簡易檢索 / 詳目顯示

研究生: 闕慧宇
Hui-Yu Chueh
論文名稱: 應用於筆電環境之LTE槽孔天線設計
LTE-band Slot Antenna Designs for Laptop Environment
指導教授: 廖文照
Wen-Jiao Liao
口試委員: 陳士元
Shih-Yuan Chen
陳晏笙
Yen-Shen Chen
侯元昌
Yuan-Chang Hou
廖文照
Wen-Jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 103
中文關鍵詞: LTE槽孔天線天線匹配電路設計雙工器筆電天線
外文關鍵詞: LTE, Slot Antenna, Antenna Matching Circuit Design, Diplexer, Antennas for laptops
相關次數: 點閱:404下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今,消費者市場的導向機制使筆電與行動裝置的外型逐漸朝金屬機身與窄邊框方向研發設計,本論文提出一款應用於筆電之LTE槽孔天線,涵蓋690-960 MHz與1700-2700 MHz頻段,能符合多數國家電信業者所支援之LTE規格,所提出的低頻段槽孔長度為134 mm,高頻段槽孔長度為46 mm,加上電路走線尺寸為15×17 mm2的匹配電路設計,該設計適用於金屬機殼與窄邊框筆電,經由實作與效能量測,驗證此設計有良好的輻射效率與匹配。
本論文第一部分,將對低頻與高頻槽孔的基本模態進行參數分析,透過不同幾何參數的模擬,驗證LTE槽孔天線能分別用於690~960 MHz低頻帶與1700~2700 MHz高頻帶,並進行實作的效能驗證,在不同的電路參數情形,分析設計效能上的優劣差異。
本論文第二部分研究如何使用單一饋入,激發低頻帶與高頻帶槽孔天線,並利用L型匹配電路來增加高低頻的操作頻寬,所完成的天線能夠涵蓋LTE700/GSM850/900低頻帶與GSM1800/1900/UMTS/LTE2300/2500/2600高頻帶,並進行實作的效能驗證。
本論文第三部份把槽孔天線及其匹配電路改置於窄邊框之上,減少匹配電路所佔據之面積,同時,也設計一款雙工器電路,具有使高低頻訊號能量分流的效果,使其方便與天線阻抗匹配電路整合,在本章中針對雙工器與天線結構整合分別進行實作與效能驗證。


This thesis proposes an LTE slot antenna design for laptop devices. It covers frequency bands of 690-960 MHz and 1700-2700 MHz. The length of low band slot antenna is 134 mm and the high band antenna is 46 mm. The area occupied by L-shape matching circuit is 15×17 mm2. It is compatible with laptops’ metal enclosure and narrow bezel. According to radiation pattern measurements, the proposed antenna can deliver good radiation efficiency and satisfactory impedance matching results.
In the first part, we analyze basic resonance modes of slot antennas. Advantages and disadvantages of the proposed antenna are discussed with parametric search results. Measurements results suggest the design provides reliable performance.
The second part considers the problem of how to use a single feed to excite low and high band slot antennas at the same time. With an L-shaped matching circuit, it widens the antenna operating bandwidth. By measurements, the proposed antenna with impedance matching circuit can cover the LTE700/GSM850/900 bands of LTE low band and GSM1800/1900/UMTS/LTE2300/2500/2600 bands of LTE high band.
In the third part, the slot antenna as well as the impedance matching circuit are placed on narrow bezel to reduce the area by the antenna assembly occupied. Also, a diplexer circuit is proposed, which is easy to integrate with the antenna impedance matching circuits. The diplexer separates energy paths of high and low band signals, and provide more flexibility to be used in LTE bands. In the end, the performance of the diplexer and the antenna are verified.

摘要 II Abstract IV 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文組織 2 第二章 應用於筆電環境之LTE槽孔天線設計 3 2.1 前言 3 2.2 LTE槽孔天線架構與筆電環境說明 4 2.2.1 筆電環境說明 4 2.2.2 LTE槽孔天線結構 5 2.3 LTE低頻與高頻槽孔天線設計 8 2.3.1 LTE槽孔天線設計演進 8 2.3.2 LTE槽孔天線模擬結果分析 10 2.4 LTE槽孔天線參數分析 13 2.5 LTE槽孔天線之金屬抗擾性分析 22 2.5.1 模擬環境說明 22 2.5.2 模擬結果分析 24 2.5.3 調整匹配電路 26 2.6 天線實作與效能驗證 29 2.7 小結 38 第三章 應用於筆電環境之LTE槽孔天線阻抗匹配電路設計 39 3.1 前言 39 3.2 應用於筆電環境之LTE槽孔天線阻抗匹配電路設計 40 3.2.1 匹配電路的設計與原理 40 3.2.2 LTE槽孔天線阻抗匹配電路的設計與演進 42 3.2.3 LTE槽孔天線阻抗匹配電路模擬結果分析 49 3.2.4 LTE槽孔天線阻抗匹配電路參數分析 55 3.3 LTE槽孔天線與阻抗匹配電路實作與效能驗證 60 3.4 小結 69 第四章 應用於筆電環境之LTE槽孔天線與雙工器電路設計 70 4.1 前言 70 4.2 LTE槽孔天線與雙工器電路設計及演進 71 4.2.1 天線架構 71 4.2.2 天線結構演進 72 4.3 LTE雙工器電路設計 75 4.3.1 設計原理 75 4.3.2 LTE雙工器模擬結果與參數分析 78 4.4 LTE槽孔天線與雙工器設計參數分析 80 4.5 LTE槽孔天線與雙工器電路設計實作與效能驗證 83 4.5.1 LTE雙工器電路設計實作結果與分析 83 4.5.2 LTE槽孔天線與雙工器電路設計實作結果與效能驗證 85 4.6 小結 94 第五章 結論 96 參考文獻 98

[1] 陳士元, “綜觀全頻段組態/介面/布局5G筆電天線設計細思量,” [online] Available: https://www.2cm.com.tw/2cm/zh-tw/tech/9A2442E66D9541BEA4C3 3E3DCD9B9567 , archived Oct. 2021.
[2] 3GPP.org, “LTE,” [online] Available: https://www.3gpp.org/technologies/key words- acronyms/98-lte, archived Oct. 2021.
[3] 羅正漢, “4G懶人包:不可不知的10個FAQ,” [online] Available: https://www.ithome.com.tw/tech/88811, archived Oct. 2021.
[4] D. Lee, W.-C. Choi, J. Ahn, and Y.-J. Yoon, “A simple monopole antenna for hepta-band LTE/WWAN metal-framed mobile phone,” in proceedings of International Symposium Antennas Propag., pp. 1-3, 2015.
[5] G. Kim and T. Yun, “Small wideband monopole antenna with a distributed inductive strip for LTE/GSM/UMTS,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1677-1680, 2015.
[6] M. Zheng, H. Wang, and Y. Hao, “Internal hexa-band folded monopole/dipole/loop antenna with four resonances for mobile device,” IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2880-2885, Jun. 2012.
[7] K. Wong and C. Tsai, “Small-size stacked inverted-F antenna with two hybrid shorting strips for the LTE/WWAN tablet device,” IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 3962-3969, Aug. 2014.
[8] Q. Luo, J. R. Pereira, and H. M. Salgado, “Compact printed monopole antenna with chip inductor for WLAN,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 880-883, 2011.
[9] G. Kim and T. Yun, “Small wideband monopole antenna with a distributed inductive strip for LTE/GSM/UMTS,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1677-1680, 2015.
[10] M. Zheng, H. Wang, and Y. Hao, “Internal hexa-band folded monopole/dipole/loop antenna with four resonances for mobile device,” IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2880-2885, Jun. 2012.
[11] D. Lee, W.-C. Choi, J. Ahn, and Y.-J. Yoon, “A simple monopole antenna for hepta-band LTE/WWAN metal-framed mobile phone,” in proceedings of International Symposium Antennas Propag., pp. 1-3, 2015.
[12] C. Lee and K. Wong, “Planar monopole with a coupling feed and an inductive shorting strip for LTE/GSM/UMTS operation in the mobile phone,” IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2479-2483, Jul. 2010.
[13] S. Chen and Y. Tsou, “LTE/WWAN monopole antenna for laptop computer applications,” in proceedings of IEEE/ACES International Conference Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), pp. 1-2, 2016.
[14] S. Shoaib, I. Shoaib, N. Shoaib, Xiaodong Chen and C. G. Parini, “Pattern reconfigurable antenna for mobile handsets,” in proceedings of Loughborough Antennas Propag. Conference, pp. 48-51, 2014.
[15] C.-K. Chang, C.-Y. Yao, and W.-J. Liao, “Dual-end opened slot antenna design for dual-band WLAN uses on handsets,” Microw. Opt. Technol. Lett., vol. 59, no. 11, pp. 2848-2855, Nov. 2017.
[16] K. Wong and C. Huang, “Triple-wideband open-slot antenna for the LTE metal-framed tablet device,” IEEE Trans. Antennas Propag., vol. 63, no. 12, pp. 5966-5971, Dec. 2015.
[17] K. Wong, C. Tsai, and P. Wu, “Dual-wideband open-slot antennas with two open ends for the LTE metal-framed tablet device,” in proceedings of International Symposium Antennas and Propag., pp. 1-4, 2015.
[18] C.-K. Chang, C.-Y. Yao, W.-J. Liao, “Dual-end opened slot antenna design for dual-band WLAN uses on handsets,” Microw. Opt. Technol. Lett., vol. 59, no. 11, pp. 2848-2855, Nov. 2017.
[19] M. K. Meshram, R. K. Animeh, A. T. Pimpale, and N. K. Nikolova, “A novel quad-band diversity antenna for LTE and Wi-Fi applications with high isolation,” IEEE Trans. Antennas Propag., vol. 60, no. 9, pp. 4360-4371, Sep. 2012.
[20] L. Chen, Y. Wu, and K. Wong, “Triple-wideband inverted-F frame antenna for the LTE metal-casing smartphone,” in proceedings of European Conference on Antennas and Propag., pp. 3064-3068, 2017.
[21] W. Wu and K. Wong, “Metal-frame inverted-F antenna for the LTE metal-casing smartphone,” in proceedings of International Symposium Antennas Propag., pp. 288-289, 2016.
[22] K. Yu, Y. Li, X. Luo, and X. Liu, “A modified E-shaped triple-band patch antenna for LTE communication applications,” in proceedings of IEEE International Symposium Antennas Propag., pp. 295-296, 2016.
[23] L. Ge, “Reconfigurable Metal-rimmed antenna for 4G/5G smartphones,” in proceedings of 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp. 1-3, 2019.
[24] X. Sun, G. Zeng, H. Yang, and Y. Li, “A compact quadband CPW-fed slot antenna for M-WiMAX/WLAN applications,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 395-398, 2012.
[25] C. Yang, Y. Jung, and C.-W. Jung, “Octaband internal antenna for 4G mobile handset,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 817-819, 2011.
[26] C.-K. Chang, W.-J. Liao, and C.-C. Tsai, “Metal body-integrated open-end slot-antenna designs for handset LTE uses,” IEEE Trans. Antennas Propag., vol. 64, No. 12, pp. 5436-5438, Dec. 2016.
[27] Y. Liu, W. Cui, Y.-T. Jia, “Hepta-Band Metal-Frame Antenna for LTE/WWAN Full-Screen Smartphone,” IEEE Trans. Antennas Propag., vol. 19, No. 7, pp. 1241-1245, Jul. 2020.
[28] T. Kang and K. Wong, “Chip-inductor-embedded small-size printed strip monopole for WWAN operation in the mobile phone,” Microw. Opt. Technol. Lett., vol. 51, no. 4, pp. 996–971, Apr. 2009.
[29] A. Tatomirescu, M. Pelosi, M. B. Knudsen, O. Franek and G. F. Pedersen, “Port isolation method for MIMO antenna in small terminals for next generation mobile networks,” in proceedings of IEEE Vehicular Technol. Conference, pp. 1-5, 2011.
[30] K.-L. Wong, P.-W. Lin, and J.-H. Hung, “Decoupled WWAN/LTE antennas with an isolation ring strip embedded there between for smartphone application,” Microw. Opt. Technol. Lett., vol. 55, no. 7, pp. 1470-1476, Jul. 2013.
[31] K. Wong and C. Tsai, “Low-profile dual-wideband inverted-T open slot antenna for the LTE/WWAN tablet computer with a metallic frame,” IEEE Trans. Antennas Propag., vol. 63, no. 7, pp. 2879-2886, Jul. 2015.
[32] S. Donglin and Z. Li, “Compact LTE/WWAN monopole antenna with a band-stop matching circuit for mobile phone,” in proceedings of International Conference on Microwave and Millimeter Wave Technology, pp. 1-3, 2018.
[33] P. Lin and K. Wong, “Simple monopole slot antenna for WWAN/LTE handset application,” in proceedings of Asia-Pacific Microw. Conference, pp. 829-832, 2011.
[34] H. Chang and K. Wong, “Compact LTE frame antenna with a narrow metal clearance and a radiating feed network for the metal-casing smartphone,” in proceedings of 2017 11th European Conference on Antennas and Propag., pp. 3069-3073, 2017.
[35] L. Luan and L. Jiu-sheng, “Very low profile multibranch antenna with high-pass matching circuit for LTE/WWAN tablet computer device,” in proceedings of IEEE MTT-S International Wireless Symposium, pp. 1-4, 2016.
[36] S. Hsu and K. Wong, “Compact two-branch monopole tablet computer antenna with integrated wideband matching network for LTE dual-wideband operation,” in proceedings of International Symposium Antennas Propag. Conference Proceedings, pp. 505-506, 2014.
[37] 李建榮, “高頻電子” , [online] Available: https://www.eebreakdown.com/p/blog-page_4.html, archived Oct. 2021.
[38] D. M. Pozar, “Microwave Engineering,” John Wiley & Sons Inc., 4th, pp. 235, 2012
[39] Antenna Theory, “Impedance,” [online] Available: https://www.antenna-theory.com/basics/impedance.php, archived Oct. 2021.
[40] G. Matthaei, L. Young, E. M. Jones, “Microwave Filters, Impedance-Matching Networks, and Coupling Structures”, Artech House Inc., vol. II, pp. 991, 1980.
[41] Tech Web, “Frequency-impedance characteristics of inductors and determination of inductor’s resonance frequency,” [online] Available: https://techweb.rohm.com/knowledge/emc/s-emc/04-s-emc/8136, archived Jan. 2022.
[42] S. Chen and M. Hsu, “LTE MIMO closed slot antenna system for laptops with a metal cover,” IEEE Access, vol. 7, pp. 28973-28981, 2019.
[43] K.-L. Wong and L.-C. Lee, “Multiband printed monopole slot antenna for WWAN operation in the laptop computer,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 324-330, Feb. 2009.
[44] C.-Y. Ho, Y.-H. Chang, and W.-J. Liao, “A Multiband LTE/WWAN Antenna Design for Tablet and Laptop Devices,” in proceedings of International Symposium on Antennas and Propagation (ISAP), pp. 1-2, 2021.
[45] S. Chen, Y. Lee, and P. Wu, “Small embedded LTE/WWAN antenna for a laptop computer,” in proceedings of International Symposium on Antennas and Propagation (ISAP), pp. 352-353, 2016.
[46] S. Chen, J. Sze, H. Jian, and W. Cai, “Loop antenna for the LTE/WWAN metal-casing laptop computer,” in proceedings of IEEE International Conference on Computational Electromagnetics (ICCEM), pp. 150-152, 2017.
[47] S. Chen, Y. Tsou, and C. Huang, “LTE/WWAN monopole antenna integration with hinge slot region in the laptop computer,” in proceedings of IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), pp. 113-114, 2016.
[48] 楊峻瑋, 應用於筆電環境之雙頻無線區域網路天線模組設計, 國立臺灣科技大學, 碩士論文, 2021。
[49] 李彥廷, 利用匹配電路設計小型化LTE/WWAN天線, 國立高雄師範大學光電與通訊工程學系, 碩士論文, 2017。

QR CODE