簡易檢索 / 詳目顯示

研究生: 林俊誠
Jun-cheng Lin
論文名稱: 氧化鎢奈米線之合成與特性分析
The Synthesis and Characteristic Studies on Tungsten Oxide Nanowires
指導教授: 黃柏仁
Bohr-ran Huang
口試委員: 周賢鎧
Shyan-kay Jou
張守進
Shoou-jinn Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 130
中文關鍵詞: 奈米複合結構場發射氧化鎢奈米線奈米壓印微影技術
外文關鍵詞: Nano-composite structure, Tungsten oxide nanowires, Field emission, Nanoimprint lithography
相關次數: 點閱:257下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ㄧ維(1D)的過渡金屬氧化奈米結構藉由自我催化組成的方式製備,受到了廣泛的研究。奈米線具高的深寬比結構,大的表面體積比與獨特的物理性質,包含光學、磁學與電學特性。氧化鎢(W18O49)為一N型的寬能隙半導體,由於它獨特的物理及化學特性,使氧化鎢相當有潛力應用在不同的科技領域上,例如半導體氣體感測器、光觸媒、太陽能元件、電致色變元件與場發射元件等。
    本論文旨在探討氧化鎢奈米線經過不同後處理技術其特性分析。實驗首先以真空直流濺鍍的方式濺鍍純鎢薄膜,利用熱化學氣相沉積系統對純鎢薄膜進行30分鐘700 °C的熱處理,氧化鎢(W18O49)奈米線即合成於矽基材上。接著以射頻電漿與微波電漿對最佳化成長之氧化鎢奈米線進行電漿表面改質後處理,以準分子雷射系統對氧化鎢奈米線進行退火後處理,藉由場發射電子顯微鏡觀察氧化鎢奈米線的表面形態,並分別利用X-ray繞射儀與拉曼光譜儀分析奈米線晶格結構以及奈米線表面鍵結組成,透過電子光譜儀分析奈米線吸收峰的位置與強度作材料定性與定量之參考,並量測氧化鎢奈米線的電流變化,以探討氧化鎢奈米線的電性特性。
    此論文的實現方面,成功地製作氧化鎢奈米線雙層結構(W18O49/W18O49/Si)與氧化鎢奈米線鑽石薄膜複合結構(W18O49/NCD/Si),藉由奈米複合結構上的不同,能夠改變其光電特性,增益其場發射特性。進一步結合奈米壓印微影技術製作陣列式氧化鎢奈米線,期望讓氧化鎢相關應用元件上能有效地提高效率,以提供給產業界新的材料與製程技術和方向,作為將來開發奈米線光電元件之研究基礎。


    One-dimensional (1D) transition metal oxide nanostructures prepared via self-catalytically technique have attracted considerable interest due to their high aspect-ratio structure, large surface-to-volume ratio, and unique physical properties, including optical, magnetic, and electronic characteristics. Tungsten oxide (W18O49) is an n-type wide band semiconductor with interesting physical and chemical properties that make it suitable for various technological applications.
    In this work, the tungsten films were first deposited on silicon substrate by the reactive DC magnetron sputtering system. The tungsten oxide (W18O49) nanowires were synthesized self-catalytically on silicon substrate in quartz tube furnace with a temperature of 700 °C in nitrogen ambient for 30 min. Then the tungsten oxide nanowires were post-treated by the plasma enhanced chemical vapor deposition system, microwave plasma chemical vapor deposition system and excimer laser system, respectively. The effects on the tungsten oxide nanowires by different kinds of post-treatment techniques were studied.
    The tungsten oxide nano-composite structures (W18O49/W18O49/Si and W18O49/NCD/Si) were synthesized by the VS growth mechanism. It was found that the field emission characteristics were both improved for the tungsten oxide nano-composite structures. Furthermore, the tungsten oxide nanoiwres array structure by nanoimprint lithography technique was fabricated. The fabrication of tungsten oxide nanoiwres array structure will be useful for future applications in related optoelectronic devices.

    中文摘要 英文摘要 誌謝 目錄 圖目錄 表目錄 第一章 緒論 第二章 文獻回顧 2.1 鎢系奈米材料 2.2 奈米線合成機制 2.2.1 氣相-液相-固相 (Vapor-Liquid-Solid) 2.2.2 固相-液相-固相 (Solid-Liquid-Solid) 2.2.3 氣相-固相 (Vapor-Solid) 2.2.4 液相-液相-固相 (Liquid-Liquid-Solid) 2.3 氧化鎢奈米線之合成方式 2.3.1 熱蒸鍍法 (Thermal evaporation) 2.3.2 化學氣相沉積法 (Chemical vapor deposition) 2.3.3 溶劑熱法 (Solvothermal) 與水熱法 (Hydrothermal) 2.3.4 其他合成方法 第三章 實驗方法 3.1 實驗流程 3.2 氧化鎢奈米線之製備 3.2.1 矽基板前處理 3.2.2 純鎢薄膜之沉積 3.2.3 不同製程壓力下氧化鎢奈米線之製備 3.3 氧化鎢奈米線之後處理製程 3.3.1 射頻電漿後處理製程 3.3.2 微波電漿後處理製程 3.3.3 準分子雷射後處理製程 3.4 氧化鎢複合結構之製備 3.5 陣列式氧化鎢奈米線之製備 3.6 實驗分析儀器介紹 3.6.1 場發射掃描式電子顯微鏡 (FE-SEM) 3.6.2 穿透式電子顯微鏡 (TEM) 3.6.3 X-ray繞射儀 (XRD) 3.6.4 顯微拉曼光譜儀 (Mirco-Raman spectrum) 3.6.5 光激發螢光光譜儀 (Photoluminescence spectrum) 3.6.6 X射線光電子能譜儀 (XPS) 第四章 結果與討論 4.1 製程壓力對氧化鎢奈米線之特性分析 4.2 射頻電漿對氧化鎢奈米線後處理之特性分析 4.3 微波電漿對氧化鎢奈米線後處理之特性分析 4.4 準分子雷射對氧化鎢奈米線後處理之特性分析 4.5 氧化鎢複合結構之場發射特性分析 4.6 奈米壓印微影技術製作陣列式氧化鎢奈米線 第五章 結論與未來展望 參考文獻

    [1]S.Iijima. ”Helical microtubules of graphitic carbon”, Nature, pp. 56-58 (1991)
    [2]Jia Grace Lu, Paichun Chang, Zhiyong Fan. “Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications”, Materials Science and Engineering, pp. 49–91 (2006)
    [3]Y.P. Leung, Wallace C.H. Choy, and T.I. Yuk. “Linearly resistive humidity sensor based on quasi one-dimensional ZnSe nanostructures”, Chemical Physics Letters, Vol. 457, pp. 198–201 (2008)
    [4]SU Yi-kun, SHEN Cheng-min, ANG Hai-tao, LI Hu-lin, and GAO Hong-jun. “Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route”, Trans. Nonferrous Met. SOC., China (2007)
    [5]Yingchun Zhu, Hongliang Li, Yuri Koltypin, Yaron Rosenfeld Hacohen and Aharon Gedanken. “Sonochemical synthesis of titania whiskers and nanotubes“, Chemical Communications, pp. 2616-2617 (2001),
    [6]Z. W. Pan, Z. R. Dai, and Z. L. Wang. “Nanobelts of Semiconducting Oxides”, Science, Vol. 291, No. 5510, pp. 1947-1949 (2001)
    [7]Jiangtao Hu, Teri Wang Odom, and Charles M. Lieber. “ Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes“, Acc. Chem. Res., pp.435-445 (1999)
    [8]Greta R. Patzke, Frank Krumeich, and Reinhard Nesper. “Oxidic Nanotubes and Nanorods–Anisotropic Modules for a Future Nanotechnology”, Angew. Chem. Int. Ed., pp. 2446-2461 (2002)
    [9]K. Lee, W. S. Seo, and J. T. Park. “Synthesis and Optical Properties of Colloidal Tungsten Oxide Nanorods”, J. Am. Chem. Soc., Vol. 125, No. 12, pp. 3408-3409 (2003)
    [10]W. Sakaguchi, S. Kajita, N. Ohno, and M. Takagi. “In situ reflectivity of tungsten mirrors under helium plasma exposure”, Journal of Nuclear Materials, pp. 1149–1152 (2009)
    [11]I. Turyan, U.O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, and D. Mandler. “Writing-Reading-Erasing on Tungsten Oxide Films Using the Scanning Electrochemical Microscope”, Advanced Materials, No. 5, pp. 330-333 (2000)
    [12]Ando M, Suto S, Suzuki T, Tsuchida T, Nakayama C, Miura N, and Yamazoe N. “Hydrogen Sulphude Sensing Characteristics of Tin Oxide Sol-derived Thin Films”, Journal of the Ceramic Society of Japan, pp. 104-112 (1996)
    [13]J. L. Solis, S. Saukko, L. Kish, C. G. Granqvist, and V. Lantto. “Semiconductor gas sensors based on nanostructured tungsten oxide”, Thin Solid Films, pp. 255-260 (2001)
    [14]T. Siciliano, A. Tepore, G. Micocci, A. Serra, D. Manno, and E. Filippo. “WO3 gas sensors prepared by thermal oxidization of tungsten”, Sensors and Actuators B, pp. 321–326 (2008)
    [15]Dae-Sik Lee, Sang-Do Han, Jeung-Soo Huh, and Duk-Dong Lee. “Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor”, Sensors & Actuators: B. Chemical, Vol. 60, pp. 57-63 (1999)
    [16]Young-ho Kim, Hiroshi Irie, and Kazuhito Hashimoto. “A visible light-sensitive tungsten carbide/tungsten trioxde composite photocatalyst”, Appl. Phys. Lett., pp. 182107 (2008)
    [17]C.G. Granqvist. “Handbook of Inorganic Electrochromic Materials”, Elsevier, Amsterdam, (1995)
    [18]T. Yamase. ”Photo- and Electrochromism of Polyoxometalates and Related Materials”, Chem. Rev., pp. 307–326 (1998)
    [19]Yan Qiu Zhu, Wei Bing Hu, Wen Kuang Hsu, Mauricio Terrones, Nicole Grobert, Jonathan P. Hare, Harold W. Kroto, David R. M. Walton, and Humberto Terrones. “SiC–SiOx heterojunctions in nanowires”, Journal of Materials Chemistry, pp. 3173-3178 (1999)
    [20]APE York, J Sloan, MLH Green, and J Sloan. “Epitaxial growth of WO3–x needles on (10 0) and (01 0) WC surfaces produced by controlled oxidation with CO2”, Chemical Communications, pp. 269-270 (1999)
    [21]W.B. Hu, Y.Q. Zhu, W.K. Hsu, B.H. Chang, M. Terrones, N. Grobert, H. Terrones, J.P.Hare, H.W. Kroto, and D.R.M. Walton. “Generation of hollow crystalline tungsten oxide fibres“, Appl. Phys. A, Vol.70, pp. 231–233 (2000)
    [22]Christian Fenster, Andrew Jonathan Smith, André Abts, Srdjan Milenkovic, Achim Walter Hassel. “Single tungsten nanowires as pH sensitive electrodes“, Electrochemistry Communications, pp. 1125–1128 (2008)
    [23]Yong Shin Kim, Seung-Chul Ha, Kyuwon Kim, Haesik Yang, Sung-Yool Choi, Youn Tae Kim, Joon T. Park, Chang Hoon Lee, Jiyoung Choi, Jungsun Paek, and Kwangyeol Leea. ”Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film”, Appl. Phys. Lett., pp. 213105 (2005)
    [24]Andrea Ponzoni, Elisabetta Comini, Giorgio Sberveglieri, Jun Zhou, Shao Zhi Deng, Ning Sheng Xub, Yong Ding, and Zhong Lin Wang. “Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks”, Appl. Phys. Lett., pp. 203101 (2006)
    [25]Ching-Liang Dai, Mao-Chen Liu, Fu-Song Chena, Chyan-Chyi Wu, and Ming-Wei Chang. “A nanowire WO3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique”, Sensors and Actuators B, pp. 896–901 (2007)
    [26]P. M. Woodward, A. W. Sleight, and T. Vogt. “Ferroelectric Tungsten Trioxide”, J. Solid State Chem, pp. 131 (1997)
    [27]E. Cazzanelli, C. Vinegoni, G. Mariotto, A. Kuzmin, and J. Purans. “Low-Temperature Polymorphism in Tungsten Trioxide Powders and Its Dependence on Mechanical Treatments”, J. Solid State Chem., Vol. 143, pp. 24-32 (1999)
    [28]E. Salje and K. Viswanathan. “Physical Properties and Phase Transitions in Tungsten Trioxide”, Acta Crystallogr, Vol. 31, pp. 356-359 (1975)
    [29]R. Gehlig and E. Salje. “Dielectric properties and polaronic conductivity of WO3 and WxMo1-xO3”, Philosophical Magazine, Vol. 47, pp. 229-45 (1983)
    [30]A.G. Souza Filho, J. Mendes Filho, V.N. Freire, A.P. Ayala, J.M. Sasaki, P.T.C. Freire, F.E.A. Melo, J.F. Juliao, and U.U. Gomes. ”Phase transition in WO3 microcrystals obtained by sintering process”, J. Raman Spectrosc., Vol. 32, pp. 695 (2001)
    [31]Se-Hee Lee, Hyeonsik M. Cheong, C. Edwin Tracy, Angelo Mascarenhas, David K. Benson, and Satyen K. Deb. “Raman spectroscopic studies of electrochromic a-WO3”, Electrochimica Acta, pp. 3111-3115 (1999)
    [32]J.G. Zhuang, D.K. Benson, C.E. Tracy, S.K. Deb, A.W. Czanderna, and C. Bechinger. “Chromic Mechanism in Amorphous WO3 Films”, J. Electrochem. Soc., Vol. 144, pp. 2022–2041 (1997)
    [33]R.S. Wagner and W.C. Ellis. “Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett., Vol. 4 (1964)
    [34]Y Wu and P Yang “Direct Observation of Vapor− Liquid− Solid Nanowire Growth”, J. Am. Chem. Soc., pp. 3165–3166 (2001)
    [35]H. F. Yan, Y. J. Xing, Q. L. Hanga, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng. ”Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism”, Chemical Physics Letters, pp. 224–228 (2000)
    [36]Y.J. Xing, D.P. Yu, Z.H. Xi, and Z.Q. Xue. “Silicon nanowires grown from Au-coated Si substrate”, Appl. Phys. A, Vol. 76, pp. 551–553 (2003)
    [37]D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng. ”Controlled growth of oriented amorphous silicon nanowires via a solid–liquid–solid (SLS) mechanism”, Physica E, pp. 305-309 (2001)
    [38]Gang Gu, Bo Zheng, W. Q. Han, Siegmar Roth, and Jie Liu. “Tungsten Oxide Nanowires on Tungsten Substrates”, Nano Lett., Vol. 2, No. 8 (2002)
    [39]Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, and William E. Buhro. “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”, Science, Vol. 270, pp. 1791 (1995)
    [40]X. Lu, T. Hanrath, K.P. Johnston, and A.B. Korgel. “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate”, Nano Lett., pp. 93-99 (2003)
    [41]K.S. Shankar and A.K. Raychaudhuri. “Fabrication of nanowires of multicomponent oxides: Review of recent advances”, Materials Science and Engineering, Vol. 25, pp. 738–751 (2005)
    [42]Kai Huang, Qingtao Pan, Feng Yang, Shibi Ni, and Deyan He. “Synthesis and field-emission properties of the tungsten oxide nanowire arrays”, Physica E, pp. 219–2220 (2007)
    [43]Dong Yu Lu, Jian Chen, Huan Jun Chen, Li Gong, Shao Zhi Deng, and Ning Sheng Xub. ”Raman study of thermochromic phase transition in tungsten trioxide nanowires”, Appl. Phys. Lett., pp. 041919 (2007)
    [44]Kunquan Hong, Maohai Xie, Rong Hu, and Huasheng Wu. “Synthesizing tungsten oxide nanowires by a thermal evaporation method”, Appl. Phys. Lett., pp. 173121 (2007)
    [45]Chia-Ching Liao, Fu-Rong Chen, and Ji-Jung Kai. “Annealing effect on electrochromic properties of tungsten oxide nanowires”, Solar Energy Materials & Solar Cells, pp. 1258–1266 (2007)
    [46]M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou, and H. J. Gao. “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films”, Appl. Phys. Lett., pp. 141901 (2005)
    [47]Jian Yi Luo, Fu Li Zhao, Li Gong, Huan Jun Chen, Jun Zhou, Zheng Lin Li, Shao Zhi Deng, and Ning Sheng Xub. “Ultraviolet-visible emission from three-dimensional WO3−x nanowire networks”, Appl. Phys. Lett., pp. 093124 (2007)
    [48]Floriane Galléa, Zhengcao Li, and Zhengjun Zhanga. “Growth control of tungsten oxide nanostructures on planar silicon substrates” , Appl. Phys. Lett., pp. 193111 (2006)
    [49]Shui-Jinn Wang, Chao-Hsuing Chen, Shu-Cheng Chang, Kai-Ming Uang, Chuan-Ping Juan, and Huang-Chung Cheng. “Growth and characterization of tungsten carbide nanowires by thermal annealing of sputter-deposited WCx films”, Appl. Phys. Lett., Vol. 85, No. 12, pp. 20 (2004)
    [50]Shui-Jinn Wang, Chao-Hsuing Chen, Rong-Ming Ko, Yi-Cheng Kuo, Chin-Hong Wong, Chien-Hung Wu, Kai-Ming Uang, Tron-Min Chen, and Bor-Wen Liou. “Preparation of tungsten oxide nanowires from sputter-deposited WCx films using an annealing/oxidation process”, Appl. Phys. Lett., pp. 263103 (2005)
    [51]H. G. Choi, Y. H. Jung, and D. K. Kim. ” Solvothermal Synthesis of Tungsten Oxide Nanorod/Nanowire/Nanosheet”, J. Am. Ceram. Soc., pp. 1684-1686 (2005)
    [52]Sung Jong Yoo, Ju Wan Lim, Yung-Eun Sung, Young Hwa Jung, Hong Goo Choi, and Do Kyung Kim. “Fast switchable electrochromic properties of tungsten oxide nanowire bundles”, Appl. Phys. Lett., pp. 173126 (2007)
    [53]Sung Jong Yoo, Young Hwa Jung, Ju Wan Lim, Hong Goo Choi, Do Kyung Kim and Yung-Eun Sung. “Electrochromic properties of one-dimensional tungsten oxide nanobundles”, Solar Energy Materials & Solar Cells, pp. 179–183 (2008)
    [54]Chandra Sekhar Rout, A. Govindaraj and C. N. R. Rao. “High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires”, J. Mater. Chem., pp. 3936–3941 (2006)
    [55]Weibing Hu, Yimin Zhao, Zuli Liu, Charles W. Dunnill, Duncan H. Gregory and Yanqiu Zhu. “Nanostructural Evolution: From One-Dimensional Tungsten Oxide Nanowires to Three-Dimensional Ferberite Flowers”, Chem. Mater., Vol. 20, No. 17, pp. 5657–5665 (2008)
    [56]Jang-Hoon Ha, P. Muralidharan, and Do Kyung Kim. ”Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts”, Journal of Alloys and Compounds, (2008)
    [57]Zhidong Xiao, Lide Zhang, Zhenyang Wang, Qifei Lu, Xike Tian, Haibo Zeng. “Low-temperature synthesis and structural characterization of single-crystalline tungsten oxide nanorods”, Materials Letters, pp. 1718–1721 (2007)
    [58]Xiaofeng Lu, Xincai Liu, Wanjin Zhang, Ce Wanga, and Yen Wei. “Large-scale synthesis of tungsten oxide nanofibers by electrospinning”, Journal of Colloid and Interface Science, pp. 996–999 (2006)
    [59]Qi Zhang, Ashok Kumar Chakraborty, and Wan In Lee. “W18O49 and WO3 Nanorod Arrays Prepared by AAO-templated Electrodeposition Method”, Bull. Korean Chem.Soc., Vol. 30, No. 1, pp. 227-229 (2009)
    [60]X. L. Li, J. F. Liu, and Y. D. Li. “Large-scale synthesis of tungsten oxide nanowires with high aspect ratio”, Inorg. Chem., pp. 921-924 (2003)
    [61]Esra Ozkan, Se-Hee Lee, C. Edwin Tracy, J. Roland Pitts, and Satyen K. Deb. ” Comparison of electrochromic amorphous and crystalline tungsten oxide films”, Solar Energy Materials & Solar Cells, pp. 439–448 (2003)
    [62]Se-Hee Lee, Hyeonsik M. Cheong, C. Edwin Tracy, Angelo Mascarenhas, David K. Benson, and Satyen K. Deb. “Raman spectroscopic studies of electrochromic a-WO3”, Electrochimica Acta, Vol.44, pp. 3111-3115 (1999)
    [63]T. Ivanova, K.A. Gesheva, M. Kalitzova, B. Marsen, B. Cole, and E.L. Miller. “Electrochromic behavior of Mo/W oxides related to their surface morphology and intercalation process parameters”, Materials Science and Engineering, pp. 126-134 (2007)
    [64]A. Baserga, V. Russo, F. Di Fonzo, A. Bailini, D. Cattaneo, C.S. Casari, A. Li Bassi, and C.E. Bottani. “Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization”, Thin Solid Films, pp. 6465–6469 (2007)
    [65]E Salje and K Viswanathan. “Physical Properties and Phase Transitions in Tungsten Trioxide”, Acta Crystallogr, pp. 360 (1975)
    [66]J.V. Gabrusenoks, P.D. Chikmach, A.R. Lusis, J.J. Kleperis, and G.M. Ramans. “Electrochromic colour centres in amorphous tungsten trioxide thin films”, Solid State Ionics, pp. 25 (1984)
    [67]T. Aoki, T. Matsushita, A. Suzuki, K. Tanabe, and M. Okuda. ”Write-once optical recording using WO2 films prepared by pulsed laser deposition”, Thin Solid Films, Vol. 509 , pp. 107-112 (2006)
    [68]W.B. Henley and G.J. Sacks. “Electrochem”. Soc. (1997)
    [69]F. P. J. Kerkhof, J. A. Moulijn, and A. Heeres. “The XPS spectra of the metathesis catalyst tungsten oxide on silica gel”, J. Electron Spectrosc. Relat. Phenom, pp. 453 (1978)
    [70]D. D. Sarma and C. N. R. Rao. “XPES studies of oxides of second and third-row transition metals including rare earths”, J. Electron Spectrosc. Relat. Phenom, pp. 25 (1980)
    [71]C. Cantalini, H. T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi and M. Passacantando. “NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation”, Sensors and Actuators, pp. 81 (1996)
    [72]L. Lozzi, L. Ottaviano, M. Passacantando, S. Santucci, and C. Cantalini. “The influence of air and vacuum thermal treatments on the NO2 gas sensitivity of WO3 thin films prepared by thermal evaporation”, Thin Solid Films, pp. 224 (2001)
    [73]Y.W. Zhu, A.M. Moo, T. Yu, X.J. Xu, X.Y. Gao, Y.J. Liu, C.T. Lim, Z.X. Shen, C.K. Ong, A.T.S. Wee, J.T.L. Thong, and C.H. Sow. “Enhanced field emission from O2 and CF4 plasma-treated CuO nanowires”, Chemical Physics Letters, pp. 458–463 (2006)
    [74]Y.W. Zhu, F.C. Cheong, T. Yu, X.J. Xu, C.T. Lim, J.T.L. Thong, Z.X. Shen, C.K. Ong, Y.J. Liu, A.T.S. Wee, and C.H. Sow. “Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films”, Carbon, pp. 395–400 (2005)
    [75]X.Q. Meng, D.X. Zhao, J.Y. Zhang, D.Z. Shen, Y.M. Lu, L. Dong, Z.Y. Xiao, Y.C. Liu, and X.W. Fan. “Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing”, Chemical Physics Letters, pp. 450–453 (2005)
    [76]H.-W. Ra, K.S. Choi, C.W. Ok, S. Y. Jo, K. H. Bai, and Y. H. Im. “Ion bombardment effects on ZnO nanowires during plasma treatment”, Appl. Phys. Lett., pp. 033112 (2008)
    [77]J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang. “ZnO Nanowire Transistors”, J. Phys. Chem, Vol. 109, No. 1, pp. 9-14 (2005)
    [78]A. Kuzmin, R. Kalendarev, A. Kursitis, and J. Purans. ”Confocal spectromicroscopy of amorphous and nanocrystalline tungsten oxide films”, Journal of Non-Crystalline Solids, pp. 1840–1843 (2007)
    [79]Y.H. Yang, C.X. Wang, B. Wang, N.S. Xu, and G.W. Yang. “ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement”, Chemical Physics Letters, pp. 248–251 (2005)
    [80]Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, and I-Nan Lin. “Electron field emission properties on UNCD coated Si-nanowires”, Diamond & Related Materials, pp. 753–757 (2008)
    [81]Gordon Davies. “Properties and growth of diamond”, INSPEC, pp. 323 (1994)
    [82]Hyung Soo Uh, Sung Woo Ko, and Kong Duk Lee. “Growth and field emission properties of carbon nanotubes on rapid thermal annealed Ni catalyst using PECVD“, Diamond & Related Materials, pp. 850 (2005)
    [83]C. Y. Zhi, X. D. Bai, and E. G. Wang. “ZnO hexagonal arrays of nanowires grown on nanorods“, Appl. Phys. Lett., pp. 1690 (2002)
    [84]M. Gillet, R. Delamare, and E. Gillet. ”Growth, structure and electrical properties of tungsten oxide nanorods”, Eur. Phys. J. D, pp. 291 (2005)
    [85]Kai Huang, Qingtao Pan, Feng Yang, Shibi Ni, and Deyan He. “The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties”, Materials Research Bulletin, pp. 919–925 (2008)
    [86]D. Pradhan, Y.C. Lee, C.W. Pao, W.F. Pong, and I.N. Lin. “Low temperature growth of ultrananocrystalline diamond film and its field emission properties”, Diamond & Related Materials, pp. 2001–2005 (2006)
    [87]F.A.M. Koeck, and R.J. Nemanich. “Field penetration and its contribution to field enhanced thermionic electron emission from nanocrystalline diamond films”, Diamond & Related Materials, pp. 2006–2009 (2006)
    [88]F.A.M. Koeck, M. Zumer, V. Nemanic, and R.J. Nemanich. “Photo and field electron emission microscopy, from sulfur doped nanocrystalline diamond films”, Diamond & Related Materials, pp. 880–883 (2006)
    [89]Jing Wan, Shao-Ren Deng, Rong Yang, Zhen Shu, Bing-Rui Lu, Shen-Qi Xie, Yifang Chen, Ejaz Huq, Ran Liu, and Xin-Ping Qu. “Silicon nanowire sensor for gas detection fabricated by nanoimprint on SU8/SiO2/PMMA trilayer”, Microelectronic Engineering, pp. 1238–1242 (2009)
    [90]A. Alec Talin, Luke L. Hunter, François Léonard, and Bhavin Rokad. “Large area dense silicon nanowire array chemical sensors”, Appl. Phys. Lett., pp. 153102 (2006)

    QR CODE