簡易檢索 / 詳目顯示

研究生: SHIBIRU YADETA EJETA
SHIBIRU YADETA EJETA
論文名稱: 奈米材料應用於光觸媒、感測及水分解之研究
Applications of Nanomaterials for Photocatalysis, Sensing and Water Splitting
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 陳生明
Sheng-ming Chen
劉振良
Zhen-liang Liu
何清華
He Qinghua
氏原真樹
Masaki Ujihara
今榮東洋子
Toyoko Imae
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 155
中文關鍵詞: 石墨氮化碳2,4-二苯氧基乙酸金奈米粒子類比色之檢測振波伏安法3-巰基丙酸Cr(III)鈷摻雜石墨氮化碳氫氣析出反應
外文關鍵詞: graphitic carbon nitride, 2,4-Diphenoxyacetic acid, gold plasmon nanoparticle, Colorimetric detection, square wave voltammetry detection, 3-mercaptopropionic acid, chromium(III), Cobalt doped graphitic carbon nitride, Hydrogen evolution reaction
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

石墨碳氮化物(g-CN)是光催化和電催化反應的潛在材料,具有出色的穩定性以及可調節的電子和形態結構。金奈米粒子(AuNPs)具有特殊的吸引力,可以增強用於化學傳感的信號。已經設計了基於其應用合成g-CN的不同策略。對於AuNPs,通過用不同的配體修飾其表面,並且該性質使其適用於傳感系統。
原始g-CN的光催化和電催化效率受到重組率高和電導率低而受到限制。進行雜原子(氧)摻雜和金屬(鈷)摻雜,並分別用於光催化的2,4-二氯苯氧基乙酸(2,4-D)降解和水分解。關於AuNPs在感測水溶液中的Cr(III)離子方面的應用,將合成的AuNPs用3-巰基丙酸(3-mpa)進行表面修飾。可用於定量和檢測金屬離子的位移。
在這項研究中,g-CN是通過三聚氰胺的簡單熱解, 氧化後的光催化降解2,4-D和摻雜的鈷進行電催化水分解而製備的。所合成的催化劑具有以下特徵:結構,形態,光學和表面性質。用XRD,SEM,HRTEM,TEM,FTIR,UV-Visible,PL,XPS,Mott-Schottky繪製譜帶邊緣並仔細分析。以檸檬酸鈉為還原穩定劑,通過化學還原法製備了金奈米粒子。表面通過3-mpa硫醇基團通過共價相互作用進行修飾,分析其結構變化和電子變化。FTIR,DLS-zeta,紫外可見光譜,TEM和方波伏安法,並與純金奈米粒子進行比較。通過使用兩種不同的光源對2,4-D進行降解,分析了氧化的g-CN(Og-CN)的光催化. 在所有情況下,Og-CN的光催化性能均優於g-CN。類似地,將g-CN和Og-CN的催化性能與金屬和金屬氧化物基半導體的催化性能進行了比較更好的性能。以同樣的方式,將鈷改性的g-CN(Co@g-CN)作為雙功能用於水分解,並且將非貴族電催化劑及其HER和OER活性與碳紙上的基準催化劑鉑(Pt/CP). 最佳催化劑的HER活性幾乎與 Pt/CP 相似。然而,儘管它的性能優於Pt/CP,但獲得的OER活性超電勢比某些報導的催化劑稍高。AuNP@3-mpa被用作感測Cr(III)金屬離子的一種簡便,經濟高效的現場檢測允許方法,並獲得了約0.34 ppb的更好的靈敏度(LOD),但是檢測的線性範圍很小(50.0-250.0ppb) 。因此,另一種電化學方法(SWV)通過使用經AuNPs修飾,覆蓋有配體的 Cr(III)附著並隨後用3-mpa@AuNPs穩定的ITO玻璃基板進行整合。最後,用SWV掃描製備的基材,並出現與金屬離子協同作用成比例的陰極電流峰特徵,並將其用於定量分析更高濃度的Cr(III)。
本文的結果清楚地證實,通過氧化催化劑可以提高原始g-CN的光催化性能,而摻雜鈷奈米顆粒對HER和OER的電催化性能可以大大提高g-CN的電催化性能。增強的光催化效率可以主要歸因於電子性質,比表面積和孔隙率的修正。如果檢測到AuNPs,則配體3-mpa非常敏感,在結構中被COO-基團覆蓋,可輕鬆結合路易斯酸性Cr(III),從而改變其環境,從而改變了用於檢測系統的等離激元譜帶。通過從紅色到藍色的顏色變化或在光譜上目視確認檢測。通過 Cr(III)在配體上的附著來確認SWV檢測,並通過其特異性還原電位進行鑑定,作為未來的潛在應用。


Graphitic carbon nitride (g-CN), possessing remarkable stability and tunable electronic and morphological structure, it’s a potential material for photocatalytic and electrocatalytic reactions. Similarly, the plasmonic gold nanoparticle (AuNPs) have attractive properties which can enhance signals to be used in chemical sensing. Different strategies have been devised to synthesize g-CN based on its applications. With respect to AuNPs, adjusting its surface with different ligands, can specifically bind analytes and this property makes it applicable for sensing systems.
The pristine g-CN photocatalytic and electrocatalytic efficiency is limited due to high recombination and less conductivity respectively. Herein, heteroatom (oxygen) doping and metal (cobalt) encapsulation was performed and applied for photocatalytic 2,4-dichlorophenoxyl acetic acid (2,4-D) degradation and water splitting respectively. Regarding the application of AuNPs for sensing Cr(III), it was surface modified with 3-mpa so that the ligand binds the Cr(III) ion which will bring a plasmon absorption band shift that can be used for detection and quantification of the metal ion.
The pristine g-CN was prepared by a simple pyrolysis of melamine, aqueous solution exfoliated, and oxidized by H2O2 for photocatalytic degradation of 2,4-D and Cobalt doped for electrocatalytic water splitting. The as-synthesized catalysts were characterized for, structure, morphology, optical, and surface properties. Gold nanoparticles were prepared by a chemical reduction method using sodium citrate as a reducing and stabilizing agent. Its Surface was modified by the 3-mpa thiol group via covalent interaction. The photocatalytic activity of oxidized g-CN (Og-CN) was analyzed by applying for 2,4-D degradation with two different light sources. In all cases, the photocatalytic performance of Og-CN was superior to that g-CN. Compared to that of metal and metal oxide-based semiconductors and g-CN based material had better performance specifically in total organic carbon (TOC) removal efficiency. In the same manner, the cobalt modified g-CN (Co@g-CN) was applied for water splitting as a bifunctional, and non-noble electrocatalyst and it’s HER and OER activities were compared to the benchmark catalyst platinum on carbon paper (Pt/CP). The HER activity of the optimum catalyst was almost similar to that of Pt/Cp. However, its OER activity based on overpotential was greater than some reported catalysts though it performs better than Pt/CP.
The AuNP@3-mpa was applied for sensing the Cr(III) gives a better sensitivity (LOD) of about 0.34 ppb was obtained. The linearity range of the detection is very small (50.0-250.0ppb) which limits the quantification. Thus, another electrochemical method (SWV) was integrated by using ITO glass substrate modified with AuNP gives a wide range of linearity (200 5000 ppb) in higher concentrations.
The results in this thesis clearly confirmed that the photocatalytic performance of pristine g-CN was enhanced by oxidizing the catalyst and the electrocatalytic performance of g-CN was highly enhanced by doping small cobalt nanoparticles for electrocatalytic HER and OER. Similarly, AuNPs modified with the ligand 3-mpa are highly sensitive being covered with COO- groups in the structure to easily bind the Lewis acidic Cr(III) altering its environment that changes the plasmon band to be used for detection. Owing to this g-CN adjustable properties by different strategies or compositing the precursors in the synthesis, it can be applied for different applications. Similarly, due to high SPRS of gold nanoparticles modified with an analyte specific ligand, it can be applied for sensing different analytes as future potential applications.

摘要 i Abstract iii Acknowledgment v Table of contents vi Index of Figures x Index of Tables xiii Acronyms xiv Chapter 1: General Introduction 1 1.2 Organization of the thesis 4 1.3 Motivation and objectives 5 1.3.1 Motivation 5 1.3.2 Objectives 6 Chapter 2: Review of Related Literatures 8 2.1 Water pollution 8 2.2.1 Source of water pollution 8 2.2.2 Chemical pollutants 9 1.3.2.1 Agrochemicals 9 1.3.2.2 Heavy metals 9 2.2 The energy crisis and environmental effects 10 2.3 Nanomaterial and their application in different fields of research 10 2.3.1.2 Magnetic properties 14 2.3.1.3 Surface properties 14 2.3.2 Methods of preparing nanomaterials 15 2.3.3 Catalytic performance of nanomaterials 16 2.4 Photocatalysis 17 2.4.2 Semiconductor for photocatalysts 20 2.4.3 Parameters affecting the photocatalytic performance 20 2.4.3.1 Effect of concentration and nature of pollutants 21 2.4.3.2 Effect of catalyst amount 21 2.4.3.3 Effect of pH 21 2.4.3.4 Size and structure of the photocatalyst 21 2.4.3.5 Surface area 22 2.4.3.7 Light source and light intensity 22 2.4.5 Measuring the effectiveness of the photocatalytic reaction 24 2.4.5.1 The percentage of degradation 25 2.4.5.2 The kinetics of degradation 25 2.4.5.3 The degree of mineralization 26 2.6.1 Synthesis of graphitic carbon nitride 28 2.6.2 Applications 28 2.6.3 Methods of enhancing photocatalytic performance of g-CN 29 2.5.3.1 Enhancing photocatalytic properties via metallic or nonmetallic atoms 29 2.5.3.2 Enhancing photocatalytic properties via designing heterojunction 30 2.5.3.3 Enhancing photocatalytic properties via morphology modification 31 2.6.2.1 Square Wave Voltammetry (SWV) 34 2.7.3.2 Localized Surface Plasmon generation of metal nanoparticles 36 2.7.3.3 Applications of AuNPs 38 2.7.3.4 Sensing application of AuNPs 38 2.7.4 Analytical method investigation techniques 39 2.8.1 Fuel cell 40 2.8.3 HER and OER 41 2.6.5.1 Graphene based materials for HER and OER 46 2.8.6 Evaluation approaches of electrocatalysts in water splitting 47 Chapter 3: Experimental 50 3.1 Chemicals and reagents 50 3.2 Methods 51 3.2.1 Syntheses of g-CN photocatalysts 51 3.2.4 Sensing of chromium by colorimetric method by AuNPs 52 3.2.5 Chromium (III) sensing by electrochemical method 52 3.2.6 Quantum yield calculation of the catalysts 53 3.2.7 Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid 54 3.2.7.1 Active species trapping experiments 54 3.2.8 Electrode preparation and electrochemical measurement of HER and OER 54 3.2 Characterization of materials 56 3.2.1 Spectroscopic characterizations 56 3.2.2 Microscopical characterizations 57 3.2.3 Surface analyzers and morphology characterizations 57 Chapter 4: Photo degradation of pollutant 2, 4-dichlorophenoxyacetic acid by graphitic carbon nitride catalysts 58 4.1 Introduction 58 4.1.1 Objectives and motivations 59 4.2 Results and discussion 61 4.2.2 Spectroscopic characterization of photocatalysts 62 4.2.3 Surface and morphology characterization of photocatalysts 64 4.2.4 Photocatalytic degradation of 2,4-D by g-CN and Og-CN 68 4.2.5 Photocatalytic degradation kinetics 72 4.2.6 Mechanisms of photocatalytic reaction 76 4.3 Conclusions 80 Chapter 5: Selective colorimetric and electrochemical detections of chromium(III) pollutant in water on 3-mercaptopropionic acid functionalized gold nanoparticles 81 5.1 Introduction 81 5.1.1 Objectives and motivations 83 5.2. Results and discussion 84 5.2.1 Characterization of AuNP@3-mpa 84 5.2.2 Colorimetric sensing of Cr(III) by AuNP@3-mpa 86 5.2.3 Electrochemical sensing of Cr(III) by AuNP@3-mpa on ITO glass 91 5.3 Conclusions 95 Chapter 6: Metallic cobalt incorporated graphitic carbon nitride as bifunctional catalyst for hydrogen evolution and oxygen evolution reactions 96 6.1 Introduction 96 6.1.1 Objectives and motivation 98 6.2 Results and discussion 99 6.2.1 Structural characteristics of g-CN and Co@g-CN 99 6.2.2 Electrocatalytic HER and OER activity of Co@g-CN catalysts. 106 Chapter 7: Conclusion and future prospective 112 Reference 114 List of research papers and oral presentations 138

[1] X.U. Jianzhong, A. Assenova, V. Erokhin, Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan, Sustainability, 10 (2018) 3315-3336.
[2] D.A. Alvarez, W.L. Cranor, S.D. Perkins, R.C. Clark, S.B. Smith, Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers, J. Environ. Qual, 37 (2008) 1024-1033.
[3] A. Srivastava, N.K. Jangid, M. Srivastava, V. Rawat, Pesticides as Water Pollutants, Handbook of Research on the Adverse Effects of Pesticide Pollution in Aquatic Ecosystems, IGI Global, 2019, pp. 1-19.
[4] R. Ameta, S. Benjamin, A. Ameta, S.C. Ameta, Photocatalytic degradation of organic pollutants: a review, Materials Science Forum, Trans Tech Publ, 2013, pp. 247-272.
[5] S. Li, T. Wei, G. Ren, F. Chai, H. Wu, F. Qu, Gold nanoparticles based colorimetric probe for Cr(III) and Cr(VI) detection, Colloids Surf, A Physicochem Eng Asp, 535 (2017) 215-224.
[6] L. Al-Ghussain, Global warming: review on driving forces and mitigation, Environ. Prog. Sustain. Energy, 38 (2019) 13-21.
[7] A. Özkara, D. Akyil, M. Konuk, Pesticides, Environmental Pollution, and Health, Environmental Health Risk - Hazardous Factors to Living Species, Intech Open, 2016.
[8] M. Saaristo, T. Brodin, S. Balshine, M.G. Bertram, B.W. Brooks, S.M. Ehlman, E.S. McCallum, A. Sih, J. Sundin, B.B.M. Wong, K.E. Arnold, Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife, Proc Biol Sci, 285 (2018).
[9] R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation, ISRN Ecology, 2011 (2011) 1-20.
[10] V. Karri, M. Schuhmacher, V. Kumar, Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain, Environ. Toxicol. Pharmacol, 48 (2016) 203-213.
[11] P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment, Molecular, clinical and environmental toxicology, Springer, 2012, pp. 133-164.
[12] L. Regent, M. Luis-Sunga, E. Pastor, G. García, Graphene-based catalysts for hydrogen evolution reaction, Electrochem, (2019) 75-86.
[13] N. Khatri, S. Tyagi, Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas, Front. Life Sci, 8 (2014) 23-39.
[14] M. Singh, G. Pant, K. Hossain, A. Bhatia, Green remediation. tool for safe and sustainable environment: a review, J. Appl. Water Eng. Res, 7 (2017) 2629-2635.
[15] L. Tang, S. Zhang, G.-M. Zeng, Y. Zhang, G.-D. Yang, J. Chen, J.-J. Wang, J.-J. Wang, Y.-Y. Zhou, Y.-C. Deng, Rapid adsorption of 2, 4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon, J. Colloid Interface Sci, 445 (2015) 1-8.
[16] G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett, 17 (2018) 145-155.
[17] S. Li, T. Wei, G. Ren, F. Chai, H. Wu, F. Qu, Gold nanoparticles based colorimetric probe for Cr(III) and Cr(VI) detection, Colloids Surf. A Physicochem Eng Asp, (2017) 215-224.
[18] J. Quastel, 2, 4-Dichlorophenoxyacetic acid (2,4-D) as a selective herbicide, ACS Publications,1950, pp. 244-249.
[19] B. Ismail, M. Sameni, M. Halimah, Evaluation of herbicide pollution in the kerian ricefields of Perak, Malaysia, J. World Appl Sci, 15 (2011) 05-13.
[20] X. Bian, J. Chen, R. Ji, Degradation of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by novel photocatalytic material of tourmaline-coated TiO2 nanoparticles: kinetic study and model, J Materials, 6 (2013) 1530-1542.
[21] L. Tang, S. Zhang, G.-M. Zeng, Y. Zhang, G.-D. Yang, J. Chen, J.-J. Wang, J.-J. Wang, Y.-Y. Zhou, Y.-C. Deng, Rapid adsorption of 2, 4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon, J. Colloid. Interface. Sci, 445 (2015) 1-8.
[22] F. Islam, J. Wang, M.A. Farooq, M.S. Khan, L. Xu, J. Zhu, M. Zhao, S. Muños, Q.X. Li, W. Zhou, Potential impact of the herbicide 2, 4-dichlorophenoxyacetic acid on human and ecosystems, Environ. Int, 111 (2018) 332-351.
[23] H. Singh, M. Muneer, Photodegradation of a herbicide derivative, 2, 4-dichlorophenoxy acetic acid in aqueous suspensions of titanium dioxide, Environ. Sci. Technol, 30 (2004) 317-329.
[24] S. Kundu, A. Pal, A.K. Dikshit, UV induced degradation of herbicide 2, 4-D: kinetics, mechanism and effect of various conditions on the degradation, Sep. Purif. Technol, 44 (2005) 121-129.
[25] E.E. Ebrahiem, M.N. Al-Maghrabi, A.R. Mobarki, Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology, Arab J Chem, 10 (2017) S1674-S1679.
[26] U. Akpan, B. Hameed, Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid by Ca–Ce–W–TiO2 composite photocatalyst, Chem. Eng. J, 173 (2011) 369-375.
[27] M. Alvarez, T. López, J. Odriozola, M. Centeno, M. Domínguez, M. Montes, P. Quintana, D. Aguilar, R. González, 2, 4-Dichlorophenoxyacetic acid (2, 4-D) photodegradation using an Mn+/ZrO2 photocatalyst: XPS, UV–vis, XRD characterization, Appl. Catal. B, 73 (2007) 34-41.
[28] Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride-based nanocomposites: a review, Nanoscale, 7 (2015) 15-37.
