簡易檢索 / 詳目顯示

研究生: 吳政隆
Cheng-Long Wu
論文名稱: 具丁基乳酸旋光性結構之強誘電型液晶合成、物性與光電性質探討
Synthesis, Characterization and Electro-optical Properties of Ferroelectric Liquid Crystalline with a Chiral Structure of Butyl 2-hydroxypropanoate
指導教授: 李俊毅
Jiunn-Yih Lee
口試委員: 邱士軒
Shih-Hsuan Chiu
王英靖
Ing-Jing Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 矽氧烷大傾斜角旋轉行為
外文關鍵詞: organosiloxane, large tilt angle, switching behavior
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的為合成具丁基乳酸( Butyl 2-Hydroxypropanoate )之旋光性結構液晶材料,以4'-Hydroxybiphenyl-4-yl 4-Hydroxybenzoate為核心,並在非旋光末端基加上矽氧烷基團,並對矽氧烷是否影響液晶相轉移行為及液晶相進行研究觀察。在實驗中利用偏光顯微鏡(Polarizing Optical Microscope; POM)、示差掃描式卡計(Differential Scannin Calorimeter; DSC)、X射線繞射儀(X-ray Diffraction; XRD)、及相關光電實驗進行化合物液晶相的鑑定與討論。最後,對SmC*相之光電性質,如:傾斜角(Tilt Angle)、、旋轉行為(Switching Behavior)等性質進行測量,並對化學結構與光電性質的相互關係進行探討研究,因所研究之液晶光電材料主要應用於反射式元件中,本研究除了量測其光電性質外,並利用反射式模式,進一步觀察其元件是否能控制穿透及反射。


    The present paper is a study of the ferroelectric behaviour in liquid crystal materials with butyl 2-hydroxypropanoate. A few novel compounds with large tilt angle have been synthesized, and the mesophases exhibited by them have been compared. The mesophases under discussion were investigated by means of polarizing microscopy, differential scanning calorimetry, X-ray diffraction as well as electro-optical experiments. The influence of the molecular structure on the occurrence of the SmC* phase was investigated. Finally, the electro-optical properties of the SmC* phase, such as tilt angle and switching behavior were also measured. As a consequence, the correlation between their electro-optical properties and chemical structures of these compounds are investigated. Because the main application in cell for reflection, this study measured the electro-optical properties. To observe the cell can control between transmission and reflection.

    第1章 緒論.............................................................1 1-1. 前言..............................................................1 1-2. 液晶的發現.......................................................3 1-3. 液晶的分類........................................................5 1-3-1. 棒狀液晶相(Rod-like mesophases)......................6 1-3-2. 盤狀液晶相(Discotic mesophases).....................10 1-4. 誘電性(Ferroelectricity) ........................................11 1-4-1. 強誘電性液晶(Ferroelectric liquid crystals)…...11 1-4-2. 強誘電性液晶的顯示原理.................................14 1-5. 液晶的紋理圖.....................................................18 1-5-1. 旋光性向列型液晶 (Chiral Nematic Liquid Crystal, N*)...............18 1-5-2. 層列 C 相 (Smectic C, SmC) .............................20 1-5-3. 旋光性層列 C 相 (Chiral smectic C, SmC*)...21 1-5-4. 旋光性層列 A 相(Chiral smetic A, SmA*).........22 1-6. 液晶的合成與設計....................................25 第2章 實驗方法...................................................28 2-1. 實驗藥品…………………………………………………28 2-2. 實驗儀器及設備.................................................30 2-3. 合成流程.......................................................32 2-4. 合成步驟........................................................33 2-4-1. Methyl 3-bromo-4-hydroxybenzoate合成…...…33 2-4-2. Methyl 3-bromo-4-(hex-5-enyloxy) benzoate合成………………………...33 2-4-3. Methyl 3-bromo-4-(non-8-enyloxy) benzoate合成. ....................34 2-4-4. Methyl 3-bromo-4-(undec-10-enyloxy) benzoate合成.................34 2-4-5. 3-Bromo-4(hex-5-enyloxy) benzoic acid合成...........................35 2-4-6. 3-Bromo-4(non-8-enyloxy) benzoic acid合成...........................35 2-4-7. 3-Bromo-4(undec-10-enyloxy) benzoic acid合成........................36 2-4-8. Butyl 2-(4’-hydroxybiphenyl-4-yloxy) propanoate合成................36 2-4-9. 4’-(1-Butoxy-1-oxopropan-2-yloxy) biphenyl-4-yl 3-bromo-4-(hex-5-enyloxy) benzoate合成........................................................37 2-4-10. 4’-(1-Butoxy-1-oxopropan-2-yloxy) biphenyl-4-yl 3-bromo-4-(non-8-enyloxy) benzoate合成........................................................37 2-4-11. 4’-(1-Butoxy-1-oxopropan-2-yloxy) biphenyl-4-yl 3-bromo-4-(undec-10- enyloxy) benzoate合成........................................................38 2-4-12. 合成最終產物CnSiFLC系列.............................................39 2-5. 元素分析之測量..................................................42 2-6. 質譜儀之測量.....................................................43 2-7. 偏光顯微鏡及紋理圖觀察法(Optical Polarizing Microscope and Liquid Crystalline Texture Observation) .......44 2-8. 示差掃描式卡計之測量 (Differential Scanning Calorimetry;DSC) ..46 2-9. X 光射線繞射儀之測量 (X-ray Diffractometer;XRD) ..............47 2-10. 液晶元件製作流程.................................................48 2-11. SmC*相之測量 (Tilt Angle of the SmC* Phase)...........49 2-12. 自發極化值(Spontaneous Polarization)之測量................50 第3章 結果與討論.......................................................53 3-1. 1H-NMR分析...................................................53 3-2. 元素分析......................................................54 3-3. 質譜儀分析.............................................55 3-4. 液晶紋理圖....................................................56 3-5. 熱性質分析.....................................................58 3-6. XRD分析.......................................................60 3-7. 自發極化值(Spontaneous Polarization)分析....................64 3-8. 旋轉行為(Switching Behavior)分析..........................67 3-9. 旋轉黏度(Rotational Viscosity)分析..........................70 3-10. SmC*相之傾斜角測量和分析........................................72 第4章 液晶材料應用……………………………………..…………74 4-1. 強誘電性液晶應用方向...........................................74 4-2. 元件製程與實驗架設.......................................76 4-3. 實驗結果………………………..……………………….78 第5章 結論.......................................................84 第6章 參考文獻........................................................85 附圖................................................................89 圖目錄 圖 1-1液晶材料特性與顯示器之需求關聯圖......................................2 圖 1-2膽固醇類苯甲酯之結構圖..........................................................3 圖 1 3液晶相為介於固相與液相間之中間相......................................4 圖 1 4向列型液晶(a)分子排列示意圖(b)Nematic相紋理圖............7 圖 1 5(a)為膽固醇型,(b)為光學活性層列型.......................8 圖 1 6六取代的苯環衍生物.................................................10 圖 1 7 SmC*的螺旋結構,P=自發極化值方向....................................13 圖 1 8 Ferroelectric phase,Ferrielectric phase及Antiferroelectric phase結構..............................................................................................14 圖 1 9 (a)SSFLC書架型結構下強誘電性液晶分子排列示意圖(b)實心液晶分子為自發性極化強度朝上狀態,空心液晶分子為自發性極化強度朝下狀態……………………………16 圖 1-10 Geometry for bistable and switching process of SSFLC....….17 圖1-11 (a) 圖為N*相在偏光顯微鏡呈現正交狀態下所顯示之finger-pring texture、(b)圖為N*相在偏光顯微鏡呈現正交狀態下所顯示之focalconictexture及(c)圖為N*相在偏光顯微鏡呈現正交狀態下所顯示之planar texture之液晶紋理圖.................................................19 圖1-12 SmC所呈現的破焦錐扇形的結構……………………….….20 圖1-13 SmC所呈現向列型液晶線結(schlieren)的紋理圖.................21 圖 1-14 SmA*所呈現之焦錐扇形的結構(focal conic texture)……...22 圖 1-15 N*、TGBA*以及SmA*之三相共存之液晶紋理圖...............23 圖1-16 本實驗設計之液晶分子..........................................................27 圖2-1化合物CnSiFLC系列合成圖………………..…………...……32 圖2-2 POM量測系統裝置圖................................................................45 圖2 3自發極化值測量之裝置..............................................................51 圖2 4自發極化測量電路圖..................................................................52 圖3-1化合物C11SiFLC在50 °C時由液態冷卻(1 °C/min)至SmC*時顯示schlieren組織與破碎扇形的光學紋理圖.....................................56 圖3-2化合物C9SiFLC在53°C時由液態冷卻(1 °C/min)至SmC*時顯示schlieren組織與破碎扇形的光學紋理圖.........................................57 圖3-3化合物C6SiFLC在44°C時由液態冷卻(1 °C/min)至SmC*時顯示schlieren組織與破碎扇形的光學紋理圖.........................................57 圖3-4 CS Chem3D Ultra 7.0軟體使分子核心在共平面且軟鍊段為全反排狀態下之分子模擬圖....................................................................60 圖3-5 (a) 化合物C6SiFLC由液態冷卻至40 °C時的2D繞射圖 (b) 化合物C6SiFLC在40°C,SmC*相的X-Ray 繞射強對角 (c) 由液態冷卻的化合物layer d-spacing 與溫度的依存性.................................61 圖 3-6 化合物C11SiFLC在45℃時外加三角波電場............................64 圖3-7 Diamant-Bridge法測量結果.......................................................65 圖3-8 Ps與溫度相依性( ●:C6SiFLC;○:C9SiFLC;■:C11SiFLC)…65 圖3-9 Ps與電壓相依性( ●:C6SiFLC;○:C9SiFLC;■:C11SiFLC)....66 圖3-10化合物C6SiFLC以時間為函數在SmC*相下施以一個電壓Vpp為80V,頻率為10Hz的方波電場..................................................67 圖3-11 溫度為函數之反轉行為( ●:C6SiFLC;○:C9SiFLC;■:C11SiFLC)………………………………………….………….....…….68 圖3-12 T - Tc = 27℃時,以電壓為函數之反轉行為( ●:C6SiFLC;○:C9SiFLC;■:C11SiFLC)………………..……………………………68 圖3-13溫度為函數之旋轉黏度( ●:C6SiFLC;○:C9SiFLC;■:C11SiFLC)…………………………..…………………………….....…71 圖3-14電壓為函數之旋轉黏度( ●:C6SiFLC;○:C9SiFLC;■:C11SiFLC)…………………………………………..……...…….…….71 圖3-15 液晶分子會隨著交流電電極改變而擺動示意圖..................72 圖3-16 施加固定頻率電場SmC*相之光學傾斜角( ●:C6SiFLC;○:C9SiFLC;■:C11SiFLC)..............................73 圖 4-1 光線於兩介質間所產生穿透、折射以及全反射之示意圖.......75 圖 4-2 大傾斜角強誘電性液晶於玻璃元件內調控光穿透及光全反射之機制……………………………………………………………..……75 圖 4-3 大傾斜角強誘電性液晶應用於反射式投影之機制……....….76 圖 4-4 液晶元件製作步驟…….…………………..………………....77 圖 4-5 強誘電性液晶之光穿透及反射實驗架設………….........…..77 圖 4-6 大傾斜角強誘電性液晶於正交偏光片下之穿透現象(a) 三角波 (b)方波…………………………………..……………...................78 圖 4-7 p偏振光和s偏振光之定義………………...……………….79 圖4-8 不同角度偏振光可以分列成垂直及平行之偏振光………....79 圖 4-9 S偏振光之光穿透………………………...……...…………80 圖 4-10 P偏振光之光穿透…….…..…………………………………80 圖 4-11 S偏振光電壓對穿透(●)以及反射(○)之消長探討…….……82 圖 4-12 S及P偏振光下不同模式(a)正電壓(b)負電壓…………..….83 表目錄 表3-1 CnSiFLC系列化合物之元素分析結果.....................................54 表3-2 CnSiFLC系列化合物之質譜儀分析結果.................................55 表 3-3 CnSiFLC系列之液晶相變化轉換溫度 (℃) 與熱焓值(括弧內,kJ/mol)……………………………………………………………..58 表3-4 CnSiFLC系列液晶XRD相關數據統整....................................63 表3-5各化合物的最大反轉時間及極化值..........................................69

    [1] F. Reinitzer and M. Wiener, Fur. Chem., 9, 421 (1888)
    [2] O. Lehmann, Z. Phys.Chem., 4, 462 (1889)
    [3] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., Clarendon Press, Oxford (1993)
    [4] Birendra Bahadur, Liquid Crystals – Applications and Uses, World Scientific (1990)
    [5] G. Vertogen, W. H. de Jeu, Thermotropic Liquid Crystals, Fundamentals (1988)
    [6] 陳連春譯,最新液晶應用技術,建興出版社,第一章,民國86年
    [7] J. C. Peter, Liquid Crystal :Nature’s Delicate Phase of Matter, Princeton University Press, Princeton (1990)
    [8] A. D. L. Chandani, E. Gorecka, Y. Ouchi, H. Takezoe and A. Fukuda, J. Appl. Phys, 2, 28, 1265 (1989)
    [9] 劉瑞祥譯,液晶之基礎與應用,國立編譯館, 民國85年
    [10] G. W. Gray and J. W. Goodby, Smectic Liquid Crystals-textures and Structures, Leonard Hill, London (1984)
    [11] C. Kittel, Introduction to Solid State Physics, 6thed, chap 13
    [12] R. B. Meyer, L. Liebert, L. Strzelecki and Y. Inuishi, Jpn. J. Appl. Phys, 18, 1261 (1979)
    [13] Y. Iwasaki, K. Yoshino, T. Uemoto and Y. Inuishi, Jpn. J. Appl. Phys, 18, 1261 (1979)
    [14] N. A Clark, S. T. Uemoto and Y. Inuishi, Jpn. J. Appl. Phys , 18, 1261 (1979)
    [15] The physics of Ferroelectric and Antiferroelectric Liquid Crystals World Scientific, Singapore, (2000)
    [16] 松本正一,角田市良,液晶之基礎與應用,國立編譯館 (2002)
    [17] 謝文俊,吳勛隆,化學, 56. 1. 71 (1998)
    [18] 液晶物理與化學入門,楊宜寬,郭蘭生,鄭殷立編譯
    [19] M. Hird, J. W. Goodby, N. Gough and K. J. Toyne, J. Mater. Chem., 11, 2732, (2001)
    [20] G. Pelzl, A. Eremin, S. Diele, H. Kresse and W. Weissflog, J. Mater. Chem., 12, 2591 (2002)
    [21] M. Hird, Y. M. Raoul, J. W. Goodby and H. F. Gleeson, Ferroelectrics, 309, 95 (2005)
    [22] T. Kajitani, H. Masu, S. Kohmoto, M. Yamamoto, K. Yamaguchi and K.Kishikawa, J. Am. Chem. Soc., 127, 1124 (2005)
    [23] V. Gortz and J. W. Goodby, Chem. Commun., 3262 (2005)
    [24] D. M. Walba, E. Korblova, C. C. Huang, R. Shao, M. Nakata and N. A. Clark, J. Am. Chem., 128, 5318 (2006)
    [25] B. S. Gaylord, S. Wang, A. J. Heeger and G. C. Bazan., J. Am. chem., 123, 6417 (2001)
    [26] S. B. M. Krueger, V. Hamplova and M. Glogarova, J. Chem. Phys., 126, 054902 (2007)
    [27] W. K. Robinson, C. Carboni, P. Kloess, S. P. Perkens and H. J. Coles, Liq. Cryst., 25, 3 (1998)
    [28] A. S. Petrenko, PhD Thesis, University of Hull (2003)
    [29] M. D. Radcliffe, M. L. Brostrom, K. A. Epstein, A. G. Rappaport, B. N.Thomas, R. F. Shao and N. A. Clark., Liq. Cryst., 26, 789 (1999)
    [30] Y. P. Panarin, V. Panov, O. Kalinovskaya and J. K. Vij., J. Mater. Chem., 9, 2967 (1999)
    [31] M. S. Spector, P. A. Heiney, J. Naciri, B. T. Weslowski, D. B. Holt and R. Shashidhar., Phys. Rev. E., 61, 1579 (2000)
    [32] J. V. Selinger, P. J. Collings and R. Shashidhar, Phys. Rev. E., 64, 061705 (2001)
    [33] N. A. Clark, T. Bellini, R. Shao, D. Coleman, S. Bardon, D. R. Link and J. E. Maclennan, Appl. Phys., 80, 4097 (2002)
    [34] F. Giesselmann, J. P. F. Lagerwall, G. Andersson and M. D. Radcliffe, Phys. Rev., 66, 051704 (2002)
    [35] J. P. F. Lagerwall, F. Giesselmann, A. Saipa and R. Dabrowski, Liq. Cryst., 31, 1175 (2004)
    [36] M. Rossle, R. Zentel, J. Lagerwall and F. Giesselmann, Liq. Cryst., 31, 883 (2004)
    [37] C. Huang, S. Wang, X. Han, A. Cady, R. Pindak, W. Caliebe, K. Ema, K.Takekoshi and H. Yao, Phys. Rev., 69, 041702 (2004)
    [38] M. Rossle, L. Braun, D. Schollmeyer, R. Zentel, J. P. F. Lagerwall, F. Giesselmann and R. Stannarius, Liq. Cryst., 32, 533 (2005)
    [39] R. B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, J. Phys. Lett., 36, 69 (1975)
    [40] H. Diamant and K. Drenck, R. Pepinsly, R. Rev. Sci. Instrum, 28, 30 (1957)
    [41] C. V. Yelamaggad, U. S. Hiremath, S Anitha Nagamani, D. S. Shankar Rao and S. J. Krishna Prasad, Mater. Chem., 2, 1818 (2001)
    [42] J. W. Goodby, Liq. Cryst., 12, 207 (1991).
    [43] R. Zentel, G. R. Strobl and H. Ringsdorf, Macromolecules, 18, 960 (1985)
    [44] F. J. Bormuth, W. Haase and R. Zentel, Liq. Cryst., 148, 1 (1987)
    [45] S. Hiller, A. M. Biradar and W. Haase, Phys. Rev. E, 53, 641 (1996)

    無法下載圖示 全文公開日期 2016/01/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE