簡易檢索 / 詳目顯示

研究生: 翁樸文
Pu-Wen Weng
論文名稱: 鋼筋混凝土短柱受剪破壞之耐震行為曲線研究
Study on the Seismic Performance Curves of Reinforced Concrete Short Columns Failed in Shear
指導教授: 林英俊
Ing-Jaung Lin
黃世建
Shyh-Jiann Hwang
口試委員: 葉勇凱
Yeong-Kae Yeh
吳俊霖
Chiun-Lin Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 242
中文關鍵詞: 鋼筋混凝土短柱剪力剪力破壞軸力破壞位移雙曲率崩塌
外文關鍵詞: reinforced concrete short columns, shear, shear failure, axial failure, displacement, double curvature, collaps
相關次數: 點閱:259下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鋼筋混凝土柱受剪破壞在九二一集集地震勘災紀錄中極具代表性,特別是短柱桿件之剪力破壞,是造成結構物崩塌的主因之一。因此,本研究主要以實驗及分析方法,來探討鋼筋混凝土(RC)短柱受剪破壞之耐震行為,並與1/2縮尺振動台實驗結果進行對照,以觀察靜態實驗與動態實驗之關連性。
本研究中共製作8座RC短柱試體,分別變化高寬比、軸壓比與配筋形式,在雙曲率變形與固定軸力的狀態下,進行反覆載重試驗,以瞭解鋼筋混凝土短柱受震後之行為,並觀察短柱在剪力破壞後之崩塌行為。本實驗結果顯示,載重與層間變位角的關係在不同高寬比之桿件上並無明顯差異;配筋形式改變了試體的破壞模式;而高軸壓比則加速試體的崩塌行為。最後,本研究於垂直承載力喪失之認定上,係指柱之垂直力抵抗能力急遽下降,而不以側力強度為零之位移作判斷之基準,與過去有所不同。


Reinforced concrete(RC) columns failed by shear are common representatives during Chi-Chi earthquake. Especially, the shear failure of RC short columns is one of the most important failure modes which cause building collapse. Therefore, this study focuses on the behavior of RC short columns failed by shear, and the behavior of collapse after shear failure. Also, the aforementioned behavior can be compared with the results of shaking table tests of 1/2 scale specimens to observe the difference between static and and dynamic tests.
Eight specimens were constructed and tested to study the seismic behavior of short columns. These specimens with different height-to -depth ratio, shear reinforcement detailing and axial load ratios were subjected to double curvature bending with constant axial forces to observe the behavior of the shear and axial failure. Test results show that the relationship between lateral force and drift ratio seems not so obvious; different shear reinforcement detailing results in different failure modes; the axial failure takes place much early with high axial load ratio. Finally, this study recognizes the axial failure when axial load carrying capacity decreases quickly. It is different from the past that recognizes the axial failure when lateral strength was zero.

中文摘要 I 英文摘要 III 誌謝 V 目錄 VII 表索引 XI 圖索引 XIII 符號說明 XXIII 第一章 1 緒論 1 1.1研究動機與目的 1 1.2研究內容與方法 1 第二章 3 文獻回顧與分析模型 3 2.1柱桿件剪力強度預測 3 2.1.1美國ACI 318-05規範相關規定[2] 3 2.1.2 美國SEAOC [3] 6 2.1.3 美國ASCE-ACI Committee 426 [4] 7 2.1.4 美國Aschheim and Moehle [5] 8 2.1.5 日本建築學會(AIJ)之Structural Design Guidelines [6] 9 2.1.6 美國Priestley et al. [7] 10 2.1.7 美國Caltrans [8] 11 2.1.8 Model Proposed by Konwinski and Konwinski et al. [9] 12 2.1.9 Kowalski et al. [9] 13 2.1.10 FEMA-273 [10] 13 2.1.11軟化壓拉桿模型之應用 14 2.2柱桿件位移預測 25 2.2.1美國ACI 318-05規範相關規定 25 2.2.2軟化壓拉桿模型之應用 27 2.2.3柱桿件倒塌行為研究 38 第三章 41 試驗規劃與執行 41 3.1試體規劃 41 3.2試體設計 42 3.2.1非韌性短柱(3-N-L,3-N-H) 43 3.2.2韌性短柱(3-D-L,3-D-H) 44 3.2.3非韌性長柱(4-N-L,4-N-H) 44 3.2.4韌性長柱(4-D-L,4-D-H) 45 3.3試體製作 45 3.3.1基腳施作 46 3.3.2柱與施力梁施作 47 3.4量測佈置 49 3.4.1內部量測 49 3.4.2外部量測 50 3.5測試佈置與步驟 51 3.5.1測試佈置 51 3.5.2加載方式 56 第四章 59 試驗結果 59 4.1材料試驗 59 4.1.1鋼筋 59 4.1.2混凝土 60 4.2反曲點位置 61 4.3載重與位移關係行為 62 4.3.1載重-位移遲滯迴圈關係 62 4.3.2垂直-側向位移關係 69 4.4裂縫發展與破壞模式 69 4.5變形量測 74 4.5.1試體垂直向位移量測 74 4.5.2柱之側向變位量測 74 4.6鋼筋應變計量測 75 第五章 77 分析與討論 77 5.1柱桿件彎矩曲率關係 77 5.2柱桿件強度預測分析 77 5.3柱桿件載重位移曲線預測分析 78 5.4軸力破壞點位移預測 79 5.5振動台之動態測試比較 79 5.6比較與討論 80 第六章 81 結論與建議 81 6.1結論 81 6.2建議與展望 82 參考文獻 84 表 87 圖 93 附錄 211

[1] 蘇瑞翔,「鋼筋混凝土短柱受剪破壞之振動台實驗研究」,碩士論文,國立台灣科技大學營建工程系,台北,民國96年
[2] ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05),” American Concrete Institute, Farmington Hills, 2005.
[3] SEAOC, “Recommended Lateral Force Requirements and Commentary,” Structural Engineers Association of California, Los Angeles, Calif., 1973.
[4] ASCE-ACI Committee 426, “Shear Strength of Reinforced Concrete Members,” (ACI 426R-74) (Reapproved 1980), Chapters 1 to 4, Proceeding, ASCE, Vol. 99, No. ST6, June 1973, pp. 1148-1157.
[5] Aschheim, M., and Moehle, J. P., “Shear Strength and Deformability of Reinforced Concrete Bridge Columns Subjected to Inelastic Cyclic Displacement,” Report No.UCB/EERC-92/04, Earthquake Engineering Research Center, University of California at Berkeley, March 1992.
[6] AIJ, “AIJ Structural Design Guidelines for Reinforced Concrete Buildings,” Architectural Institute of Japan, 1994.
[7] Priestley, M.J.N., Verma, R. and Xiao, Y., “Seismic Shear Strength of Reinforced Concrete Columns,” ASCE Journal of Structural Engineering ,Vol.120,No.8, 1994, pp.2310-2329.
[8] CALTRANS, “Bridge Design Specification,” California Department of Transportation, 1995.
[9] Sezen, H., “Seismic Response and Modeling of Reinforced Concrete Building Columns,” Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, 2002.
[10] FEMA-273: NEHRP Guidelines for the Seismic Rehabilitation of Buildings. Prepared with FEMA funding by ATC and ASCE for the Building Seismic Safety Council. Washington, DC, 1997.
[11] 陳穎治,「鋼筋混凝土構件在反覆載重作用下撓剪強度研究」,碩士論文,國立台灣科技大學營建工程系,台北,民國93年。
[12] 涂耀賢,「低矮型RC牆暨構架之側向載重位移曲線預測研究」,博士論文,國立台灣科技大學營建工程系,台北,民國94年1月。
[13] Hwang, S. J., and Lee, H. J., “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model, ” Journal of Structural Engineering, ASCE, Vol. 128, No. 12, December, 2002, pp. 1519-1526.
[14] Thurlimann, B., “Torsional Strength of Reinforced and Prestressed Concrete Beams - CEB Approach, ” Bulletin 113, ACI Publication SP-59, Detroit, Mich. 1979.
[15] Wallace, J. W., “BIAX:Revision 1 A Computer Program for the Analysis of Reinforced Concrete and Reinforced Masonry Sections,” Report No. CU/CEE-92/4, Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York, February 1992.
[16] Schlaich, J.; Schäfer, K; Jennewein, M., “Toward a Consistent Design of Reinforced Concrete Structures,” PCI Journal, Vol. 32, No.3, May-June 1987, pp. 74-150.
[17] Lee H. J.; Hwang S. J.; and Tsai C. H.; Hwang J. S., “Seismic Evaluation of Existing Reinforced Concrete Building-Shaking Table Tests and Pushover Analysis,” The 6th Japan-Korea-Taiwan Joint Seminar on Earthquake Engineering for Building Structures (SEEBUS 2004), Taipei, Taiwan, November. 2004.
[18] Moehle, J. P., “Displacement-Based Design of RC Structures Subjected to Earthquakes,” Earthquake Spectra, Vol. 8, No. 3, 1992, pp.403–428.
[19] Elwood, K., and Moehle, J., “Shake Table Tests on the Axial Load Failure of Reinforced Concrete Columns,” Proceedings, fib symposium, Concrete Structures in Seismic Regions, Athens, 2003.
[20] Otani S., and Sozen M. A., “Behavior of Multistory Reinforced Concrete Frames during Earthquakes. Structural Research Series No. 392, University of Illinois Urbana. 1972, pp.551.
[21] Elwood, K. J., “Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames” Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, 2003.
[22] Lehman D. E., and Moehle J. P., “Seismic Performance of Well-confined Concrete Bridge Columns,” PEER-1998/01. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2000, pp.316.
[23] Elwood, K.J., and Moehle, J. P., “Drift Capacity of Reinforced Concrete Column with Light Transverse Reinforcement,” Earthquake Spectra, Vol. 21, No. 1, 2005, pp. 71-89.
[24] Lesmana, C.,「台灣中小學校舍結構耐震能力評估之研究」,碩士論文,國立台灣科技大學營建工程系,台北,民國96年
[25] Elwood, K.J., and Moehle, J. P., “Axial Capacity Model for Shear-Damaged Columns,” ACI Structural Journal, Vol.102, No. 4, 2005, pp. 578-587.
[26] 中國土木水利工程學會,「混凝土工程設計規範與解說(土木401-93)」,民國94年。
[27] 行政院公共工程委員會,「公共工程施工綱要規範」,第03315 章自充填混凝土。
[28] ACI Committee 209-II (Subcommittee II chaired by D. E. Branson), “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,” ACI-SP27, “Design for the Effects of Creep, Shrinkage and Temperature,” Detroit, 1971, pp. 51-93.
[29] Zhu, L., “Probabilistic Drift Capacity Models for Reinforced Concrete Columns,” MASc Thesis, Department of Civil Engineering, University of British Columbia, 2005.
[30] Zhu, L.; Elwood, K.J.; Haukaas T.; and Gardoni, P., “Application of a Probabilistic Drift Capacity Model for Shear-Critical Columns,” Journal of the American Concrete Institute (ACI), Special Publication, 2005.

QR CODE