[29] Y. Xu, Y. Gong, H. Ren, W. Liu, L. Niu, C. Li, X. Liu, In situ structural modification of graphitic carbon nitride by alkali halides and influence on photocatalytic activity, RSC Advances, 7 (2017) 32592-32600.
[30] H. Oliveira, Chromium as an environmental pollutant: insights on induced plant toxicity, J. Bot, 2012 (2012) 1-8.
[31] M. Shadreck, T. Mugadza, Chromium, an essential nutrient and pollutant: a review, AJPAC, 7 (2013) 310-317.
[32] A.P. Das, S. Mishra, Hexavalent chromium(VI): Environment pollutant and health hazard, J. Environ. Res. Dev, 2 (2008) 386-392.
[33] M. Novak, V. Chrastny, E. Cadkova, J. Farkas, T.D. Bullen, J. Tylcer, Z. Szurmanova, M. Cron, E. Prechova, J. Curik, Common occurrence of a positive δ53Cr shift in Central European waters contaminated by geogenic/industrial chromium relative to source values, Environ. Sci. Technol, 48 (2014) 6089-6096.
[34] J.D. Henderson, F.P. Filice, M.S. Li, Z. Ding, tracking live‐cell response to hexavalent chromium toxicity by using scanning electrochemical microscopy, ChemElectroChem, 4 (2017) 856-863.
[35] A. Ngo, H. Nguyen, D. Hollmann, Criticial Assessment of the Photocatalytic Reduction of Cr(VI) over Au/TiO2, Catalysts, 8 (2018).
[36] X. Fan, S. Ding, M. Chen, S. Gao, Z. Fu, M. Gong, D.C.W. Tsang, Y. Wang, C. Zhang, Peak chromium pollution in summer and winter caused by high mobility of chromium in sediment of a eutrophic Lake: In situ evidence from high spatiotemporal sampling, Environ Sci Technol, 53 (2019) 4755-4764.
[37] H. Peng, Y. Leng, Q. Cheng, Q. Shang, J. Shu, J. Guo, Efficient removal of hexavalent chromium from waste water with electro-reduction, Processes, 7 (2019).
[38] Y.V. Nancharaiah, C. Dodge, V.P. Venugopalan, S.V. Narasimhan, A.J. Francis, Immobilization of Cr(VI) and its reduction to Cr(III) phosphate by granular biofilms comprising a mixture of microbes, Appl Environ Microbiol, 76 (2010) 2433-2438.
[39] E. M, S.A. Alex, N. Chandrasekaran, A. Mukherjee, Simple fluorescence-based detection of Cr(III) and Cr(VI) using unmodified gold nanoparticles, Anal. Methods, 6 (2014) 9554-9560.
[40] D. Long, H. Yu, A synergistic coordination strategy for colorimetric sensing of chromium(III) ions using gold nanoparticles, Anal Bioanal Chem, 408 (2016) 8551-8557.
[41] Y.-C. Chen, I.L. Lee, Y.-M. Sung, S.-P. Wu, Triazole functionalized gold nanoparticles for colorimetric Cr3+ sensing, Sens. Actuators. B Chem, 188 (2013) 354-359.
[42] D.M. Hausladen, S. Fendorf, Hexavalent chromium generation within naturally structured soils and sediments, Environ. Sci. Technol, 51 (2017) 2058-2067.
[43] K.E. Abu-Saba, A.R. Flegal, Temporally variable freshwater sources of dissolved chromium to the san francisco bay estuary, Environ. Sci. Technol, 31 (1997) 3455-3460.
[44] K. Salnikow, A. Zhitkovich, Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium, Chem Res Toxicol, 21 (2008) 28-44.
[45] D.M. Hausladen, A. Alexander-Ozinskas, C. McClain, S. Fendorf, Hexavalent chromium sources and distribution in California groundwater, Environ. Sci. Technol, 52 (2018) 8242-8251.
[46] Y.-L. Hung, T.-M. Hsiung, Y.-Y. Chen, Y.-F. Huang, C.-C. Huang, Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols, J. Phys. Chem. C, 114 (2010) 16329-16334.
[47] Y. Leng, J. He, B. Li, X. Xing, Y. Guo, L. Ye, Z. Lu, the effects of colorimetric detection of heavy metal ions based on Au nanoparticles (NPs): size and shape a case of Co2+, Appl. Phys. A, 123 (2017) 607.
[48] G. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, B. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light, Energy Environ. Sci, 12 (2019) 2080-2147.
[49] J.T. Ren, L. Chen, C.C. Weng, G.G. Yuan, Z.Y. Yuan, Well-defined Mo2C nanoparticles embedded in porous N-doped carbon matrix for highly efficient electrocatalytic hydrogen evolution, ACS Appl Mater Interfaces, 10 (2018) 33276-33286.
[50] J. Joyner, E.F. Oliveira, H. Yamaguchi, K. Kato, S. Vinod, D.S. Galvao, D. Salpekar, S. Roy, U. Martinez, C.S. Tiwary, Graphene supported MoS2 structures with high defect density for an efficient HER electrocatalysts, ACS Applied Mater Interfaces, 12 (2020) 12629-12638.
[51] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Energy Combust. Sci, 36 (2010) 307-326.
[52] P.T. Anastas, J.B. Zimmerman, Peer reviewed: design through the 12 principles of green engineering, ACS Publications, 2003.
[53] L.A. Thompson, W.S. Darwish, Environmental chemical contaminants in food: review of a global problem, J Toxicol, 2019 (2019) 2345283.
[54] J. He, Preparation and photocatalysis of graphite carbon nitride based photocatalysts, Curtin University, 2015.
[55] W. Jin, P. Huang, Y. Chen, F. Wu, Y. Wan, Colorimetric detection of Cr3+ using gold nanoparticles functionalized with 4-amino hippuric acid, J Nanopart Res, 17 (2015).
[56] M.R. Singh, A. Gupta, Water pollution-sources, effects and control, J Centre for Biodiversity, Department of Botany, Nagaland University, (2016).
[57] J.G. Speight, Sources and Types of Organic Pollutants, Environmental Organic Chemistry for Engineers, 2017, pp. 153-201.
[58] V. Masindi, K.L. Muedi, Environmental contamination by heavy metals, Heavy Metals, 2018.
[59] F. Sánchez-Bayo, H.A. Tennekes, Environmental risk assessment of agrochemicals a critical appraisal of current approaches, Appl. Surf. Sci,2015.
[60] A.A. Okoya, A.O. Ogunfowokan, O.I. Asubiojo, N. Torto, Organochlorine pesticide residues in sediments and waters from coca producing areas of Ondo State, Southwestern Nigeria, ISRN Soil Science, 2013 (2013) 1-12.
[61] F. Kafilzadeh, Assessment of organochlorine pesticide residues in water, sediments and fish from lake Tashk, Iran, Achiev. Life Sci, 9 (2015) 107-111.
[62] R.K. Gautam, S.K. Sharma, S. Mahiya, M.C. Chattopadhyaya, CHAPTER 1. Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation, Heavy Metals in Water, 2014, pp. 1-24.
[63] S.K. Sek, The impact of energy consumption on economic growth: the case of China, Appl Ecol Environ Res, 15 (2017) 1243-1254.
[64] T. Ahmad, D. Zhang, A critical review of comparative global historical energy consumption and future demand: The story told so far, Energy Reports, 6 (2020) 1973-1991.
[65] A. Midilli, I. Dincer, M. Ay, Green energy strategies for sustainable development, Energy Policy, 34 (2006) 3623-3633.
[66] J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein J Nanotechnol, 9 (2018) 1050-1074.
[67] S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties, Nanoscale, 10 (2018) 12871-12934.
[68] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arab J Chem, 12 (2019) 908-931.
[69] M.R. Willner, P.J. Vikesland, Nanomaterial enabled sensors for environmental contaminants, J Nanobiotechnology, 16 (2018) 95.
[70] S. Su, W. Wu, J. Gao, J. Lu, C. Fan, Nanomaterials-based sensors for applications in environmental monitoring, J. Mater. Chem. A, 22 (2012).
[71] M.T. Efa, T. Imae, Hybridization of carbon-dots with ZnO nanoparticles of different sizes, ACS Sustain. Chem. Eng, 92 (2018) 112-117.
[72] B. Devadas, T. Imae, Effect of carbon dots on conducting polymers for energy storage applications, ACS Sustain. Chem. Eng, 6 (2017) 127-134.
[73] M.A. Kebede, T. Imae, Sabrina, C.-M. Wu, K.-B. Cheng, Cellulose fibers functionalized by metal nanoparticles stabilized in dendrimer for formaldehyde decomposition and antimicrobial activity, Chem. Eng. J, 311 (2017) 340-347.
[74] J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.S. Shin, Nano based drug delivery systems: recent developments and future prospects, J Nanobiotechnology, 16 (2018) 71.
[75] S. Ueno, M. Sekino, Biomagnetics and bioimaging for medical applications, J. Magn. Magn. Mater, 304 (2006) 122-127.
[76] E. Espinosa-Cano, R. Palao-Suay, M.R. Aguilar, B. Vázquez, J. San Román, Polymeric nanoparticles for cancer therapy and bioimaging, Nanooncology, Springer, 2018, pp. 137-172.
[77] E. Roduner, Size matters: why nanomaterials are different, Chem Soc Rev, 35 (2006) 583-592.
[78] M.J. Pitkethly, Nanomaterials – the driving force, Materials Today, 7 (2004) 20-29.
[79] V.V. Pokropivny, V.V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science, Mater. Sci. Eng. C, 27 (2007) 990-993.
[80] P. Sharma, M. Bhargava, Applications and characteristics of nanomaterials in industrial environment, J Res Dev, 3 (2013) 63-72.
[81] P.N. Sudha, K. Sangeetha, K. Vijayalakshmi, A. Barhoum, Nanomaterials history, classification, unique properties, production and market, Emerging Applications of Nanoparticles and Architecture Nanostructures, 2018, pp. 341-384.
[82] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, ACS Publications, 2003.
[83] L. Wang, M. Hasanzadeh Kafshgari, M. Meunier, Optical properties and applications of plasmonic‐metal nanoparticles, Adv. Funct. Mater, (2020).
[84] P. Qiu, C. Xu, H. Chen, F. Jiang, X. Wang, R. Lu, X. Zhang, One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity, Appl. Catal. B, 206 (2017) 319-327.
[85] R. Tang, R. Ding, X. Xie, Preparation of oxygen-doped graphitic carbon nitride and its visible-light photocatalytic performance on bisphenol A degradation, Water Sci. Technol, 78 (2018) 1023-1033.
[86] P. Qiu, J. Yao, H. Chen, F. Jiang, X. Xie, Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst, J Hazard Mater, 317 (2016) 158-168.
[87] A. Alagarasi, Chapter-Introduction to nomaterials, IITM., (2013) 1-24.
[88] T.T. Thuy, S. Maenosono, N.T.K. Thanh, Next Generation Magnetic, J Magnetic Nanoparticles: From Fabrication to Clinical Applications, (2012) 99.
[89] B.P. Isaacoff, K.A. Brown, Progress in top-down control of bottom-up assembly, Nano Lett, 17 (2017) 6508-6510.
[90] R. Konwar, A.B. Ahmed, Nanoparticle: an overview of preparation, characterization and application, Int. Res. J. Pharm, 4 (2016) 47-57.
[91] Y. Zhou, C. Jin, Y. Li, W. Shen, Dynamic behavior of metal nanoparticles for catalysis, Nano Today, 20 (2018) 101-120.
[92] F.-T. Tsai, Y.-T. Deng, C.-W. Pao, J.-L. Chen, J.-F. Lee, K.-T. Lai, W.-F. Liaw, The HER/OER mechanistic study of an FeCoNi-based electrocatalyst for alkaline water splitting, J. Mater. Chem. A, 8 (2020) 9939-9950.
[93] S.P. Kamble, S.P. Deosarkar, S.B. Sawant, J.A. Moulijn, V.G. Pangarkar, Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid using concentrated solar radiation: batch and continuous operation, Ind. Eng. Chem. Res, 43 (2004) 8178-8187.
[94] D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Photocatalysis. a multi-faceted concept for green chemistry, Chem. Soc. Rev, 38 (2009) 1999-2011.
[95] R. Ameta, S. Benjamin, A. Ameta, S.C. Ameta, Photocatalytic degradation of organic pollutants: a review, Materials Science Forum, 734 (2012) 247-272.
[96] D. Rajamanickam, M. Shanthi, Photocatalytic degradation of an organic pollutant by zinc oxide – solar process, Arab J Chem, 9 (2016) S1858-S1868.
[97] S. Liu, Q. Hu, J. Qiu, F. Wang, W. Lin, F. Zhu, C. Wei, N. Zhou, G. Ouyang, enhanced photocatalytic degradation of environmental pollutants under visible irradiation by a composite coating, Environ Sci Technol, 51 (2017) 5137-5145.
[98] S. Sandeep, K. Nagashree, T. Maiyalagan, G. Keerthiga, Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid-a comparative study in hydrothermal TiO2 and commercial TiO2, Appl. Surf. Sci, 449 (2018) 371-379.
[99] M. Abdennouri, A. Elhalil, M. Farnane, H. Tounsadi, F.Z. Mahjoubi, R. Elmoubarki, M. Sadiq, L. Khamar, A. Galadi, M. Baâlala, M. Bensitel, Y. El hafiane, A. Smith, N. Barka, Photocatalytic degradation of 2,4-D and 2,4-D herbicides on Pt/TiO2 nanoparticles, J. Saudi Chem. Soc, 19 (2015) 485-493.
[100] Y.-H. Chiu, T.-F. Chang, C.-Y. Chen, M. Sone, Y.-J. Hsu, Mechanisticinsights into photodegradation of organic dyes using heterostructure photocatalysts, Catalysts, 9 (2019).
[101] K. Mahesh, D.-H. Kuo, B.-R. Huang, M. Ujihara, T. Imae, Chemically modified polyurethane-SiO2/TiO2 hybrid composite film and its reusability for photocatalytic degradation of acid black 1 (AB 1) under UV light, APPL CATAL A-GEN, 475 (2014) 235-241.
[102] A. Fakhri, S. Behrouz, Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation, Solar Energy, 112 (2015) 163-168.
[103] Y.-J. Yuan, D. Chen, Z.-T. Yu, Z.-G. Zou, Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production, J. Mater. Chem. A, 6 (2018) 11606-11630.
[104] X. Li, P. Xu, M. Chen, G. Zeng, D. Wang, F. Chen, W. Tang, C. Chen, C. Zhang, X. Tan, Application of silver phosphate-based photocatalysts: barriers and solutions, Chem. Eng. J, 366 (2019) 339-357.
[105] S.Y. Ejeta, T. Imae, Photodegradation of pollutant pesticide by oxidized graphitic carbon nitride catalysts, J. Photochem. Photobiol A. Chem, 404 (2021).
[106] S. Kumar, S. Karthikeyan, A. Lee, g-C3N4-based nanomaterials for visible light-driven photocatalysis, Catalysts, 8 (2018).
[107] A. Kumar, A review on the factors affecting the photocatalytic degradation of hazardous materials, Mater. sci. eng, 1 (2017).
[108] R. Gusain, N. Kumar, S.S. Ray, Factors influencing the photocatalytic activity of photocatalysts in wastewater treatment, J.Phot. advanced oxidation process., (2020) 229-270.
[109] K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Applied Water Science, 7 (2015) 1569-1578.
[110] P.T. Anastas, M.M. Kirchhoff, T.C. Williamson, Catalysis as a foundational pillar of green chemistry, Appl. Catal A: General, 221 (2001) 3-13.
[111] P.T. Anastas, J.C. Warner, practice, Principles of green chemistry, J Green chemistry: Theory, (1998) 29-56.
[112] T. Mishra, Anion supported TiO2–ZrO2 nanomaterial synthesized by reverse microemulsion technique as an efficient catalyst for solvent free nitration of halobenzene, Catal. Commun, 9 (2008) 21-26.
[113] P. Qiu, J. Yao, H. Chen, F. Jiang, X. Xie, Enhanced visible-light photocatalytic decomposition of 2, 4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst, J. Hazard. Mater, 317 (2016) 158-168.
[114] G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties, J. Photochem. Photobiol A. Chem, 20 (2014) 33-50.
[115] J. Liu, H. Wang, M. Antonietti, Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis, Chem. Soc. Rev, 45 (2016) 2308-2326.
[116] A. Naseri, M. Samadi, A. Pourjavadi, A.Z. Moshfegh, S. Ramakrishna, Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions, J. Mater. Chem. A, 5 (2017) 23406-23433.
[117] Y. Wang, B. Gao, Q. Yue, Z. Wang, Graphitic carbon nitride (g-C3N4)-based membranes for advanced separation, J. Mater. Chem. A, 8 (2020) 19133-19155.
[118] A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs, Nanomicro Lett, 9 (2017) 47.
[119] H. Katsumata, F. Higashi, Y. Kobayashi, I. Tateishi, M. Furukawa, S. Kaneco, Dual-defect-modified graphitic carbon nitride with boosted photocatalytic activity under visible light, Sci Rep, 9 (2019) 14873.
[120] D. Vidyasagar, S.G. Ghugal, S.S. Umare, M. Banavoth, Extended pi-conjugative n-p type homostructural graphitic carbon nitride for photodegradation and charge-storage applications, Sci Rep, 9 (2019) 7186.
[121] Z. Zhao, Y. Ma, J. Fan, Y. Xue, H. Chang, Y. Masubuchi, S. Yin, Synthesis of graphitic carbon nitride from different precursors by fractional thermal polymerization method and their visible light induced photocatalytic activities, J. Alloys Compd, 735 (2018) 1297-1305.
[122] W. Iqbal, B. Yang, X. Zhao, M. Rauf, M. Waqas, Y. Gong, J. Zhang, Y. Mao, Controllable synthesis of graphitic carbon nitride nanomaterials for solar energy conversion and environmental remediation: the road travelled and the way forward, Catal. Sci. Technol, 8 (2018) 4576-4599.
[123] Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry, Angew Chem Int Ed Engl, 51 (2012) 68-89.
[124] Y. Zhu, D. Zhang, L. Gong, L. Zhang, Z. Xia, Catalytic activity Origin and Design Principles of Graphitic Carbon Nitride Electrocatalysts for hydrogen evolution, Front. Mater, 6 (2019).
[125] M. Inagaki, T. Tsumura, T. Kinumoto, M. Toyoda, Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials, Carbon, 141 (2019) 580-607.
[126] G. Lei, Y. Cao, W. Zhao, Z. Dai, L. Shen, Y. Xiao, L. Jiang, Exfoliation of graphitic carbon nitride for enhanced oxidative desulfurization: A facile and general strategy, ACS Sustain. Chem. Eng, 7 (2019) 4941-4950.
[127] S. Le, T. Jiang, Q. Zhao, X. Liu, Y. Li, B. Fang, M. Gong, Cu-doped mesoporous graphitic carbon nitride for enhanced visible-light driven photocatalysis, RSC Advances, 6 (2016) 38811-38819.
[128] L. Zhang, Z. Jin, H. Lu, T. Lin, S. Ruan, X.S. Zhao, Y.J. Zeng, Improving the visible-light photocatalytic activity of graphitic carbon nitride by carbon black doping, ACS Omega, 3 (2018) 15009-15017.
[129] S. Wojtyła, K. Śpiewak, T. Baran, Doped graphitic carbon nitride: insights from spectroscopy and electrochemistry, J Inorg Organomet Polym Mater, 30 (2020) 3418-3428.
[130] Y. Kumar, S. Rani, J. Shabir, L.S. Kumar, Nitrogen-rich and porous graphitic carbon nitride nanosheet-immobilized palladium nanoparticles as highly active and recyclable catalysts for the reduction of nitro compounds and degradation of organic dyes, ACS Omega, 5 (2020) 13250-13258.
[131] K. Yue, Z. Yan, Z. Sun, A. Li, L. Qian, Graphitic carbon nitride modified with Pd nanoparticles toward efficient cathode catalyst for Li-O2 batteries, Funct. Mater. Lett, 13 (2020).
[132] W. Wu, Z. Ruan, J. Li, Y. Li, Y. Jiang, X. Xu, D. Li, Y. Yuan, K. Lin, In situ preparation and analysis of bimetal co-doped mesoporous graphitic carbon nitride with enhanced photocatalytic activity, Nano-Micro Letters, 11 (2019).
[133] H. Starukh, P. Praus, Doping of graphitic carbon nitride with non-metal elements and its applications in photocatalysis, Catalysts, 10 (2020).
[134] Z. Chen, T.-T. Fan, X. Yu, Q.-L. Wu, Q.-H. Zhu, L.-Z. Zhang, J.-H. Li, W.-P. Fang, X.-D. Yi, Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution, J. Mater. Chem. A, 6 (2018) 15310-15319.
[135] M. Majdoub, Z. Anfar, A. Amedlous, Emerging chemical functionalization of g-C3N4: covalent/noncovalent modifications and applications, ACS Nano, 14 (2020) 12390-12469.
[136] W.-J. Ong, 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter? Front. Mater, 4 (2017).
[137] D. Huang, X. Yan, M. Yan, G. Zeng, C. Zhou, J. Wan, M. Cheng, W. Xue, Graphitic carbon nitride-based heterojunction photoactive nanocomposites: applications and mechanism insight, ACS Appl Mater Interfaces, 10 (2018) 21035-21055.
[138] J. Barrio, M. Volokh, M. Shalom, Polymeric carbon nitrides and related metal-free materials for energy and environmental applications, J. Mater. Chem. A, 8 (2020) 11075-11116.
[139] Q. Gu, Z. Gao, H. Zhao, Z. Lou, Y. Liao, C. Xue, Temperature-controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light, J Rsc Advances, 5 (2015) 49317-49325.
[140] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. A, 18 (2008) 4893-4908.
[141] H.L. Lee, Z. Sofer, V. Mazánek, J. Luxa, C.K. Chua, M. Pumera, Graphitic carbon nitride: effects of various precursors on the structural, morphological and electrochemical sensing properties, Appl. Mater. Today, 8 (2017) 150-162.
[142] A. Hulanicki, S. Glab, F. Ingman, Chemical sensors: definitions and classification, J Pure applied chemistry, 63 (1991) 1247-1250.
[143] D. Compagnone, G.D. Francia, C.D. Natale, G. Neri, R. Seeber, A. Tajani, Chemical sensors and biosensors in Italy:a review of the 2015 literature, J Sensors, 17 (2017) 868.
[144] J. Galban, V. Sanz, E. Mateos, I. Sanz-Vicente, A. Delgado-Camin, S. de Marcos, Reagentless optical biosensors for organic compounds based on auto-indicating proteins, Protein Pept Lett, 15 (2008) 772-778.
[145] X. Yan, H. Li, X. Su, Review of optical sensors for pesticides, TRAC-TREND ANAL CHEM, 103 (2018) 1-20.
[146] K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing, Chem Rev, 112 (2012) 2739-2779.
[147] P. Kassal, M.D. Steinberg, I.M. Steinberg, Wireless chemical sensors and biosensors: A review, Sens. Actuators B Chem, 266 (2018) 228-245.
[148] J.R. Stetter, W.R. Penrose, S. Yao, Sensors, chemical sensors, electrochemical sensors, and ECS, J. Electrochem. Soc, 150 (2003) S11.
[149] G. Ou, J. Zhao, P. Chen, C. Xiong, F. Dong, B. Li, X. Feng, Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions, Anal Bioanal Chem, 410 (2018) 2485-2498.
[150] R. Zhu, J. Song, Q. Ma, Y. Zhou, J. Yang, S. Shuang, C. Dong, A colorimetric probe for the detection of aluminum ions based on 11-mercaptoundecanoic acid functionalized gold nanoparticles, Analytical Methods, 8 (2016) 7232-7236.
[151] V.S.A. Piriya, P. Joseph, S.C.G.K. Daniel, S. Lakshmanan, T. Kinoshita, S. Muthusamy, Colorimetric sensors for rapid detection of various analytes, Mater Sci Eng C Mater Biol Appl, 78 (2017) 1231-1245.
[152] D.R. Thevenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: recommended definitions and classification, Pure Appl. Chem, 71 (1999) 2333-2348.
[153] N.R. Stradiotto, H. Yamanaka, M.V.B. Zanoni, Electrochemical sensors: a powerful tool in analytical chemistry, J. Braz. Chem. Soc, 14 (2003) 159-173.
[154] R. Ramachandran, T.-W. Chen, S.-M. Chen, T. Baskar, R. Kannan, P. Elumalai, P. Raja, T. Jeyapragasam, K. Dinakaran, G.p. Gnana kumar, A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules, Inorg. Chem. Front, 6 (2019) 3418-3439.
[155] A. Chen, B. Shah, Electrochemical sensing and biosensing based on square wave voltammetry, Analytical Methods, 5 (2013).
[156] S.A. Trammell, D. Zabetakis, M. Moore, J. Verbarg, D.A. Stenger, Square wave voltammetry of TNT at gold electrodes modified with self-assembled monolayers containing aromatic structures, PLoS One, 9 (2014) e115966.
[157] B. Dogan-Topal, S. A., O.a.B. Uslu*, The analytical applications of square wave voltammetry on pharmaceutical analysis, Open Chem Biomed Meth J, 3 (2010) 56-73.
[158] H. Kumar, N. Venkatesh, H. Bhowmik, A. Kuila, Metallic nanoparticle: a review, BJSTR, 4 (2018) 3765-3775.
[159] M. Homberger, U. Simon, On the application potential of gold nanoparticles in nanoelectronics and biomedicine, Philos Trans A Math Phys Eng Sci, 368 (2010) 1405-1453.
[160] C. Pezzato, S. Maiti, J.L. Chen, A. Cazzolaro, C. Gobbo, L.J. Prins, Monolayer protected gold nanoparticles with metal-ion binding sites: functional systems for chemosensing applications, Chem Commun (Camb). 51 (2015) 9922-9931.
[161] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, Turkevich method for gold nanoparticle synthesis revisited, J. Phys. Chem. B, 110 (2006) 15700-15707.
[162] M. Tran, R. DePenning, M. Turner, S. Padalkar, Effect of citrate ratio and temperature on gold nanoparticle size and morphology, Mater. Res. Express, 3 (2016).
[163] T. Okamoto, I. Yamaguchi, Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique, J. Phys. Chem. B, 107 (2003) 10321-10324.
[164] X. Bai, Y. Wang, Z. Song, Y. Feng, Y. Chen, D. Zhang, L. Feng, The basic properties of gold Nanoparticles and their applications in tumor diagnosis and treatment, Int J Mol Sci, 21 (2020).
[165] L.H. Madkour, Applications of gold nanoparticles in medicine and therapy, Pharm Pharmacol Int J, 6 (2018).
[166] N. Elahi, M. Kamali, M.H. Baghersad, Recent biomedical applications of gold nanoparticles: A review, Talanta, 184 (2018) 537-556.
[167] Y.-H. Su, Y.-F. Ke, S.-L. Cai, Q.-Y. Yao, Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell, Light Sci. Appl, 1 (2012) e14-e14.
[168] K. Sathiyamoorthy, K.V. Sreekanth, R. Sidharthan, V.M. Murukeshan, B. Xing, Surface plasmon enhancement in gold nanoparticles in the presence of an optical gain medium: an analysis, J. Phys. D: Appl. Phys, 44 (2011).
[169] E. Petryayeva, U.J. Krull, Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review, Anal Chim Acta, 706 (2011) 8-24.
[170] A.S. Bisht, K. Hoang-Thi, I. Ledoux-Rak, H. Remita, F. Dumur, A. Guerlin, E. Dumas, C.R. Mayer, The role of surface plasmon resonance of gold nanoparticles for the enhancement of second harmonic generation of nonlinear chromophores, Inorganics, 7 (2019).
[171] M. Taleuzzaman, Limit of blank (LOB), limit of detection (LOD), and limit of quantification (LOQ), OMCIJ, 7 (2018).
[172] M. Grätzel, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res, 42 (2009) 1788-1798.
[173] N.S. Lewis, Toward cost-effective solar energy use, science, 315 (2007) 798-801.
[174] Z. Zhou, Z. Pei, L. Wei, S. Zhao, X. Jian, Y. Chen, Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects, Energy Environ. Sci, 13 (2020) 3185-3206.
[175] H. Jin, J. Joo, N.K. Chaudhari, S.I. Choi, K. Lee, Recent progress in bifunctional electrocatalysts for overall water splitting under acidic conditions, J ChemElectroChem, 6 (2019) 3244-3253.
[176] E. Fabbri, T.J. Schmidt, Oxygen evolution reaction—the enigma in water electrolysis, ACS Publications, 2018.
[177] Y. Yan, B.Y. Xia, B. Zhao, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting, J. Mater. Chem. A, 4 (2016) 17587-17603.
[178] T. Shan-Shan, W. Xue-Jing, L. Qing-Chuan, H. Xiao-Jun, Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials, CJAC, 44 (2016) 1447-1457.
[179] J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao, F. Ciucci, Carbon-based electrocatalysts for sustainable energy applications, Prog. Mater. Sci, (2020) 100717.
[180] N. Yuan, Q. Jiang, J. Li, J. Tang, A review on non-noble metal based electrocatalysis for the oxygen evolution reaction, Arab J Chem, 13 (2020) 4294-4309.
[181] Y. Meng, X. Huang, H. Lin, P. Zhang, Q. Gao, W. Li, Carbon-based nanomaterials as sustainable noble-metal-free electrocatalysts, J. Front. Chem, 7 (2019).
[182] L. Zhang, J. Xiao, H. Wang, M. Shao, Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions, J Acs Catalysis, 7 (2017) 7855-7865.
[183] M.A. Younis, S. Lyu, Q. Zhao, C. Lei, P. Zhang, B. Yang, Z. Li, L. Lei, Y. Hou, X. Feng, Noble metal-free two-dimensional carbon-based electrocatalysts for water splitting, J BMC Materials, 1 (2019) 6.
[184] J. Li, Z. Zhao, Y. Ma, Y. Qu, Graphene and their hybrid electrocatalysts for water splitting, J ChemCatChem, 9 (2017) 1554-1568.
[185] Y. Yan, X. Wang, D.X.W. Lou, B.Y. Xia, Recent progress on graphene-based hybrid electrocatalysts, (2014).
[186] H. Fei, J. Dong, M.J. Arellano-Jiménez, G. Ye, N.D. Kim, E.L. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, Atomic cobalt on nitrogen-doped graphene for hydrogen generation, J. Nat. Commun, 6 (2015) 1-8.
[187] L. Fan, P.F. Liu, X. Yan, L. Gu, Z.Z. Yang, H.G. Yang, S. Qiu, X. Yao, atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis, J. Nat. Commun, 7 (2016) 1-7.
[188] H.J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, M. Chen, Nanoporous graphene with single‐atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production, Angew. Chem. Int. Ed, 54 (2015) 14031-14035.
[189] F. Schedin, A.K. Geim, S.V. Morozov, E. Hill, P. Blake, M. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, J Nature materials, 6 (2007) 652-655.
[190] W. Chen, S. Chen, D.C. Qi, X.Y. Gao, A.T.S. Wee, Surface transfer p-type doping of epitaxial graphene, J. Am. Chem. Soc, 129 (2007) 10418-10422.
[191] S.-S. Tong, X.-J. Wang, Q.-C. Li, X.-J. Han, Progress on electrocatalysts of hydrogen evolution reaction based on barbon fiber materials, CJAC, 44 (2016) 1447-1457.
[192] A. Badruzzaman, A. Yuda, A. Ashok, A. Kumar, Recent advances in cobalt based heterogeneous catalysts for oxygen evolution reaction, Inorganica Chimica Acta, 511 (2020).
[193] P. Quaino, F. Juarez, E. Santos, W. Schmickler, Volcano plots in hydrogen electrocatalysis–uses and abuses, Beilstein J. Nanotechnol, 5 (2014) 846-854.
[194] B. Devadas, C.C. Chang, T. Imae, Hydrogen evolution reaction efficiency of carbon nanohorn incorporating molybdenum sulfide and polydopamine/palladium nanoparticles, Taiwan Inst Chem Eng, 102 (2019) 378-386.
[195] Y. Wang, H. Wang, F. Chen, F. Cao, X. Zhao, S. Meng, Y. Cui, Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis, Appl. Catal. B, 206 (2017) 417-425.
[196] D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, D.G. Fernig, A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra, J Analyst, 139 (2014) 4855-4861.
[197] M. Atapour, G. Amoabediny, M. Ahmadzadeh-Raji, Integrated optical and electrochemical detection of Cu2+ ions in water using a sandwich amino acid–gold nanoparticle-based nano-biosensor consisting of a transparent-conductive platform, RSC.adv., 9 (2019) 8882-8893.
[198] A. Diac, M. Focsan, C. Socaci, A.-M. Gabudean, C. Farcau, D. Maniu, E. Vasile, A. Terec, L.M. Veca, S. Astilean, Covalent conjugation of carbon dots with Rhodamine B and assessment of their photophysical properties, J RSC advances, 5 (2015) 77662-77669.
[199] E. Costa-Rama, M.T. Fernández Abedul, Electrochemical behavior of the redox probe hexaammineruthenium(III) ([Ru(NH3)6]3+) using voltammetric techniques, in: M.T. Fernande (Ed.) Laboratory Methods in Dynamic Electroanalysis, Elsevier Inc, Spain, 2020, pp. 25-33.
[200] A. Shrivastava, V. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods, Chron. Young. Sci., 2 (2011) 21-25.
[201] S. Stehle, R. Schulz, Agricultural insecticides threaten surface waters at the global scale, J Proceedings of the National Academy of Sciences, 112 (2015) 5750-5755.
[202] J.C. Sousa, A.R. Ribeiro, M.O. Barbosa, M.F.R. Pereira, A.M. Silva, A review on environmental monitoring of water organic pollutants identified by EU guidelines, J. Hazard. Mater, 344 (2018) 146-162.
[203] F.A. Chinalia, M.H. Regali-Seleghin, E.M. Correa, 2, 4-D toxicity: cause, effect and control, Terr. Aquat. Environ. Toxicol., 1 (2007) 24-33.
[204] K.-H. Kim, E. Kabir, S.A. Jahan, Exposure to pesticides and the associated human health effects, J. SCI TOTAL ENVIRON, 575 (2017) 525-535.
[205] L. Ding, X. Lu, H. Deng, X. Zhang, Adsorptive removal of 2, 4-dichlorophenoxyacetic acid (2, 4-D) from aqueous solutions using MIEX resin, J Ind Eng Chem, 51 (2012) 11226-11235.
[206] Y. Nakanishi, T. Imae, Synthesis of dendrimer-protected TiO2 nanoparticles and photodegradation of organic molecules in an aqueous nanoparticle suspension, J. Colloid Interface Sci, 285 (2005) 158-162.
[207] S. Kang, W. Huang, L. Zhang, M. He, S. Xu, D. Sun, X. Jiang, Moderate bacterial etching allows scalable and clean delamination of g-C3N4 with enriched unpaired electrons for highly improved photocatalytic water disinfection, J ACS applied materials interfaces, 10 (2018) 13796-13804.
[208] M. Zhang, Y. Duan, H. Jia, F. Wang, L. Wang, Z. Su, C. Wang, Technology, Defective graphitic carbon nitride synthesized by controllable co-polymerization with enhanced visible light photocatalytic hydrogen evolution, J Catalysis Science, 7 (2017) 452-458.
[209] C. Zhou, X. Sun, J. Yan, B. Chen, P. Li, H. Wang, J. Liu, X. Dong, F. Xi, Thermo-driven catalytic degradation of organic dyes by graphitic carbon nitride with hydrogen peroxide, J Powder Technol, 308 (2017) 114-122.
[210] Y. Gao, Y. Zhu, L. Lyu, Q. Zeng, X. Xing, C. Hu, Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation, Environ. Sci. Technol, 52 (2018) 14371-14380.
[211] S. Kang, M. He, M. Chen, J. Wang, L. Zheng, X. Chang, H. Duan, D. Sun, M. Dong, L. Cui, Ultrafast plasma immersion strategy for rational modulation of oxygen-containing and amino groups in graphitic carbon nitride, J Carbon, 159 (2020) 51-64.
[212] J. Yan, X. Han, J. Qian, J. Liu, X. Dong, F. Xi, Preparation of 2D graphitic carbon nitride nanosheets by a green exfoliation approach and the enhanced photocatalytic performance, J. Mater. Sci, 52 (2017) 13091-13102.
[213] J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, Y. Chen, A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity, ChemComm 48 (2012) 12017-12019.
[214] C. Lu, Y. Yang, X. Chen, Ultra-thin conductive graphitic carbon nitride assembly through van der waals epitaxy toward high-energy-density flexible supercapacitors, J Nano letters, 19 (2019) 4103-4111.
[215] Y. Zeng, X. Liu, C. Liu, L. Wang, Y. Xia, S. Zhang, S. Luo, Y. Pei, Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity, Appl. Catal. B, 224 (2018) 1-9.
[216] H. Zhang, Y. Huang, S. Hu, Q. Huang, C. Wei, W. Zhang, L. Kang, Z. Huang, A. Hao, Fluorescent probes for “off–on” sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets, J. Mater. Chem. C, 3 (2015) 2093-2100.
[217] N. Wang, H. Fan, J. Sun, Z. Han, J. Dong, S.J.C. Ai, Fluorine-doped carbon nitride quantum dots: ethylene glycol-assisted synthesis, fluorescent properties, and their application for bacterial imaging, Carbon, 109 (2016) 141-148.
[218] L. Wang, Y. Li, X. Yin, Y. Wang, A. Song, Z. Ma, X. Qin, G. Shao, Coral-like-structured Ni/C3N4 composite coating: an active electrocatalyst for hydrogen evolution reaction in alkaline solution, ACS Sustain. Chem. Eng, 5 (2017) 7993-8003.
[219] C. Wang, H. Fan, X. Ren, J. Ma, J. Fang, W. Wang, hydrothermally induced oxygen doping of graphitic carbon nitride with a highly ordered architecture and enhanced photocatalytic activity, J ChemSusChem, 11 (2018) 700-708.
[220] Y.A. Workie, Sabrina, T. Imae, M.P. Krafft, Nitric oxide gas delivery by fluorinated poly (ethylene glycol)@graphene oxide carrier toward pharmacotherapeutics, ACS BIOMATER-SCI ENG, 5 (2019) 2926-2934.
[221] Y. Zhang, J. Gao, Z. Chen, A solid-state chemical reduction approach to synthesize graphitic carbon nitride with tunable nitrogen defects for efficient visible-light photocatalytic hydrogen evolution, J Colloid Interface Sci, 535 (2019) 331-340.
[222] C. Liu, H. Huang, W. Cui, F. Dong, Y. Zhang, Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution, Appl. Catal. B, 230 (2018) 115-124.
[223] F. Fina, S.K. Callear, G.M. Carins, J.T.S. Irvine, Structural investigation of graphitic carbon nitride via XRD and neutron diffraction, Chem. Mater, 27 (2015) 2612-2618.
[224] N. Tian, Y. Zhang, C. Liu, S. Yu, M. Li, H. Huang, g-C3N4/Bi4O5I2 2D–2D heterojunctional nanosheets with enhanced visible-light photocatalytic activity, RSC Advances, 6 (2016) 10895-10903.
[225] K. Del Ángel-Sanchez, O. Vázquez-Cuchillo, A. Aguilar-Elguezabal, A. Cruz-López, A. Herrera-Gómez, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid under visible light: Effect of synthesis route, Mater. Chem. Phys, 139 (2013) 423-430.
[226] S. S, K.L. Nagashree, T. Maiyalagan, G. Keerthiga, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid - A comparative study in hydrothermal TiO2 and commercial TiO2, Appl. Surf. Sci, 449 (2018) 371-379.
[227] S.-M. Lam, J.-C. Sin, A.Z. Abdullah, A.R. Mohamed, Investigation on visible-light photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in the presence of MoO3/ZnO nanorod composites, J Mol Catal A Chem, 370 (2013) 123-131.
[228] R. Nagaraja, N. Kottam, C.R. Girija, B.M. Nagabhushana, Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route, Powder Technol, 215-216 (2012) 91-97.
[229] M. Liu, D. Huang, S. Quan, J. Zheng, W. Zhang, L. Liu, Degradation of 2, 4-dichlorophenoxyacetic acid in an internal circulation three-phase fluidized photoreactor uising N-TiO2/γ-Al2O3 granule as adsorbent and photocatalyst, J. Environ. Eng, 140 (2014) 04014026.
[230] H. Hinterwirth, S. Kappel, T. Waitz, T. Prohaska, W. Lindner, M. Lämmerhofer, Quantifying thiol ligand density of self-assembled monolayers on gold nanoparticles by inductively coupled plasma–mass spectrometry, ACS Nano., 7 (2013) 1129-1136.
[231] V. Karri, M. Schuhmacher, V. Kumar, Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain, Environ. Toxicol. Pharmacol., 48 (2016) 203-213.
[232] S. Bothra, R. Kumar, S.K. Sahoo, Pyridoxal conjugated gold nanoparticles for distinct colorimetric detection of chromium(III) and iodide ions in biological and environmental fluids, New J Chem., 41 (2017) 7339-7346.
[233] M. Novak, V. Chrastny, E. Cadkova, J. Farkas, T.D. Bullen, J. Tylcer, Z. Szurmanova, M. Cron, E. Prechova, J. Curik, Common occurrence of a positive δ53Cr shift in Central European waters contaminated by geogenic/industrial chromium relative to source values, Environ. Sci. Technol., 48 (2014) 6089-6096.
[234] M. Elavarasi, S.A. Alex, N. Chandrasekaran, A. Mukherjee, Simple fluorescence-based detection of Cr(III) and Cr(VI) using unmodified gold nanoparticles, Anal. Methods., 6 (2014) 9554-9560.
[235] D. Long, H. Yu, A synergistic coordination strategy for colorimetric sensing of chromium(III) ions using gold nanoparticles, Anal Bioanal Chem., 408 (2016) 8551-8557.
[236] C.T. Mills, J.M. Morrison, M.B. Goldhaber, K.J. Ellefsen, Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater, J. Appl. Chem., 26 (2011) 1488-1501.
[237] A. Zhitkovich, Chromium in drinking water: sources, metabolism, and cancer risks, Chem Res Toxicol., 24 (2011) 1617-1629.
[238] H. Cui, W. Guo, L. Jin, Q. Guo, S. Hu, Direct speciation of Cr in drinking water by in situ thermal separation ETAAS, J Anal Methods Chem., 9 (2017) 1307-1312.
[239] S. Shuang, T. Wei, G. Ren, F. Chai, H. Wu, F. Qu, Gold nanoparticles based colorimetric probe for Cr(III) and Cr(VI) detection a physicochemical and engineering aspects, Colloid Surface A., 535 (2017) 215-224.
[240] W. He, L. Luo, Q. Liu, Z. Chen, Colorimetric sensor array for discrimination of heavy metal ions in aqueous solution based on three kinds of thiols as receptors, Anal Chem., 90 (2018) 4770-4775.
[241] A. Rahmawati, C.-F. Shih, T. Imae, Film sensor of a ligand-functionalized cellulose nanofiber for the selective detection of copper and cesium ions, Polym. J., 52 (2020) 1235-1243.
[242] N. Fahimi-Kashani, M.R. Hormozi-Nezhad, Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides, Anal Chem., 88 (2016) 8099-8106.
[243] J. Kang, Y. Zhang, X. Li, L. Miao, A. Wu, A rapid colorimetric sensor of clenbuterol based on cysteamine-modified gold nanoparticles, ACS Appl. Mater. Interfaces., 8 (2016) 1-5.
[244] M. Annadhasan, T. Muthukumarasamyvel, V.R. Sankar Babu, N. Rajendiran, Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium, ACS Sustain. Chem. Eng., 2 (2014) 887-896.
[245] P. Saluja, H. Sharma, N. Kaur, N. Singh, D.O. Jang, Benzimidazole-based imine-linked chemosensor: chromogenic sensor for Mg2+ and fluorescent sensor for Cr3+, Tetrahedron., 68 (2012) 2289-2293.
[246] K. Mitamura, T. Imae, N. Saito, O. Takai, Fabrication and self-assembly of hydrophobic gold nanorods, J. Phys. Chem. B., 111 (2007) 8891-8898.
[247] S.K. Kailasa, M. Chandel, V.N. Mehta, T.J. Park, Influence of ligand chemistry on silver nanoparticles for colorimetric detection of Cr3+ and Hg2+ ions, Spectrochim Acta A Mol Biomol Spectrosc., 195 (2018) 120-127.
[248] P. Mondal, J.L. Yarger, Colorimetric dual sensors of metal Ions based on 1, 2, 3-triazole-4, 5-dicarboxylic acid-functionalized gold nanoparticles, J. Phys. Chem C., 123 (2019) 20459-20467.
[249] J. Du, H. Ge, Q. Gu, H. Du, J. Fan, X. Peng, Gold nanoparticle-based nano-probe for the colorimetric sensing of Cr3+ and Cr2O72− by the coordination strategy, Nanoscale., 9 (2017) 19139-19144.
[250] Y.-Q. Dang, H.-W. Li, B. Wang, L. Li, Y. Wu, Selective detection of trace Cr3+ in aqueous solution by using 5, 5′-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles, ACS Appl Mater Interfaces., 1 (2009) 1533-1538.
[251] P. ReddyPrasad, T. Imae, Selective detection of copper ion in water by tetradentate ligand sensor, J Taiwan Inst Chem Eng., 72 (2017) 194-199.
[252] P. Wulandari, X. Li, K. Tamada, M. Hara, Conformational study of citrates adsorbed on gold nanoparticles using Fourier transform infrared spectroscopy, J. Nonlinear Opt. Phys. Mater., 17 (2008) 185-192.
[253] Q. Cao, R. Che, Synthesis of near-infrared fluorescent, elongated ring-like Ag2Se colloidal nanoassemblies, J RSC Advances, 4 (2014) 16641-16646.
[254] S.K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications, Chem. Rev., 107 (2007) 4797-4862.
[255] A. Manna, T. Imae, K. Aoi, M. Okada, T. Yogo, Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles, J. Mater. Chem. A., 13 (2001) 1674-1681.
[256] C. Dong, G. Wu, Z. Wang, W. Ren, Y. Zhang, Z. Shen, T. Li, A. Wu, Selective colorimetric detection of Cr(III) and Cr(VI) using gallic acid capped gold nanoparticles, Dalton Trans., 45 (2016) 8347-8354.
[257] J. Wei, L. Yang, G. Yue, J. Zhu, D. Huang, P. Zhao, Nitrilotriacetate-stabilized gold nanoparticles: a novel strategy for the colorimetric detection of Cr(III)/Cr(VI) and the mechanistic aspects, Anal Methods., 9 (2017) 2805-2811.
[258] P. Vanysek, Electrochemical series, CRC handbook of chemistry and physics., 8 (2000).
[259] J. Xin, L. Miao, S. Chen, A. Wu, Colorimetric detection of Cr3+ using tripolyphosphate modified gold nanoparticles in aqueous solutions, J Analytical Methods, 4 (2012) 1259-1264.
[260] J. Du, H. Ge, Q. Gu, H. Du, J. Fan, X. Peng, Gold nanoparticle-based nano-probe for the colorimetric sensing of Cr3+ and Cr2O72− by the coordination strategy, J Nanoscale, 9 (2017) 19139-19144.
[261] K. Sung-Hoon, B. Jin-Seok, Naphthazarin: colorimetric detection of Cr3+ using highly selective F-chemosensor, J Sen'i Gakkaishi, 71 (2015) 213-216.
[262] A. Aravind, M. Sebastian, B. Mathew, Technology, Green synthesized unmodified silver nanoparticles as a multi-sensor for Cr(III) ions, Environ. Sci. Water Res. Technol, 4 (2018) 1531-1542.
[263] L. Zhao, Y. Jin, Z. Yan, Y. Liu, H. Zhu, Novel, highly selective detection of Cr(III) in aqueous solution based on a gold nanoparticles colorimetric assay and its application for determining Cr(VI), Anal. Chim. Acta, 731 (2012) 75-81.
[264] Y. Xu, Y. Dong, X. Jiang, N. Zhu, Colorimetric detection of trivalent chromium in aqueous solution using tartrate-capped silver nanoparticles as probe, J Nanosci Nanotechnol, 13 (2013) 6820-6825.
[265] S.K. Saraswat, D.D. Rodene, R.B. Gupta, Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light, Renew. Sust. Energ. Rev, 89 (2018) 228-248.
[266] Y. Xu, C. Wang, Y. Huang, J. Fu, Recent advances in electrocatalysts for neutral and large-current-density water electrolysis, J Nano Energy, (2020) 105545.
[267] W. Lubitz, W. Tumas, Hydrogen: an overview, ACS Publications, 2007.
[268] M. Itagi, Z.M. Bhat, R. Thimmappa, D. Pandit, M.C. Devendrachari, L.K. Sannegowda, M.O. Thotiyl, An electrochemical valorization fuel cell for simultaneous electroorganic and hydrogen fuel syntheses, The Journal of Physical Chemistry C, 124 (2020) 11284-11292.
[269] S. Aftab, A. Shah, J. Nisar, M.N. Ashiq, M.S. Akhter, A.H. Shah, Marketability prospects ofmicrobial fuel cells for sustainable energy Generation, Energy & Fuels, 34 (2020) 9108-9136.
[270] N. Fajrina, M. Tahir, A critical review in strategies to improve photocatalytic water splitting towards hydrogen production, Int. J. Hydrog. Energy, 44 (2019) 540-577.
[271] Y. Zhang, Y.-J. Heo, J.-W. Lee, J.-H. Lee, J. Bajgai, K.-J. Lee, S.-J. Park, Photocatalytic hydrogen evolution via water splitting: A short review, J Catalysts, 8 (2018) 655.
[272] Y. Xu, C. Wang, Y. Huang, J. Fu, Recent advances in electrocatalysts for neutral and large-current-density water electrolysis, Nano Energy, (2020).
[273] W.-K. Jo, S. Moru, S. Tonda, Cobalt-coordinated sulfur-doped graphitic carbon nitride on reduced graphene oxide: an efficient metal–(N,S)–C-class bifunctional electrocatalyst for overall water splitting in alkaline media, ACS Sustain. Chem. Eng, 7 (2019) 15373-15384.
[274] Q. Wang, C.Q. Xu, W. Liu, S.F. Hung, H. Bin Yang, J. Gao, W. Cai, H.M. Chen, J. Li, B. Liu, Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting, Nat Commun, 11 (2020) 4246.
[275] H. You, D. Wu, Z.-n. Chen, F. Sun, H. Zhang, Z. Chen, M. Cao, W. Zhuang, R. Cao, Highly active and stable water splitting in acidic media using a bifunctional iridium/cucurbit[6]uril catalyst, ACS Energy Letters, 4 (2019) 1301-1307.
[276] M.A. Wahab, J. Joseph, L. Atanda, U.K. Sultana, J.N. Beltramini, K. Ostrikov, G. Will, A.P. O’Mullane, A. Abdala, Nanoconfined synthesis of nitrogen-rich metal-free mesoporous carbon nitride electrocatalyst for the oxygen evolution reaction, ACS Appl. Energy Mater, 3 (2020) 1439-1447.
[277] B. Jiang, T. Wang, Y. Cheng, F. Liao, K. Wu, M. Shao, Ir/g-3N4/nitrogen-doped graphene nanocomposites as bifunctional electrocatalysts for overall water splitting in acidic electrolytes, ACS Appl Mater Interfaces, 10 (2018) 39161-39167.
[278] P.-W. Chen, K. Li, Y.-X. Yu, W.-D. Zhang, Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution, Appl. Surf. Sci, 392 (2017) 608-615.
[279] J. Mu, J. Li, X. Zhao, E.-C. Yang, X.-J. Zhao, Cobalt-doped graphitic carbon nitride with enhanced peroxidase-like activity for wastewater treatment, RSC Advances, 6 (2016) 35568-35576.
[280] M.A. Younis, S. Lyu, Q. Zhao, C. Lei, P. Zhang, B. Yang, Z. Li, L. Lei, Y. Hou, X. Feng, Noble metal-free two-dimensional carbon-based electrocatalysts for water splitting, BMC Materials, 1 (2019).
[281] L. Xia, H. Song, X. Li, X. Zhang, B. Gao, Y. Zheng, K. Huo, P.K. Chu, Hierarchical 0D-2D Co/Mo selenides as superior bifunctional electrocatalysts for overall water splitting, Front Chem, 8 (2020) 382.
[282] L. Ji, J. Wang, X. Teng, T.J. Meyer, Z. Chen, CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting, ACS Catalysis, 10 (2019) 412-419.
[283] M. Zulqarnain, A. Shah, M.A. Khan, F. Jan Iftikhar, J. Nisar, FeCoSe2 nanoparticles embedded in g-C3N4: a highly active and stable bifunctional electrocatalyst for overall water splitting, Sci Rep, 10 (2020) 6328.
[284] X. Zhao, P. Pachfule, S. Li, J.R.J. Simke, J. Schmidt, A. Thomas, Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite, Angew Chem Int Ed Engl, 57 (2018) 8921-8926.
[285] Y. Li, J. Yin, L. An, M. Lu, K. Sun, Y.Q. Zhao, D. Gao, F. Cheng, P. Xi, FeS2 /CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting, Small, 14 (2018) e1801070.
[286] C. Dong, X. Liu, X. Wang, X. Yuan, Z. Xu, W. Dong, M.S. Riaz, G. Li, F. Huang, Hierarchical Ni/NiTiO3 derived from NiTi LDHs: a bifunctional electrocatalyst for overall water splitting, J. Mater. Chem. A, 5 (2017) 24767-24774.
[287] D. Chanda, R.A. Tufa, Y.Y. Birdja, S. Basu, S. Liu, Hydrothermally/electrochemically decorated FeSe on Ni-foam electrode: an efficient bifunctional electrocatalysts for overall water splitting in an alkaline medium, Int. J. Hydrog. Energy, 45 (2020) 27182-27192.

無法下載圖示 全文公開日期 2026/01/25 (校內網路)
全文公開日期 2031/01/25 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE