簡易檢索 / 詳目顯示

研究生: 許志霖
Chih-Lin Hsu
論文名稱: 基於BIM整合建築外覆系統的設計製造加工-策略和實施
A BIM based strategy and implementation for the integration of design and fabrication in building envelope systems
指導教授: 施宣光
Shen-Guan Shih
王瑞堂
Jui-Tang Wang
口試委員: 彭雲宏
Yeng-Horng Perng
謝尚賢
Shang-Hsien Hsieh
王明德
Ming-Teh Wang
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 52
中文關鍵詞: 建築外覆系統製造加工圖建築資訊模型鋁擠型料單
外文關鍵詞: Building envelope system, Shop drawings, Building information modelling (BIM), Aluminum extrusion, Bill of materials (BOM), Grasshopper (GH) in Rhinoceros, Visual programming language (VPL)
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著建築物外殼的拓撲(topology)造型設計和性能需求及設定標準不斷演變的趨勢,建築外覆系統變得愈來愈具外觀獨特性及日益複雜,促使產業在建築、工程、施工和業主(AECO)流程中需要有更高效的實施策略。本文主旨為探討以下內容:(1)建築資訊模型(BIM)與建築外覆系統設計的關聯性應用;(2)數位工具應用:由3D BIM模型導出圖紙、料單、編碼等,應用數位軟件工具創建API,進行工廠製作及加工端之圖面繪製;(3)討論和分析這些新策略帶來的成果和效益;(4)將提出的策略實施於兩個實際的帷幕牆項目中,驗證實施策略後的成果;(5)以傳統人力作業方法與本研究所提出的新策略進行成果比對。研究結果展示了數位工具帶來的優勢,本研究以鋁擠型及面板加工圖說進行評估,引用本研究的數位化軟件工具與傳統人力方法比對,其時間效益明顯,以單元“N5-6”進行測試,本研究之策略對比傳統製圖的人力時間減少了約41%。


    Due to the evolving trend of topology and performance criteria in the building envelope industry, the building envelope has become increasingly unique and complex. This necessitates the urgent development of more efficient strategies in the architecture, engineering, construction, and owner (AECO) processes. This paper introduces the following aspects: (i) the concept of designing building envelopes by using Building Information Modeling (BIM); (ii) Utilizing digital tools for implementation, we propose strategies aimed at enhancing industry efficiency. This includes the use of digital tools (API) throughout the process, from design to factory production and fabrication, such as exporting shop drawing, bill of materials, and encoding from 3D models.; (iii) discussion and analysis of the outcomes and advantages of these newly developed programs; (iv) presentation of practical results from two curtain wall projects; and (v) comparison between different processing methods, manually shop drawings with utilizing APIs. The research results showed the advantages brought by digital tools and investigated the advantages of automation by using aluminum extrusions and panel fabrication drawings. The testing was conducted on unit "N5-6," and the strategies employed in this study resulted in approximately a 41% reduction in man hours comparing with traditional manual drafting.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 圖目錄 Ⅸ 表目錄 Ⅻ 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 4 第二章 文獻回顧 6 2.1 數位科技應用 6 2.2 建築資訊模型(BIM)與各工種協同作業之現況 6 2.3 BIM LOD與AECO產業的關聯性 8 2.4 自動化功能性命名 (Functioal Element Naming)BIM元件 10 2.5 自動化製圖-結構框架 (Light Gauge Steel Framing) 10 2.6 自動化製圖-帷幕直、橫料 (Mullion and Transom) 11 2.7 自動化製圖-曲面板之3D轉2D 12 2.8 單元式帷幕牆-從設計到製造加工 12 2.8.1 單元式玻璃帷幕-細部構造 13 2.8.2 單元式玻璃帷幕-鋁擠構造 14 2.9 複雜的金屬帷幕系統 14 第三章 研究方法:建立外覆系統-BIM LOD標準與參數化程式導入 17 3.1 建立建築外覆系統BIM LOD標準 17 3.1.1 分割模型(Segmented model)-LOD 200 19 3.1.2 產品模型(Product model)-LOD 300 19 3.1.3 組裝模型(Assembly model)-LOD 400 19 3.2 外覆系統對於LOD的使用需求 20 3.3 參數化工具協助製造加工流程 21 3.4 參數化程式建構與拆解資料之方法 21 3.4.1 Phase 1:ID識別碼 22 3.4.1.1 產品識別碼 (Product ID) 22 3.4.1.2 元件識別碼 (Element ID) 27 3.4.2 Phase 2:物料清單 (BOM) 30 3.4.3 Phase 3:製造加工圖 31 3.4.3.1 製造加工圖 (鋁擠型) 31 3.4.3.2 製造加工圖 (疊層板片) 34 第四章 案例驗證 36 4.1 案例驗證1:自動化生成產品識別Product ID命名 36 4.2 案例驗證2:自動化元件識別Element ID命名、料單(BOM)與加工圖 37 第五章 測試結果與討論 42 第六章 結論 46 參考文獻 49

    1. ASHRAE., (2006), “4-architectural design impacts”, The ASHRAE GreenGuide (second edition), 978-1-933742-07-6, Butterworth-Heinemann, Burlington, p. 55-72. http://www.sciencedirect.com/science/article/pii/B9781933742076500074.
    2. ACG ConsensusDOCS 301., (2008), “Building Information Modelling (BIM) Addendum”. www.consensusdocs.org.
    3. Autodesk, Dynamo BIM., (2018), Accessed 9th Nov 2018. http://dynamobim.org/.
    4. B. Kolarevic, (2001), “Digital Fabrication: Manufacturing Architecture in the Information Age”, USA, p.274. https://www.semanticscholar.org/paper/Digital-Fabrication%3A-Manufacturing-Architecture-in-Kolarevic/b459061c59cb92e7a1a037ab6326576bb920d29f.
    5. B. Kolarevic, (2003), “Architecture in the Digital Age: Design and Manufacturing”, USA, p.53-54. https://doi.org/10.4324/9780203634561.
    6. BIMForum., (2021), “2021 Level of Development (LOD) Sp-ecification For Building Information Models”, p.75-95. https://bimforum.org/LOD/.
    7. C. Preidel, A. Borrmann, C. Oberender, & M. Tretheway, (2016), “Seamless Integration of Common Data Environment Access into BIM Authoring Applications: the BIM Integration Framework”, European Conference on Product and Process Modelling, Vol.11, Germany. https://doi.org/10.13140/RG.2.1.4487.4488.
    8. C.L. Hsu, J.T. Wang, & Y.H. Huang, (2023), “A functional element naming approach for BIM element in building envelope system”, J. Constr. Eng. Manag., Vol.149, Issue 6. https://doi.org/10.1061/JCEMD4.COENG-12579.
    9. D.B. Shah, (2013), “Parametric modelling and drawing automation for flange coupling using excel spreadsheet”, p189–191. https://docplayer.net/49263201-Parametric-modeling-and-drawing-automation-for-flange-coupling-using-excel-spreadsheet.html.
    10. Frank Gehry Buildings - The Architect's Look (thoughtco.com). https://www.enr.com/articles/440-new-york-8217-s-tallest-residential-tower-is-frank-gehry-8216-demystified-8217?page=4.
    11. F. Leite, A. Alcamete, B. Akinci, G. Atasoy, & S. Kiziltas, (2011), “Analysis of modeling effort and impact of different levels of detail in building information models”, Autom. Constr., US, p. 601-609. https://doi.org/10.1016/j.autcon.2010.11.027.
    12. G. Lee, & S. Kim, (2012), “Case Study of Mass Customization of Double-Curved Metal Façade Panels Using a New Hybrid Sheet Metal Processing Technique”, J. Constr. Eng. Manag. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000551.
    13. H.B. Nayak , R.R Trivedi, & K.K. Araniya, (2012), “Drawing automation of reactor nozzle”, IJERA., p.282-283. https://www.ijera.com/papers/Vol2_issue1/AR21281286.pdf.
    14. H. Lai, X. Deng, & T.P. Chang, (2019), “BIM-Based Platform for Collaborative Building Design and Project Management”, J. Comput. Civ. Eng., Vol.33 Issue 3. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000830.
    15. ISO 19650-1., (2018), “Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) —Information management using building information modelling — Part 1”. https://www.iso.org/standard/68078.html.
    16. J. Radl, & J. Kaiser, (2019), “Benefits of Implementation of Common Data Environment (CDE) into Construction Projects”, IOP Conference Series: Materials Science and Engineering, Vol.471, Issue 2. https://doi.org/10.1088/1757-899X/471/2/022021.
    17. K.Z. Chen, X.A. Feng, & L. Ding, (2002), “Intelligent approaches for generating assembly drawings from 3-D computer models of mechanical products”, Comput. Aided Des., p.351-354. https://doi.org/10.1016/S0010-4485(01)00101-4.
    18. K. Kazmierczak, (2010), “Review of Curtain Walls, Fvzocusing On Design Problems and Solutions”, BEST2 Conference Building Enclusure Science& Technology. https://c.ymcdn.com/sites/www.nibs.org/resource/resmgr/BEST/BEST2_008_EE4-1.pdf
    19. K. Chen, W. Lu, H. Wang, Y. Niu, & G.Q. Huang, (2017), “Naming objects in bim: A convention and a semiautomatic approach”, J. Constr. Eng. Manag., 143(7), 06017001. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001314.
    20. K.W. Chen, P. Janssen, & A. Schlueter, (2018), “Multi-objective optimisation of building form, envelope and cooling system for improved building energy performance”, Autom. Constr., Singapore, p.449-457. https://doi.org/10.1016/j.autcon.2018.07.002.
    21. J. CK. Seely, (2004), “Digital Fabrication in the architecture design”, p.13-22. http://hdl.handle.net/1721.1/27030.
    22. J.D. Manrique, M. Al-Hussein, A. Bouferguene, & R. Nasseri, (2015), “Automated generation of shop drawings in residential construction”, Autom. Constr., Canada. https://doi.org/10.1016/j.autcon.2015.03.004.
    23. M. Laakso, & A. Kiviniemi, (2012), “The IFC standard: A review of History, development, and standardization, Information Technology”, ITcon., 17 (9), p. 134-161. https://www.itcon.org/2012/9.
    24. M. Jovanović, M. Raković, B. Tepavčević, B. Borovac, & M. Nikolić, (2017), “Robotic fabrication of freeform foam structures with quadrilateral and puzzle shaped panels”, Autom. Constr., Novi Sad, p.28-32. https://doi.org/10.1016/j.autcon.2016.11.003.
    25. M. Deng, J. Singh, & J.C.P. Cheng, (2017), “A BIM-based framework for automated generation of façade panel fabrication drawings, in: The Thirtieth KKHTCNN Symposium on Civil Engineering”, Comput Ind., Taiwan. http://repository.ust.hk/ir/Record/1783.1-90080.
    26. M. Deng, V.J.L. Gan, Y. Tan, A. Joneja, & J.C.P. Cheng, (2019), “Automatic generation of fabrication drawings for façade mullions and transoms through BIM models”, Adv. Eng. Inform., Hong Kong. https://doi.org /10.1016/j.aei.2019.100964.
    27. M.F. Leone, & G. Nocerino, (2021), “Advanced modelling and digital manufacturing: Parametric design tools for the optimization of UHPFRC (ultra high-performance Fiber reinforced concrete) shading panels”, Italy. https://doi.org/10.1016/j.autcon.2021.103650.
    28. N.J. Shih, (1996), “A study of 2D- and 3D-oriented architectural drawing production methods”, Autom. Constr., Taiwan. https://doi.org/10.1016/S0926-5805(96)00152-5.
    29. N. Bouchlaghem, (2000), “Optimising the design of building envelopes for thermal performance”, Autom. Constr., UK, p. 101-112. https://doi.org/10.1016/S0926-5805(99)00043-6.
    30. P.C. Chao, (2021), “Parametric assisted unitized curtain wall in manufacturing process-A case study of Yida Commercial Building's curtain wall”. https://hdl.handle.net/11296/hvs9ty.
    31. S. Bertelsen, (2003), “Construction as a complex system”, In: Proceedings for the 11th annual conference of the International Group for Lean Construction. https://www.researchgate.net/publication/236841812_Construction_as_a_Complex_System.
    32. S. Azhar, (2011), “Building information modeling (bim): Trends, benefits, risks, and challenges for the aec industry”, Leadersh. manag. eng., 11 (3), 241–252. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000127.
    33. S. Davidson, (2018), “Grasshopper: algorithmic development for rhino”, Accessed, 11 (9) (2018). https://www.grasshopper3d.com/.
    34. S. Tang, D.R. Shelden, C.M. Eastman, & P. PB.X. Gao, (2020), “BIM assisted building automation system information exchange using BACnet and IFC”, Autom. Constr. 110 (2020) 103049. https://doi.org/10.1016/j.autcon.2019.103049.
    35. T. Nath, M. Attarzadeh, R.L.K. Tiong, C. Chidambaram, & Z. Yu, (2019), “Productivity improvement of precast shop drawings generation through BIM-based process re-engineering”, Autom. Constr., Singapore. https://doi.org/10.1016/j.autcon.2015.03.014.
    36. V. Cristie, & S.C. Joyce, (2021), “Versioning for parametric design exploration process”, Singapore. https://doi.org/10.1016/j.autcon.2021.103802.
    37. W. Jung, & G. Lee, (2015), “The Status of BIM Adoption on Six Continents”, Int. j. civ. environ., p. 512-516. https://api.semanticscholar.org/CorpusID:46301416.
    38. W. Solihin, C. Eastman, & Y. Lee, (2016), “A framework for fully integrated building information models in a federated environment”, Adv. Eng. Inform., Vol.30(2):168-189. https://doi.org/10.1016/j.aei.2016.02.007.
    39. X. Tao, X., M. Das, Y. Liu, & J.C.P. Cheng, (2021), “Distributed common data environment using blockchain and Interplanetary File System for secure BIM-based collaborative design”, Autom. Constr., Vol.130. https://doi.org/10.1016/j.autcon.2021.103851.
    40. Z. Yuan, C. Sun, & Y. Wang, (2018), “Design for manufacture and assembly-oriented parametric design of prefabricated buildings”, Autom. Constr., p.16-21. https://doi.org/10.1016/j.autcon.2017.12.021.
    41. Zaha Hadid Architects. “Dongdaemun Design Plaza” https://www.zaha-hadid.com/

    無法下載圖示 全文公開日期 2026/02/01 (校內網路)
    全文公開日期 2026/02/01 (校外網路)
    全文公開日期 2026/02/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE