簡易檢索 / 詳目顯示

研究生: 沈小龍
Eric Santoso Sim
論文名稱: 以合成 NPs-17E DNAzyme 奈米結構於水中檢測 鉛離子
Synthesis NPs-17E DNAzyme Nanostructure for sensing Pb2+ in water
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 李振綱
Cheng-Kang Lee
張家耀
Jia-Yaw Chang
劉祐誠
You-Cheng Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 73
中文關鍵詞: 傳感重金屬DNAzyme17E DNAzymeNPs-17E DNAzyme
外文關鍵詞: Sensing, Heavy metals, DNAzyme, 17E DNAzme, NPs-17E DNAzyme, Lead
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

工業上,大部分的水都被多種危險金屬所汙染,進而對人類的健康產生許多
負面影響。其中,鉛被認為是水中最值得關注的金屬之一。飲用水中的鉛汙染則
是另一個造成健康危害的重要例子。因此,本研究提出利用 IONPs 來傳遞粒子並
使用 AuNPs 作為指示劑來感測 Pb2+。此外,我們使用磁鐵礦 (Fe3O4),因為磁鐵礦
具有高磁能。原則上,當特定金屬或重金屬接近酶側時,DNAzyme 會產生裂解。
而 rA 側( RNA 內部鹼基)是 DNAzyme 產生裂解的一側,由於 RNA 鍵具有相對
較高的水解能力,因此 rA 被認為是裂解發生的位點。本研究設計 IONPs 作為
DNAzyme 的傳遞媒介,並使用 AuNPs 作為反應指標。我們使用 17E DNAzyme 來
感測溶劑中的 Pb2+。 DNAzyme 在 IONPs 和 AuNPs 之間形成共軛鍵結。當
DNAzyme 裂解時,我們可以使用磁鐵將 IONPs 與 AuNPs 分離。 AuNPs 在可在溶
劑中將 PNP(對硝基苯酚)與 NaBH4(黃色的)降解為 PAP(對氨基苯酚,透明
的)。此外,我們發現 NPs-17E DNAzyme 釋放 AuNPs 的量取決於 Pb2+ 的濃度:3
ppm 的 Pb2+可使 ± 1.87 ppm 的 AuNP 被釋放、100 ppm 的 Pb2+可使 ± 54.19 ppm 的
AuNPs 被釋放。最後,利用 NPs-17E DNAzyme 的溶劑可降解 0.2 mM 的 PNP 並隨
不同濃度的 PAP 而產生顏色變化。我們測試在不同鉛離子濃度下,60 分鐘內將
PNP 降解為 PAP 的反應結果。總的來說,此方法具有一定的優勢;比如它的低成
本、簡單、多功能,且較為快速,60 分鐘就能完成反應。因此,本研究可能是一
項突破,並將能提供以低預算與有效結果來作為感測 Pb2+的另一種選擇。


In the industrial world, most of the water are polluted with various hazardous metals
which create negative effects to health risk. Lead is considered as one of the concerned
metals in the water. Therefore, we proposed using IONPs to deliver particles and AuNPs
as an indicator of sensing Pb2+. In addition, we used Magnetite (Fe3O4) because magnetite
has high magnetic energy. In principle, DNAzyme cleavages when specific metals or
heavy metals come to the enzyme side. The rA side (internal RNA base) is the side to
cleavage in DNAzyme, because of the RNA bond's relative capacity to hydrolytically
cleave, the rA has expected to be the cleavage point. We designed IONPs as a delivery
agent for DNAzyme, and used AuNPs as an indicator of response. We used 17E DNAzyme
to sense Pb2+ in the solvent. DNAzyme conjugated between IONPs and AuNPs. When the
DNAzyme cleavaged, we could separate IONPs from AuNPs by using a magnet. AuNPs
at solvent have been used to reduce PNP (para-Nitrophenol) with NaBH4 (yellow colors)
to PAP (para-Aminophenol) (transparent colors). Furthermore, we discovered that the
NPs-17E DNAzyme has released AuNPs depends on concentrations of Pb2+: 3 ppm of
Pb2+ released ± 1.87 ppm of AuNPs and 100 ppm of Pb2+ released ± 54.19 ppm of AuNPs .
Finally, the solvent of NPs-17E DNAzyme could reduce 0.2 mM of PNP and change the
colors with different concentrations of PAP. We have taken 60 minutes of reduction PNP
to PAP to make a response of different lead-(II) concentrations with a concentration of
PAP. Overall, this method offers advantages; for instance, the cost of experiment is low,
simple, and multifunctional. Also, it is relatively fast to react, only 60 minutes to response.
Thus, this study could be a breakthrough and might give us another option for sensing Pb2+
with a low budget and effective results.

Thesis Recommedation Form .............................................................................................. i Qualification Form ............................................................................................................. ii Abstract ............................................................................................................................. iii Acknowledgment ................................................................................................................ v List of Figures ................................................................................................................ ixiii List of Tables ..................................................................................................................... xi Abbreviation List ............................................................................................................. xii Chapter 1 Introduction ........................................................................................................ 1 1.1. Research Background ......................................................................................... 1 1.2. Research Objective ............................................................................................. 2 1.3. Research Content and Proposed Method ............................................................ 2 Chapter 2 Literature Review ............................................................................................... 4 2.1. Lead II (Pb2+) Heavy metals .............................................................................. 4 2.2. Sensing Lead II (Pb2+) heavy metals .................................................................. 5 2.3. IONPs Coated with PVP ................................................................................... 6 2.4. DNAzyme ............................................................................................................ 7 2.5. Nanoparticles ..................................................................................................... 9 2.5.1. Iron Oxide Nanoparticles (IONPs) ......................................................... 9 2.5.1. Gold Nanoparticles (AuNPs) ................................................................ 10 2.6. DNA conjugation .............................................................................................. 11 2.7. PNP reduction .................................................................................................. 12 Chapter 3 Experimental Materials and Methods .............................................................. 13 3.1. Bacteria and Plasmid ........................................................................................ 13 3.2. Material ............................................................................................................ 14 3.3. Equipment and Instrumentation ....................................................................... 15 3.4. Methods ............................................................................................................ 16 3.4.1. Synthesis IONPs (Fe3O4) ...................................................................... 17 3.4.2. Synthesis AuNPs .................................................................................. 17 3.4.3. Ultraviolet-Visible Spectroscopy.......................................................... 19 3.4.4. Scanning Electron Microscope (SEM) ................................................. 20 3.4.5. Transmission Electron Microscopy (TEM) .......................................... 20 3.4.6. DNA-functionalized Nanoparticles ...................................................... 20 3.4.7. DNA Hybridization .............................................................................. 21 3.4.8. Sensing Test of NPs-17E DNAzyme .................................................... 24 3.4.9. ICP Test ................................................................................................ 25 3.4.10. Michaelis-Menten Kinetics ................................................................... 26 3.4.11. PNP Reduction to PAP ......................................................................... 26 3.4.12. X-ray Diffractometer (XRD) ................................................................ 27 3.4.13. Vibrating Sample Magnetometer (VSM) ............................................. 28 Chapter 4 Results and Discussion ..................................................................................... 29 4.1. Synthesis Iron Oxide Nanoparticles ................................................................. 29 4.1.1. XRD Test for IONPs ............................................................................ 30 4.1.2. Electron Microscopy and EDS (Electron Diffraction Spectroscopy) .. 32 4.2. Gold Nanoparticles (AuNPs) ........................................................................... 33 4.3. Synthesis NPs-17E DNAzyme ......................................................................... 34 4.3.1. Sensing Test for NPs-17E DNAzyme with Different Reduction Agent .. .............................................................................................................. 37 4.3.2. Sensing Test for NPs-17E DNAzyme with Different Concentration of Pb2+ .............................................................................................................. 41 4.3.2. Kinetics Reaction of Nps-17E DNAzyme ........................................... 44 4.4. PNP Reduction to PAP..................................................................................... 46 4.5. Characterization NPs-17E DNAzyme .............................................................. 51 4.5.1. X-ray Diffraction (XRD) ...................................................................... 51 4.5.2. Vibrating Sample Magnetometer (VSM). ............................................ 52 4.5.3. field-emission scanning electron microscopy (FESEM) ...................... 52 Chapter 5 Conclusion ....................................................................................................... 55 Reference .......................................................................................................................... 56

1. A label-free lead(II) ion sensor based on surface plasmon resonance and DNAzyme-gold
nanoparticle conjugates. Wu, Huanan, et al. Shenzhen : Springer, 2020.
2. Colorimetric Biosensors Based on DNAzyme-Assembled. Liu, Juewen and Lu, Yi.
Urbana : Springer, 2004, Vol. 14. 4.
3. Colorimetric Biosensors Based on DNAzyme-Assembledc Gold Nanoparticles. Liu,
Juewen and Lu, Yi. 4, Urbana : Plenum Publishing Corporation, 2004, Vol. 14.
4. A comparative study: Synthesis of superparamagnetic iron oxide nanoparticles in air and
N2 atmosphere. Alp, Erdem and Aydogan, Nihal. 510, Ankara : Elsevier, 2016. 205-
212.
5. Gold nanoparticle interactions in human blood: a model evaluation. Ajdari, Niloofar , et
al. 13, London : Elsevier, 2017. 1531-1542.
6. Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of
bioanalytical chemistry. LIu, Biwu and Liu, Juewen. Ontario : The Royal Society of
Chemistry, 2017, Vol. 9. 2633-2643.
7. Aqueous-Phase Catalytic Chemical Reduction of p-Nitrophenol Employing Soluble Gold
Nanoparticles with Different Shapes. Oliveira, Francyelle Moura de, et al. Maceió-AL :
MDPI, 2016.
8. Toxic Metals in the Environment: Thermodynamic Considerations for Possible
Immobilization Strategies for Pb, Cd, As, and Hg. Scheckel, Krik G, Impellitteri,
Christopher A and Ryan, James A. Washington DC : Taylor & Francis Inc, 2004.
9. A highly selective lead sensor based on a classic lead DNAzyme. Lan, Tian, Furuya,
Kimberly and Lu, Yi. Urbana : The Royal Society of Chemistry, 2010, Vol. 46.
10. In vitro selection of RNA molecules that bind specific ligands. Elington, Andrew D and
Szostak, Jack W. Boston : Nature, 1990.
11. ystematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage
T4 DNA polymerase. Tuerk, C and Gold, L. Colorado : American Association for the
Advancement of Science, 1990, Vol. 249.
12. Design of asymmetric DNAzymes for dynamic control of nanoparticle. Liu, Juewen and
Lu, Yi. Urbana : The Royal Society of Chemistry, 2006, Vol. 4.
13. Mazumdar, Debapriya, Lan, Tian and Lu, Yi. “Dipstick” Colorimetric Detection of
Metal Ions Based on Immobilization of DNAzyme and Gold Nanoparticles onto a Lateral
Flow Device. Urbana : Springer, 2017.
14. Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold
nanoparticle–DNAzyme conjugates. Mazumdar, Debapriya, et al. Urbana : The Royal
Society of Chemistry, 2010.
15. Phase Transformation of Iron Oxide Nanoparticles by varying the molar ratio of Fe2+ :
Fe3+. Alibeigi, Samaneh and Vaezi, Mohammad Reza. 11, Karaj : WILEY-VCH
Verlag GmbH & Co, 2008, Vol. 31. 1591-1596.
16. A Lead-Dependent DNAzyme with a Two-Step Mechanism. Brown, Andrea K, et al.
Urbana : American Chemical Society, 2003.
17. Wu, Huanan , et al. A label-free lead(II) ion sensor based on surface plasmon
resonance. Guangdong : Springer, 2020.
18. Khoshbin, Zahra, et al. Simultaneous detection and determination of mercury (II) and
lead (II) ions through the achievement of novel functional nucleic acid-based biosensors.
Mashhad : Elsevier, 2018.
19. Ge, Shenguang, et al. Paper-based biosensor relying on flower-like reduced graphene
guided. Jinan : Elsevier, 2016.
20. Lan, Tian, Furuya, Kimberly and Lu, Yi. A highly selective lead sensor based on a
classic lead DNAzyme. Urbana : The Royal Society of Chemistry, 2010.
21. Green synthesis of carbon dots from Ocimum sanctum for effective. Kumar, Amit, et al.
679-686, Jharkhand : Elsevier, 2017, Vol. 242.
22. Preparation of polyacrylamide via surface-initiated. Sun, Yue, et al. 105-113, Dalian :
Springer, 2016, Vol. 20.
23. Glutathione Modified Gold Nanoparticles for Sensitive Colorimetric. Yu, Yanming, et
al. 12316−12322, Sion : American Chemical Society, 2016, Vol. 88.
24. Electrochemiluminescent lead biosensor based on GR-5. Gao, Ai, et al. 263–268 ,
Tianjin : The Royal Society of Chemistry, 2013, Vol. 138.
25. Amplified Surface Plasmon Resonance and Electrochemical. Pelossof, Gilad, Tel-Vered,
Ran and Willner, Itamar. 3703−3709, Jerusalem : American Chemical Society, 2012,
Vol. 84.
26. Aptamer-based biosensors for detection of lead(II) ion: a review. Yang, Danxing, et al.
Cangsha : the Royal Society of Chemistry, 2017.
27. “Signal-On” Photoelectrochemical Sensing Strategy Based on Target-Dependent
Aptamer Conformational Conversion for Selective Detection of Lead(II) Ion. Zang, Yang,
et al. 15991−15997, Nanjing : American Chemical Society, 2014, Vol. 6.
28. Design of Organic Macrocycle-Modified Iron Oxide Nanoparticles for Drug Delivery.
Skorjanc, Tina, et al. Abu Dhabi : ChemPubSoc, 2017, Vol. 23. 8333-8347.
29. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance
imaging. Eguchi, Haruki, Umemura , Masanari and Kurotani , Reiko. Tennessee
Ridge : OSTI, 2015.
30. Tuning the surface coating of IONs toward efficient sonochemical tethering and sustained
liberation of topoisomerase II poisons. Michalkova, Hana, et al. Brno : Dovepress, 2019,
Vol. 14. 7609-7624.
31. Click Chemistry for Drug Delivery Nanosystems. Lallana, Enrique, et al. Santiago de
Compostela : Springer, 2011, Vol. 29. 1-34.
32. Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube
Functionalization by Surface-Enhanced Raman Scattering. Moran , Christine H, et al.
Missouri : ACS , 2011, Vol. 115.
33. DNAzyme Sensor for the Detection of Metal Ions Using Resistive Pulse Sensing. Heaton,
Imogen and Platt, Mark. Loughborough : ChemRxiv, 2020.
34. Nanoparticles – A Review. Mohanraj, VJ and Chen, Y. Nigeria : Tropical Journal of
Pharmaceutical Research, 2006.
35. Nanoparticles and the Environment. Biswas, Pratim and Wu, Changyu. Washington :
Taylor and Francis, 2005.
36. Synthesis and electrochemical applications of gold nanoparticles. Guo, Shaojun and
Wang, Erkang. Jilin : Elsevier, 2007, Vol. 598.
37. Degradation of p-nitrophenol (PNP) in aqueous solution by Fe0-PM-PS system through
response surface methodology (RSM). Li, Jun, et al. Chengdu : Elsevier, 2017.
38. Mimicking peroxidase active site microenvironment by functionalized graphene quantum
dots. Xin, Qi, et al. Beijing : Springer , 2020, Vol. 13. 1427-1433.
39. Doxorubicin–PAMAM dendrimer conjugates attached to superparamagnetic iron oxide
nanoparticles (IONPs). Chang, Yulei, et al. 363, Changchun : Elsevier, 2011. 403-409.
40. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future.
Ajinkya, Nene, et al. 13, Shenzhen : MDPO, 2020. 4644.
41. Preparation of Biotic and Abiotic Iron Oxide Nanoparticles (IOnPs) and Their Properties
and Applications in Heterogeneous Catalytic Oxidation. Jung, Haeryong, et al. 13,
Bukgu : American Chemical Society, 2007, Vol. 41.
42. Concentration Effect of Reducing Agents on Green Synthesis of Gold Nanoparticles: Size,
Morphology, and Growth Mechanism. Kim, Hyunseok, et al. 11, Seoul : Springer, 2016.
230.
43. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol
degradation. Zhu, Nengwu, et al. 23, Guangzhou : Springer, 2016. 7627-7638.
44. Highly Active and Stable DNAzyme-Carbon Nanotube Hybrids. Yim, Taejin, et al. New
york : American Chemical Society, 2005, Vol. 127. 12200-12201.
45. Stimuli-Responsive Disassembly of Nanoparticle Aggregates for Light-Up Colorimetric
Sensing. Liu, Juewe and Lu, Yi. Urbana : American Chemical Society, 2005, Vol. 127.
12677-12683.
46. Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold
nanoparticle–DNAzyme conjugates. Mazumdar, Debapriya, et al. Urbana : The Royal
Society of Chemistry, 2010, Vol. 46. 1416-1418.
47. Design of asymmetric DNAzymes for dynamic control of nanoparticle aggregation states
in response to chemical stimuli. Liu, Juewen and Lu, Yi. Urbana : The Royal Society of
Chemistry, 2006, Vol. 4.
48. Yucca-derived synthesis of gold nanomaterial and their catalytic potential.
Krishnamurty, Sneha, et al. kentucky : Springer, 2014.
49. Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin:
Effect of ultrasonic frequency. Dolores, Reyman, Raquel, Serrano and Adianez, Garcia
Leis. Madrid : Elsevier, 2015, Vol. 23. 391-398.

無法下載圖示 全文公開日期 2026/09/25 (校內網路)
全文公開日期 2026/09/25 (校外網路)
全文公開日期 2026/09/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE