簡易檢索 / 詳目顯示

研究生: 洪浚耀
Jun-Yao Hong
論文名稱: 基於myRIO的四旋翼機之控制器設計與實作
Control Design and Implementation for quadrotor based on myRIO
指導教授: 藍振洋
Chen-Yang Lan
口試委員: 林紀穎
Chi-Ying Lin
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 147
中文關鍵詞: 四旋翼機系統鑑別狀態估測姿態控制位置控制領先-落後補償器LQ控制器LQG控制器
外文關鍵詞: Quadrotor, System identifications, State estimation, Position control, Lead-lag compensator, Linear–quadratic control, Linear-quadratic-Gaussian control
相關次數: 點閱:198下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

四旋翼機因為有較靈活的移動特性、可垂直起降與懸停的能力,因此有相當大的實用性與經濟效益,例如搜索受難的民眾、取代直升機拍攝地形與運送物資等等。但目前市面上大多的四旋翼機來自中國與歐洲等國家,為了防範資安威脅與掌握其開發技術,自主研發四旋翼機便成為研究的關鍵。因此,本研究開發基於myRIO的四旋翼機,並依循動態模型建立、系統參數鑑別、狀態估測與控制器設計的順序建立四旋翼機控制系統,並以myRIO實現。考量到目前市售的四旋翼機的控制器還使用傳統的PID以及大部分的研究並無考慮馬達的動態與系統的時間延遲,本研究以PID、領先-落後補償器、LQR與LQG四種控制器控制姿態,藉此分析考慮更詳細的系統模型是否能提升控制表現,並且比較不同控制器的控制表現。實驗結果顯示,若閉迴路極點遠小於馬達動態,則馬達動態的考量與否不會影響控制表現;而在四種所設計的控制器中,LQG在控制姿態與位置上,表現比其他控制器更平穩。


Quadrotors have impressive practicalities and economic benefits due to the feature of agile moving and the ability of vertical take-off and landing (VTOL). For example, quadrotors can be used in reconnaissance, exploration and delivery in complex environment. Nonetheless, most quadrotors are manufactured from China and Europe. In order to prevent information security threats and to master the technique in the development of quadrotors, the independent research and develop of quadrotor is critical. Therefore, a myRIO based quadrotor is design and developed in this study. In addition, this study is conducted in the sequential steps of modeling, system identification, state estimation and controller design for the control system to construct the control system. Since most research lacks the consideration of the motor dynamic and the time delay in the quadrotor, this thesis examines and compared PID, Lead-lag compensator, LQR and LQG based control design to analyze the performance benefit of considering more detailed system model. The result has demonstrated that motor dynamic has less affection on the controller performance if the closed loop poles are far enough from the poles of motor. Moreover, among the four examined controllers, LQG design has observed with the smoothest tracking performance and the smallest overshoot under smaller control effort.

摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 ix 表索引 xiv 圖片索引 xvi 第一章 緒論 1 1.1 前言、動機與研究目的 1 1.2 文獻回顧 2 1.2.1 模型建立 2 1.2.2 系統鑑別 2 1.2.3 狀態估測 3 1.2.4 姿態控制 5 1.2.5 位置控制 8 1.3 問題陳述與貢獻 8 1.4 論文架構 9 第二章 研究方法 11 2.1 理論基礎 11 2.1.1 坐標系定義 11 2.1.2 運動行為 11 2.1.3 旋轉矩陣 12 2.2 模型推導 13 2.2.1 推導假設 14 2.2.2 運動學 14 2.2.3 動力學 15 2.2.4 升力、外力與力矩 15 2.2.5 空氣動力學 16 2.2.5.1 動量理論(momentum theory) 17 2.2.5.2 升力 18 2.2.5.3 水平力 18 2.2.5.4 誘導扭力 19 2.2.5.5 角動量力矩 20 2.2.5.6 總合力 20 2.2.6 馬達模型 20 2.2.7 馬達混合演算法(motor mixing algorithm) 23 2.2.8 狀態空間表示式 24 2.2.9 線性化模型 25 2.3 系統鑑別 27 2.3.1 質量慣性矩 27 2.3.2 升力因子與阻力因子 29 2.3.3 馬達模型 29 2.4 感測器介紹、量測與校正 29 2.4.1 感測器介紹與量測 30 2.4.1.1 加速規 30 2.4.1.2 陀螺儀 30 2.4.1.3 磁力計 30 2.4.1.4 距離感測器 31 2.4.1.5 GPS 31 2.4.1.6 相機 32 2.4.2 感測器校正 33 2.4.2.1 距離感測器校正 33 2.4.2.2 光流校正 33 2.5 狀態估測 35 2.5.1 離散時間卡爾曼濾波器 35 2.6 控制器 37 2.6.1 控制架構 37 2.6.2 串級PID 38 2.6.3 串級領先-落後補償器(Lead-lag compensator) 39 2.6.4 伺服控制架構 39 2.6.5 無積分器的伺服控制架構 41 2.6.6 LQR 42 2.6.7 LQG 43 第三章 系統鑑別 44 3.1 四旋翼機設備 44 3.2 質量慣性矩 46 3.3 升力因子 49 3.4 阻力因子 52 3.5 馬達模型 54 3.6 時間延遲 58 3.7 線性化模型 60 第四章 狀態估測 62 4.1 估測模型 62 4.1.1 姿態的估測模型 62 4.1.2 高度的估測模型 63 4.1.3 位置的估測模型 63 4.2 光流校正 64 4.3 變異數量測與選定 65 4.3.1 姿態的量測雜訊 65 4.3.2 高度的量測雜訊 67 4.3.2.1 位置的量測雜訊 69 4.4 估測器設計 74 4.4.1 姿態估測 74 4.4.2 高度估測 76 4.4.3 位置估測 76 第五章 姿態與高度控制 79 5.1 規格制訂與限制 79 5.2 控制器設計與模擬 80 5.2.1 串級PID 80 5.2.2 串級領先-落後補償器 80 5.2.3 LQR與LQG 86 5.3 實驗結果 90 5.3.1 實驗平台 90 5.3.2 翻滾角 91 5.3.3 偏航角 96 5.3.4 高度控制 102 5.4 小結 104 第六章 位置控制 105 6.1 規格制訂與限制 105 6.2 控制器設計與模擬 105 6.2.1 無積分器的LQG控制器 105 6.2.2 有積分器的LQG控制器 107 6.3 實驗結果 108 6.3.1 實驗環境 108 6.3.2 無積分器的LQG 108 6.3.3 有積分器的LQG 111 6.4 小結 113 第七章 結論與未來展望 114 7.1 結果討論 114 7.2 未來展望 116 7.2.1 系統鑑別 116 7.2.2 狀態估測 117 7.2.3 控制演算法 117 7.2.4 實務應用 117 參考文獻 119 附錄一 123

[1] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, "Estimation, control, and planning for aggressive flight with a small quadrotor with a single camera and IMU," IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 404-411, 2016.
[2] X. Liu et al., "Large-scale autonomous flight with real-time semantic slam under dense forest canopy," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5512-5519, 2022.
[3] L. SCHROTH. "THE DRONE MARKET SIZE 2020-2025: 5 KEY TAKEAWAYS." Drone Industry Insights. https://droneii.com/the-drone-market-size-2020-2025-5-key-takeaways (accessed 5/21, 2022).
[4] 劉秀珍、陳葦庭. "最強大疆為何美中貿易戰就是禁不了它?." 經濟日報. https://money.udn.com/SSI/topic/2020/dji/index.html?topic (accessed 5/21, 2020).
[5] 張文馨、戴瑞芬. "美制裁陸42家企業機構 國會通過禁止新疆產品輸美法案." 經濟日報. https://money.udn.com/money/story/122229/5970391 (accessed 5/21, 2020).
[6] F. Sabatino, "Quadrotor control: modeling, nonlinearcontrol design, and simulation," M.S. thesis, Dept. Elect. Eng., KTH Royal Institute of Technology, Stockholm, Sweden, 2015.
[7] M. Walid, N. Slaheddine, A. Mohamed, and B. Lamjed, "Modeling and control of a quadrotor UAV," in 2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2014, pp. 343-348.
[8] Y. Wu, K. Hu, and X.-M. Sun, "Modeling and control design for quadrotors: A controlled hamiltonian systems approach," IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11365-11376, 2018.
[9] S. Sun and C. de Visser, "Aerodynamic model identification of a quadrotor subjected to rotor failures in the high-speed flight regime," IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3868-3875, 2019.
[10] D. Six, S. Briot, J. Erskine, and A. Chriette, "Identification of the propeller coefficients and dynamic parameters of a hovering quadrotor from flight data," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1063-1070, 2020.
[11] Y. Sun, "Modeling, identification and control of a quad-rotor drone using low-resolution sensing," 2012.
[12] S. Lu, "Modeling, control and design of a quadrotor platform for indoor environments," Arizona State University, 2018.
[13] L. Derafa, T. Madani, and A. Benallegue, "Dynamic modelling and experimental identification of four rotors helicopter parameters," in 2006 IEEE international conference on industrial technology, 2006, pp. 1834-1839.
[14] R. Mahony, T. Hamel, and J.-M. Pflimlin, "Complementary filter design on the special orthogonal group SO (3)," in Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 1477-1484.
[15] S. Madgwick, "An efficient orientation filter for inertial and inertial/magnetic sensor arrays," Report x-io and University of Bristol (UK), vol. 25, pp. 113-118, 2010.
[16] J. L. Marins, X. Yun, E. R. Bachmann, R. B. McGhee, and M. J. Zyda, "An extended Kalman filter for quaternion-based orientation estimation using MARG sensors," in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), 2001, vol. 4, pp. 2003-2011.
[17] H. Lee, C. Lee, H. Jeon, J. J. Son, Y. Son, and S. Han, "Interference-compensating magnetometer calibration with estimated measurement noise covariance for application to small-sized UAVs," IEEE Transactions on Industrial Electronics, vol. 67, no. 10, pp. 8829-8840, 2019.
[18] X. Wang and W. Wang, "Nonlinear signal-correction observer and application to UAV navigation," IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4600-4607, 2018.
[19] S. Berkane, A. Tayebi, and S. De Marco, "A nonlinear navigation observer using IMU and generic position information," Automatica, vol. 127, p. 109513, 2021.
[20] O. Omotuyi and M. Kumar, "UAV Visual-Inertial Dynamics (VI-D) Odometry using Unscented Kalman Filter," IFAC-PapersOnLine, vol. 54, no. 20, pp. 814-819, 2021.
[21] K. Kahili, O. Bouhali, F. Khenfri, and N. Rizoug, "Robust Intelligent Self-tuning PID Controller for the Body-rate Stabilization of Quadrotors," in IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, 2019, vol. 1, pp. 5281-5286.
[22] Y. Liu, H. Bei, W. Li, and Y. Huang, "Design of Altitude Control System for Quadrotor UAV Based on PID and LADRC," in 2021 4th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), 2021, pp. 301-305.
[23] A. Noormohammadi-Asl, O. Esrafilian, M. A. Arzati, and H. D. Taghirad, "System identification and H∞-based control of quadrotor attitude," Mechanical Systems and Signal Processing, vol. 135, p. 106358, 2020.
[24] M. Mardan, M. Esfandiari, and N. Sepehri, "Attitude and position controller design and implementation for a quadrotor," International Journal of Advanced Robotic Systems, vol. 14, no. 3, p. 1729881417709242, 2017.
[25] P. Outeiro, C. Cardeira, and P. Oliveira, "Multiple-model control architecture for a quadrotor with constant unknown mass and inertia," Mechatronics, vol. 73, p. 102455, 2021.
[26] J. Xiong, J. Pan, G. Chen, X. Zhang, and F. Ding, "Sliding Mode Dual-Channel Disturbance Rejection Attitude Control for a Quadrotor," IEEE Transactions on Industrial Electronics, 2021.
[27] B. Tian, J. Cui, H. Lu, Z. Zuo, and Q. Zong, "Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons," IEEE Transactions on Industrial Electronics, vol. 66, no. 12, pp. 9428-9438, 2019.
[28] T.-W. Ou and Y.-C. Liu, "Adaptive backstepping tracking control for quadrotor aerial robots subject to uncertain dynamics," in 2019 American Control Conference (ACC), 2019, pp. 1-6.
[29] A. Zanelli, G. Horn, G. Frison, and M. Diehl, "Nonlinear model predictive control of a human-sized quadrotor," in 2018 European Control Conference (ECC), 2018, pp. 1542-1547.
[30] W. Zhao, H. Liu, and B. Wang, "Model‐free attitude synchronization for multiple heterogeneous quadrotors via reinforcement learning," International Journal of Intelligent Systems, vol. 36, no. 6, pp. 2528-2547, 2021.
[31] S. Mysore, B. Mabsout, K. Saenko, and R. Mancuso, "How to train your quadrotor: A framework for consistently smooth and responsive flight control via reinforcement learning," ACM Transactions on Cyber-Physical Systems (TCPS), vol. 5, no. 4, pp. 1-24, 2021.
[32] M. Idrissi, M. Salami, and F. Annaz, "Modelling, simulation and control of a novel structure varying quadrotor," Aerospace Science and Technology, vol. 119, p. 107093, 2021.
[33] M. R. Cohen, K. Abdulrahim, and J. R. Forbes, "Finite-Horizon LQR Control of Quadrotors on SE2(3)," IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5748-5755, 2020.
[34] F. Rekabi, F. A. Shirazi, M. J. Sadigh, and M. Saadat, "Nonlinear H∞ measurement feedback control algorithm for quadrotor position tracking," Journal of the Franklin Institute, vol. 357, no. 11, pp. 6777-6804, 2020.
[35] J. Hirata-Acosta, J. Pliego-Jiménez, and C. Cruz-Hernández, "Adaptive tracking control for quadrotors without linear velocity measurements," IFAC-PapersOnLine, vol. 53, no. 2, pp. 5743-5748, 2020.
[36] L. Martins, C. Cardeira, and P. Oliveira, "Feedback linearization with zero dynamics stabilization for quadrotor control," Journal of Intelligent & Robotic Systems, vol. 101, no. 1, pp. 1-17, 2021.
[37] B. Rubí, B. Morcego, and R. Pérez, "A Deep Reinforcement Learning Approach for Path Following on a Quadrotor," in 2020 European Control Conference (ECC), 2020, pp. 1092-1098.
[38] F. Sabatino, "Quadrotor control: modeling, nonlinearcontrol design, and simulation," M.S. thesis, Dept. Elect. Eng., KTH Royal Institute of Technology, Stockholm, Sweden, pp. 14, 2015.
[39] Massachusetts Institute of Technology. (2009). KINEMATICS OF MOVING FRAMES. [Online]. Available: https://ocw.mit.edu/courses/2-017j-design-of-electromechanical-robotic-systems-fall-2009/0da9fb3965410fd50979bb179b56805a_MIT2_017JF09_ch09.pdf.
[40] G. D. Padfield, Helicopter flight dynamics: the theory and application of flying qualities and simulation modelling. John Wiley & Sons, 2008.
[41] I. CHEESEMAN, "Helicopter Theory," DYNAMICS, 1980.
[42] W. Swart, "Determining the moments of inertia using a bifilar pendulum," TECHNISCHE WISKUNDE, Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics, Delft, Nederland, 2016.
[43] H. Weinberg, "Gyro mechanical performance: The most important parameter," Technical Article MS-2158, pp. 1-5, 2011.
[44] J. Doyle, "C., 1978,“Guaranteed Margins For LQG Regulators “," IEEE Trans.
[45] M. E. Pittelkau, "Rotation vector in attitude estimation," Journal of Guidance, Control, and Dynamics, vol. 26, no. 6, pp. 855-860, 2003.
[46] M. Enkhtur, S. Y. Cho, and K. H. Kim, "Modified unscented Kalman filter for a multirate INS/GPS integrated navigation system," Etri Journal, vol. 35, no. 5, pp. 943-946, 2013.
[47] J. Li, S. Xu, Y. Liu, X. Liu, Z. Li, and F. Zhang, "Real-time indoor navigation of UAV based on visual delay compensation," in 2019 IEEE International Conference on Mechatronics and Automation (ICMA), 2019, pp. 2451-2456.

QR CODE