 2229–2239.
    175. Brandl, E.; Heckenberger, U.; Holzinger, V.; Buchbinder, D. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 2012, 34, 159–169.
    176. Abe, F.; Costa Santos, E.; Kitamura, Y.; Osakada, K.; Shiomi, M. Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2003, 217, 119–126.
    177. Li, R.; Shi, Y.; Liu, J.; Xie, Z.; Wang, Z. Selective laser melting W-10 wt.% Cu composite powders. Int. J. Adv. Manuf. Technol. 2010, 48, 597–605.
    178. Jevremović, D.; Kojić, V.; Bogdanović, G.; Puškar, T.; Eggbeer, D.; Thomas, D.; Williams, R. A selective laser melted Co-Cr alloy used for the rapid manufacture of removable partial denture frameworks - Initial screening of biocompatibility. J. Serbian Chem. Soc. 2011, 76, 43–52.
    179. Wu, W.H.; Yang, Y.Q.; Wei, G.Q. Direct manufacturing of precision metal parts by selective laser melting. Zhongguo Jiguang/Chinese J. Lasers 2007, 34, 175–179.
    180. Morgan, R.; Sutcliffe, C.J.; O’Neill, W. Experimental investigation of nanosecond pulsed Nd:YAG laser re-melted pre-placed powder beds. Rapid Prototyp. J. 2001, 7, 159–172.
    181. Simchi, A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Mater. Sci. Eng. A 2006, 428, 148–158.
    182. Gu, D.; Shen, Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater. Des. 2009.
    183. Spierings, A.B. & Levy, G. Reviewed, accepted 9/15/09. Rev. Lit. Arts Am. 2009, 342–353.
    184. Yasa, E., Deckers, J., Kruth, J. P., Rombouts, M., & Luyten, J. Charpy impact testing of metallic selective laser melting parts. Virtual Phys. Prototyp. 2010, 5, 89–98.
    185. Matsumoto, M.; Shiomi, M.; Osakada, K.; Abe, F. Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int. J. Mach. Tools Manuf. 2002, 42, 61–67.
    186. Pohl, H.; Simchi, A.; Issa, M.; Dias, H.C. Thermal stresses in direct metal laser sintering. Proc. SFF Symp. 2001, 366–372.
    187. Mercelis, P.; Kruth, J.P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006, 12, 254–265.
    188. Pullin, J., and A.O. Back to the Drawing Board - Addressing the design issues of RM. Time Compression Technol. Rapid Manuf. Conf. 2008 2008.
    189. Mognol, P.; Lepicart, D.; Perry, N.; Mognol, P.; Lepicart, D.; Perry, N. Rapid Prototyping : energy and environment in the spotlight To cite this version : HAL Id : hal-00476639 spotlight. 2014.
    190. Thomas, D. Development of Design Rules for SLM. 2009.
    191. Zhang, S.; Vijayavenkataraman, S.; Lu, W.F.; Fuh, J.Y.H. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 1329–1351.
    192. Gibson, L.J. Biomechanics of cellular solids. J. Biomech. 2005.
    193. Ashby, M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 15–30.
    194. Deshpande, V.S.; Fleck, N.A.; Ashby, M.F. Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 2001.
    195. F. Pastrone, J.G.; J. F., Ganghoffer & F., P. (Eds. ).; J-F., G.; F., P. (Eds. ). Mechanics of Microstructured Solids: Cellular Materials, Fibre Reinforced ... - Google Books; Vol 46.; Springer Science & Business Media., 2009; Vol. 46; ISBN 978-3-642-00910-5.
    196. Liu, C.; Li, F.; Lai-Peng, M.; Cheng, H.M. Advanced materials for energy storage. Adv. Mater. 2010, 22, 28–62.
    197. Evans, A.G.G.; He, M.Y.Y.; Deshpande, V.S.S.; Hutchinson, J.W.W.; Jacobsen, A.J.J.; Carter, W.B.B. Concepts for enhanced energy absorption using hollow micro-lattices. Int. J. Impact Eng. 2010, 37, 947–959.
    198. Hutmacher, D.W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2529–2543.
    199. Nguyen, J.; Park, S.-I. in; Rosen, D. Heuristic optimization method for cellular structure design of light weight components. Int. J. Precis. Eng. Manuf. 2013, 14, 1071–1078.
    200. Hedayati, R.; Sadighi, M.; Mohammadi-Aghdam, M.; Zadpoor, A.A. Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: Analytical solutions and computational models. Mater. Sci. Eng. C 2016, 60, 163–183.
    201. Liu, F.; Zhang, D.Z.; Zhang, P.; Zhao, M.; Jafar, S. Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting. Materials (Basel). 2018, 11.
    202. Zheng, X.; Lee, H.; Weisgraber, T.H.; Shusteff, M.; DeOtte, J.; Duoss, E.B.; Kuntz, J.D.; Biener, M.M.; Ge, Q.; Jackson, J.A.; et al. Ultralight, ultrastiff mechanical metamaterials. Science (80-. ). 2014, 344, 1373–1377.
    203. Ali, D.; Sen, S. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures. J. Mech. Behav. Biomed. Mater. 2017, 75, 262–270.
    204. Jetté, B.; Brailovski, V.; Dumas, M.; Simoneau, C.; Terriault, P. Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing. J. Mech. Behav. Biomed. Mater. 2018, 77, 58–72.
    205. Kang, H.; Lin, C.Y.; Hollister, S.J. Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct. Multidiscip. Optim. 2010, 42, 633–644.
    206. Higuchi, A.; Ling, Q.D.; Hsu, S.T.; Umezawa, A. Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem. Rev. 2012, 112, 4507–4540.
    207. Hollister, S. Porous scaffold design for tissue engineering. Nat. Mater. 2006, 5, 590.
    208. Murr, L.E.; Gaytan, S.M.; Martinez, E.; Medina, F.; Wicker, R.B. Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int. J. Biomater. 2012, 2012.
    209. Wauthle, R.; Van Der Stok, J.; Yavari, S.A.; Van Humbeeck, J.; Kruth, J.P.; Zadpoor, A.A.; Weinans, H.; Mulier, M.; Schrooten, J. Additively manufactured porous tantalum implants. Acta Biomater. 2015, 14, 217–225.
    210. Hong, D.; Chou, D.T.; Velikokhatnyi, O.I.; Roy, A.; Lee, B.; Swink, I.; Issaev, I.; Kuhn, H.A.; Kumta, P.N. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater. 2016.
    211. Yan, C.; Hao, L.; Hussein, A.; Young, P. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 2015, 51, 61–73.
    212. Mullen, L.; Stamp, R.C.; Brooks, W.K.; Jones, E.; Sutcliffe, C.J. Selective Laser Melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 89B, 325–334.
    213. Han, C.; Yan, C.; Wen, S.; Xu, T.; Li, S.; Liu, J.; Wei, Q.; Shi, Y. Effects of the unit cell topology on the compression properties of porous Co-Cr scaffolds fabricated via selective laser melting. Rapid Prototyp. J. 2017, 23, 16–27.
    214. Li, X.; Wang, C.; Zhang, W.; Li, Y. Fabrication and compressive properties of Ti6Al4V implant with honeycomb‐like structure for biomedical applications. Rapid Prototyp. J. 2010, 16, 44–49.
    215. Hu, L.L.; Yu, T.X. Mechanical behavior of hexagonal honeycombs under low-velocity impact – theory and simulations. Int. J. Solids Struct. 2013, 50, 3152–3165.
    216. Sullivan, R.M.; Ghosn, L.J.; Lerch, B.A. A general tetrakaidecahedron model for open-celled foams. Int. J. Solids Struct. 2008, 45, 1754–1765.
    217. Babaee, S.; Jahromi, B.H.; Ajdari, A.; Nayeb-Hashemi, H.; Vaziri, A. Mechanical properties of open-cell rhombic dodecahedron cellular structures. Acta Mater. 2012, 60, 2873–2885.
    218. Wieding, J.; Wolf, A.; Bader, R. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J. Mech. Behav. Biomed. Mater. 2014, 37, 56–68.
    219. Ahmadi, S.M.; Campoli, G.; Amin Yavari, S.; Sajadi, B.; Wauthle, R.; Schrooten, J.; Weinans, H.; Zadpoor, A.A. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J. Mech. Behav. Biomed. Mater. 2014, 34, 106–115.
    220. McGregor, D.J.; Tawfick, S.; King, W.P. Mechanical properties of hexagonal lattice structures fabricated using continuous liquid interface production additive manufacturing. Addit. Manuf. 2019, 25, 10–18.
    221. Fan, H.L.; Fang, D.N.; Jing, F.N. Yield surfaces and micro-failure mechanism of block lattice truss materials. Mater. Des. 2008, 29, 2038–2042.
    222. Sun, J.; Yang, Y.; Wang, D. Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Mater. Des. 2013, 49, 545–552.
    223. Jung, J.W.; Park, J.H.; Hong, J.M.; Kang, H.W.; Cho, D.W. Octahedron pore architecture to enhance flexibility of nasal implant-shaped scaffold for rhinoplasty. Int. J. Precis. Eng. Manuf. 2014, 15, 2611–2616.
    224. Zadpoor, A.A.; Hedayati, R. Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials. J. Biomed. Mater. Res. - Part A 2016, 104, 3164–3174.
    225. Xiao, L.; Song, W.; Wang, C.; Tang, H.; Fan, Q.; Liu, N.; Wang, J. Mechanical properties of open-cell rhombic dodecahedron titanium alloy lattice structure manufactured using electron beam melting under dynamic loading. Int. J. Impact Eng. 2017, 100, 75–89.
    226. Shulmeister, V.; Van der Burg, M.W.D.; Van der Giessen, E.; Marissen, R. A numerical study of large deformations of low-density elastomeric open-cell foams. Mech. Mater. 1998, 30, 125–140.
    227. Abate, K.M.; Nazir, A.; Yeh, Y.P.; Chen, J.E.; Jeng, Y.J. Design, Optimization, and Validation of Mechanical Properties of Different Cellular structures for Biomedical Application. Int. J. Adv. Manuf. Technol. 2019.
    228. Wang, G.; Huang, W.; Song, Q.; Liang, J. Three-dimensional finite analysis of acetabular contact pressure and contact area during normal walking. Asian J. Surg. 2017.
    229. Li, J.; Li, W.; Li, Z.; Wang, Y.; Li, R.; Tu, J.; Jin, G. In vitro and in vivo evaluations of the fully porous Ti6Al4V acetabular cups fabricated by a sintering technique. RSC Adv. 2019, 9, 6724–6732.
    230. An, J.; Teoh, J.E.M.; Suntornnond, R.; Chua, C.K. Design and 3D Printing of Scaffolds and Tissues. Engineering 2015, 1, 261–268.
    231. 3D Systems MultiJet Plastic Printers VisiJet ® M3 Advanced Plastics. 2017.
    232. Alaboodi, A.S.; Sivasankaran, S. Experimental design and investigation on the mechanical behavior of novel 3D printed biocompatibility polycarbonate scaffolds for medical applications. J. Manuf. Process. 2018, 35, 479–491.
    233. Arcam AB Materialdatenblatt Ti6Al4V ELI - Grade 23. 2016, 1–3.
    234. Subburaj, K.; Ravi, B. Computer aided rapid tooling process selection and manufacturability evaluation for injection mold development. 2008, 59, 262–276.
    235. Sigmund, O.; Maute, K. Topology optimization approaches: A comparative review. Struct. Multidiscip. Optim. 2013, 48, 1031–1055.
    236. Wang, Y.; Zhang, L.; Daynes, S.; Zhang, H.; Feih, S.; Wang, M.Y. Design of graded lattice structure with optimized mesostructures for additive manufacturing. Mater. Des. 2018, 142, 114–123.
    237. Huang, X.; Xie, Y.M. Optimal design of periodic structures using evolutionary topology optimization. Struct. Multidiscip. Optim. 2008, 36, 597–606.
    238. Huang, X.; Xie, Y.M. A further review of ESO type methods for topology optimization. Struct. Multidiscip. Optim. 2010, 41, 671–683.
    239. Torquato, S.; Hyun, S.; Donev, A. Optimal design of manufacturable three-dimensional composites with multifunctional characteristics. J. Appl. Phys. 2003, 94, 5748–5755.
    240. Martin Philip Bendsoe; Noboru Kikuchi Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224.
    241. Xie, Y.M.; Steven, G.P. Evolutionary structural optimization for dynamic problems. Comput. Struct. 1996.
    242. Bendsøe, M.P.; Sigmund, O. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 1999, 69, 635–654.
    243. Dai, X.; Tang, P.; Cheng, X.; Wu, M. A variational binary level set method for structural topology optimization. Commun. Comput. Phys. 2013, 13, 1292–1308.
    244. Ning, J.; Liang, S.Y. Inverse identification of Johnson-Cook material constants based on modified chip formation model and iterative gradient search using temperature and force measurements. Int. J. Adv. Manuf. Technol. 2019, 102, 2865–2876.
    245. Ning, J.; Liang, S.Y. Model-driven determination of Johnson-Cook material constants using temperature and force measurements. Int. J. Adv. Manuf. Technol. 2018, 97, 1053–1060.
    246. Ning, J.; Nguyen, V.; Huang, Y.; Hartwig, K.T.; Liang, S.Y. Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. Int. J. Adv. Manuf. Technol. 2018, 99, 1131–1140.
    247. Zäh, M.F. Wirtschaftliche Fertigung mit Rapid-Technologien: Anwender-Leitfaden zur Auswahl geeigneter Verfahren; Carl Hanser Verlag GmbH Co KG, 2013; ISBN 3446439579.
    248. “Objet Polyjet Process.” Objet Geometries Ltd. www.Objet.com, n.d. Web. <http://www.objet.com/products/polyjet_technology/>.
    249. Tarigan, P.B. EXAMINING VARIABILITY IN THE MECHANICAL PROPERTIES OF PARTS MANUFACTURED VIA POLYJET DIRECT 3D PRINTING. J. Chem. Inf. Model. 2013, 53, 1689–1699.
    250. Konig, W.; Celi, L.; Nokan, S.T. Stereolithography process technology. In Proceedings of the Proceedings of the 3rd European conference on rapid prototyping. Nottingham (UK): University of Nottingham Press; 1994; pp. 191–208.
    251. Glassman, A.H.; Bobyn, J.D.; Tanzer, M. New femoral designs: Do they influence stress shielding? Clin. Orthop. Relat. Res. 2006, 64–74.
    252. Goodman, S.B. the effects of micromotion and particulate materials on tissue differentiation: Bone chamber studies in rabbits. Acta Orthop. 1994, 65, 1–43.
    253. Dan, D.; Germann, D.; Burki, H.; Hausner, P.; Kappeler, U.; Meyer, R.P.; Klaghofer, R.; Stoll, T. Bone loss after total hip arthroplasty. Rheumatol. Int. 2006, 26, 792–798.
    254. Lombardi, A. V; Mallory, T.H.; Vaughn, B.K.; Drouillard, P. Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. J. Bone Joint Surg. Am. 1989, 71, 1337—1342.
    255. Amstutz, H.C.; Campbell, P.; Kossovsky, N.; Clarke, I.C. Mechanism and clinical significance of wear debris-induced osteolysis. Clin. Orthop. Relat. Res. 1992, 7—18.
    256. Linder, L. Implant stability, histology, RSA and wear-more critical questions are needed: A view point. Acta Orthop. 1994, 65, 654–658.
    257. Van Der Vis, H.M.; Aspenberg, P.; De Kleine, R.; Tigchelaar, W.; Van Noorden, C.J.F. Short periods of oscillating fluid pressure directed at a titanium-bone interface in rabbits lead to bone lysis. Acta Orthop. Scand. 1998, 69, 5–10.
    258. Hitchins, V.M.; Merritt, K. Decontaminating particles exposed to bacterial endotoxin (LPS). J. Biomed. Mater. Res. 1999, 46, 434–437.
    259. Ragab, A.A.; Van De Motter, R.; Lavish, S.A.; Goldberg, V.M.; Ninomiya, J.T.; Carlin, C.R.; Greenfield, E.M. Measurement and removal of adherent endotoxin from titanium particles and implant surfaces. J. Orthop. Res. 1999, 17, 803–809.
    260. Schmalzried, T.P.; Jasty, M.; Harris, W.H. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J. Bone Joint Surg. Am. 1992, 74, 849—863.
    261. Bobyn, J.D.; Jacobs, J.J.; Tanzer, M.; Urban, R.M.; Aribindi, R.; Sumner, D.R.; Turner, T.M.; Brooks, C.E. The susceptibility of smooth implant surfaces to periimplant fibrosis and migration of polyethylene wear debris. Clin. Orthop. Relat. Res. 1995, 21—39.
    262. Matthews, J.B.; Besong, A.A.; Green, T.R.; Stone, M.H.; Wroblewski, B.M.; Fisher, J.; Ingham, E. Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge with in vitro generated clinically relevant UHMWPE particles of known size and dose. J. Biomed. Mater. Res. 2000, 52, 296–307.
    263. Katz, J.L. Anisotropy of Young’s modulus of bone. Nature 1980, 283, 106–107.
    264. Wolff, J. Das gesetz der transformation der knochen. A Hirshwald 1892, 1, 1–152.
    265. Chamay, A.; Tschantz, P. Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J. Biomech. 1972, 5, 173–180.
    266. Sumner, D.R.; Turner, T.M.; Igloria, R.; Urban, R.M.; Galante, J.O. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J. Biomech. 1998, 31, 909–917.
    267. Bugbee, W.D.; Culpepper, W.J.; Engh, C.A.; ENGH, C.A. Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement. JBJS 1997, 79, 1007–1012.
    268. Engh Jr, C.A.; Young, A.M.; Engh Sr, C.A.; Hopper Jr, R.H. Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clin. Orthop. Relat. Res. 2003, 417, 157–163.
    269. Fernandes, P.R.; Folgado, J.; Ruben, R.B. Shape optimization of a cementless hip stem for a minimum of interface stress and displacement. Comput. Methods Biomech. Biomed. Engin. 2004, 7, 51–61.
    270. Joshi, M.G.; Advani, S.G.; Miller, F.; Santare, M.H. Analysis of a femoral hip prosthesis designed to reduce stress shielding. J. Biomech. 2000, 33, 1655–1662.
    271. Niinimäki, T.; Junila, J.; Jalovaara, P. A proximal fixed anatomic femoral stem reduces stress shielding. Int. Orthop. 2001, 25, 85–88.
    272. Swanson, T. V. The tapered press fit total hip arthroplasty: A European alternative. J. Arthroplasty 2005, 20, 63–67.
    273. Crowninshield, R.D.; Brand, R.A.; Johnston, R.C.; Milroy, J.C. An analysis of femoral component stem design in total hip arthroplasty. J. Bone Joint Surg. Am. 1980, 62, 68—78.
    274. Mattheck, C.; Vorberg, U.; Kranz, C. [Effects of hollow shaft endoprosthesis on stress distribution in cortical bone]. Biomed. Tech. (Berl). 1990, 35, 316—319.
    275. Hedia, H.S.; Shabara, M.A.N.; El-Midany, T.T.; Fouda, N. A Method of Material Optimization of Cementless Stem Through Functionally Graded Material. Int. J. Mech. Mater. Des. 2004, 1, 329–346.
    276. Khanoki, S.A.; Pasini, D. The fatigue design of a bone preserving hip implant with functionally graded cellular material. J. Med. Devices, Trans. ASME 2013, 7, 1–2.
    277. Harrysson, O.L.A.; Cansizoglu, O.; Marcellin-Little, D.J.; Cormier, D.R.; West, H.A. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater. Sci. Eng. C 2008.
    278. Brekelmans, W.A.M.; Poort, H.W.; Slooff, T.J.J.H. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop. 1972, 43, 301–317.
    279. Hazlehurst, K.B.; Wang, C.J.; Stanford, M. An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting. Mater. Des. 2014, 60, 177–183.
    280. Torquato, S.; Hyun, S.; Donev, A. Optimal design of manufacturable three-dimensional composites with multifunctional characteristics. J. Appl. Phys. 2003, 94, 5748–5755.
    281. Beyer, C.; Figueroa, D. Design and Analysis of Lattice Structures for Additive Manufacturing. J. Manuf. Sci. Eng. Trans. ASME 2016, 138, 1–15.
    282. Osakada, K.; Shiomi, M. Flexible manufacturing of metallic products by selective laser melting of powder. Int. J. Mach. Tools Manuf. 2006.
    283. McKown, S.; Shen, Y.; Brookes, W.K.; Sutcliffe, C.J.; Cantwell, W.J.; Langdon, G.S.; Nurick, G.N.; Theobald, M.D. The quasi-static and blast loading response of lattice structures. Int. J. Impact Eng. 2008.
    284. Pattanayak, D.K.; Fukuda, A.; Matsushita, T.; Takemoto, M.; Fujibayashi, S.; Sasaki, K.; Nishida, N.; Nakamura, T.; Kokubo, T. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomater. 2011.
    285. Sivasankar, M. Failure Analysis of Hip Prosthesis Doctor of Philosophy. 2007.
    286. Delikanli, Y.E.; Kayacan, M.C. Design, manufacture, and fatigue analysis of lightweight hip implants. J. Appl. Biomater. Funct. Mater. 2019, 17.

    無法下載圖示 全文公開日期 2025/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE