簡易檢索 / 詳目顯示

研究生: 林水泉
Shui-chuan Lin
論文名稱: 超高分子量聚乙烯/奈米碳管纖維製備與超高延伸行為研究
Preparation and Investigation of Ultradrawing Behavior of Ultra-high Molecular Weight Polyethylene / Carbon Nanotube Fibers
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 蘇清淵
none
陳建智
none
陳幹男
none
黃繼遠
none
王權泉
none
吳進三
none
石天威
none
洪輝嵩
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 105
中文關鍵詞: 凝膠紡絲延伸倍率結晶度與順向度奈米碳管超延伸
外文關鍵詞: gel fiber, draw ratio, crystalline orientation, CNTs, ultradrawing
相關次數: 點閱:415下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對超高分子量聚乙烯( UHMWPE, U )/低分子量聚乙烯( LMWPE, L ) 摻混凝膠紡絲之超高分子量聚乙烯纖維與超高分子量聚乙烯/奈米碳管纖維的延伸機理與延伸後凝膠纖維樣品結晶形態及物性作一系列之探討研究。首先使用2 wt% 組成濃度U/L樣品於170 ℃紡絲溫度下製備之凝膠纖維,探討其超延伸性質。本研究中將針對未延伸或已延伸的U/L纖維樣品的熱性質、雙折射性質及強力性質來探討這些有趣的現象。相當有趣的是,U/L纖維樣品隨著初期延伸倍率之增高,以SEM觀察外部,纖維結晶方向呈現與延伸方向平行之走向,顯示纖維內部結晶之順向性增加,並可以WXRD證明,當延伸倍率超過20倍之後,纖維晶形之順向性皆高於95%,對應於纖維雙折射率及抗張力,延伸初期快速增加之原因即是原本排序無章之結晶已轉變呈為有序列,分子鏈迅速呈沿延伸方向平行排列,才可使其性能提升。
    對照至纖維內部結晶度、順向度與結晶形態,於低倍延伸之時(0D~20D)結晶的轉變多為層狀結構轉變成為microfibrils,當延伸倍率高於20倍之後,層狀結構多被延伸為microfibrils,順向性的成長已趨於緩和,以致於纖維雙折射率、抗張力、結晶度之成長速率亦減慢,性能提升減慢。
    一次延伸轉至二次延伸倍率至40倍之後,以SEM觀察發現纖維會有結點之缺陷存在。同時對照至纖維內部結晶度與順向度,其增加速率減緩,以致於纖維雙折射率、抗張力、結晶度慢慢趨於緩和,性能提升速度減慢。延伸後期直到80倍之後,分子鏈與鏈之間漸漸緊繃,導致纖維內部因延伸形成正交晶系相轉變成單斜晶後因張力約束轉變不回正交晶系。於DSC可發現於高倍率延伸之時會產生另一正交晶轉變成六方晶系之相轉變,亦證實了因軸向延伸倍率非常高才能進一步使microfibrils排列更為緻密,再加上由於單斜晶之比例亦提高,使單位面積通過的分子鏈數目增加,導致性能進一步提升至極致。為了解上述這些經不同延伸倍數所製得纖維樣品之超延伸行為,在本研究中更進一步進行對纖維樣品之斷面型態、雙折射率、熱學和強力等性能,以釐清可能的延伸變形機理。
    另一方面,針對奈米碳管含量( cabon nanotubes, CNTs ),超高分子量聚乙烯( ultrahigh molecular polyetheylenes, UHMWPE )濃度和紡絲對UHMWPE/CNTs凝膠溶液流變,可紡及UHMWPE/CNTs初絲樣品的延伸影響做一系統性探討。 研究發現,隨溫度增加達140 ℃最適化溫度時,UHMWPE凝膠溶液的剪切黏度( s )明顯增加並達到一最大值。另外,UHMWPE/CNTs凝膠溶液的s隨其內奈米碳管含量的增加而增大,且在奈米碳管含量達一特定值時,UHMWPE/CNTs凝膠溶液的s達最大。 在任一固定紡絲溫度下,接近最適化UHMWPE濃度製備的UHMWPE初絲樣品其可延伸比達最大。 值得注意的是,UHMWPE/CNTs初絲樣品的可延伸比均隨其內紡液濃度和奈米碳管含量達一最適化值時而達最大。 事實上,經最適化紡液濃度,奈米碳管含量和紡絲溫度製備的UHMWPE/CNTs初絲樣品較相同條件下未添加奈米碳管的UHMWPE初絲樣品的最大可延伸比高約15-30%。 為瞭解上述這些有趣的現象,本研究中更進一步對UHMWPE 和UHMWPE/CNTs初絲樣品及延伸後的斷面型態,雙折射率,熱學和抗張等性能進行探討。


    In this study, the drawing behavior and physical properties of gel fiber specimens of UHMWPE ( U ) / LMWPE ( L ) and UHMWPE ( U ) / carbon nanotubes ( CNTs ) blends were investigated using compositions of gel solution and drawing processes. The influence of draw ratios ( DR ) of gel-spun ultrahigh molecular weight polyethylene ( UHMWPE ) fibers on resultant morphologies, tensile, degrees of orientation and crystal phase transition properties were investigated using wide angle X-ray diffraction ( WAXD ), differential scanning calorimetry ( DSC ) and scanning electron microscopy ( SEM ). The anisotropic crystalline structure with full concentric circular rings originally shown on the WAXD patterns of the as-prepared and drawn UHMWPE fibers gradually transform into oriented fibers with azimuthal spots on the equator as their DR values increase from 1 to 20, in which their orthorhombic crystals, percentage crystallinity, crystalline orientation and the birefringence values increase significantly. As evidenced by SEM and WAXD analysis, the chain-folded molecules originally present in kebab crystals of the as-prepared UHMWPE fiber specimens gradually transformed into shish-like crystals with relatively high orientation as their DR values increase from 1 to 20. In contrast, the crystallinity and crystal orientation values of the drawn UHMWPE specimens increase only slightly, as their DR values increase from 20 to 40, wherein both crystallinity values of orthorhombic and monoclinic crystals increase slightly. In fact, barely any oriented kebab but only shish crystals were observed on the surfaces of drawn UHMWPE fiber specimens with DR values higher than 20. The birefringence values increase only slightly with further increasing DR values, while crystallinity and crystal orientation values of the drawn UHMWPE fiber specimens remained relatively unchanged as their DR values increase from 40 to 150. In the meantime, the monoclinic crystals gradually grow at the expense of the orthorhombic form crystals as the DR values of drawn UHMWPE fiber specimens increase from 40 to 150. Possible reasons accounting for these interesting properties found for the drawn UHMWPE fibers with varying draw ratios are proposed in this study.
    Moreover, a systematic study of the influence of the CNTs contents, UHMWPE concentrations and spinning temperatures on the ultradrawing properties and deformation mechanisms of a series of fiber specimens prepared from varying concentrations of gel solutions of ultrahigh molecular weight polyethylene and carbon nanotubes blends is carried out. The CNTs contents, UHMWPE concentrations and spinning temperatures of UHMWPE and CNTs added gel solutions exhibited significant influence on their rheological and spinning properties and the drawability of the corresponding UHMWPE/CNTs as-prepared fibers. Tremendously high shear viscosities ( s ) of UHMWPE gel solutions were found as the temperatures reached 140 ℃, at which theirs values approached the maximum. After adding CNTs, the s values of UHMWPE/CNTs gel solutions increase significantly and reach a maximum value as the CNTs contents increase up to a specific value. At each spinning temperature, the achievable draw ratios obtained for UHMWPE as-prepared fibers prepared near the optimum concentration are significantly higher than those of UHMWPE as-prepared fibers prepared at other concentrations. After addition of CNTs, the achievable draw ratios of UHMWPE/CNTs as-prepared fibers prepared near the optimum concentration improve consistently and reach a maximum value as their CNTs contents increase up to an optimum value. In fact, the achievable draw ratio of UHMWPE/CNTs as-prepared fibers prepared from the gel solution with the optimum CNTs, UHMWPE composition and spinning temperature are about 15 to 30% higher than those of the UHMWPE as-prepared fibers prepared at the optimum concentration. In order to understand these interesting drawing properties of the UHMWPE and UHMWPE/CNTs as-prepared fibers, the birefringence, thermal, morphological and tensile properties of the as-prepared and drawn fibers were investigated.

    中文摘要……………………………………………………………………I 英文摘要…………………………………………………………………III 誌謝…………………………………………………………………………VI 目錄………………………………………………………………………VII 圖表索引……………………………………………………………………XI 第一章 緒 論…………………………………………………………….1 1.1 前言………………………………………………………………..1 1.2 文獻回顧……………………………………………………………..8 1.2.1 聚乙烯簡介………………………………………………………..8 1.2.2 高強力聚乙烯纖維………………………………..……..9 1.2.2.1 高強力聚乙烯纖維的之製造技術……………………….9 1.2.2.1.1 固態擠出法(solid state extrusion)…………………..9 1.2.2.1.2 超延伸法(ultradrawing)………………………………..10 1.2.2.1.3 區域延伸法(zone drawing)……………………………11 1.2.2.1.4 表面成長法(surface growth method)…………..12 1.2.2.1.5 凝膠紡絲法(gel spinning)…………………………..14 1.2.2.2 UHMWPE使用凝膠紡絲技術成功得到高強力纖維的原因 .15 1.2.2.3 UHMWPE凝膠紡絲的技術要點…………………………….16 1.2.3 熱拉伸對凝膠原絲形態和結構的影響.......................................18 1.2.3.1 型態和力學性質....................................................................18 1.2.3.2 熱性能....................................................................................18 1.2.3.3 聚集態結構............................................................................19 1.2.4 奈米碳管簡介...............................................................................20 1.2.4.1 奈米碳管結構........................................................................20 1.2.4.2 奈米碳管特性........................................................................21 1.2.4.3 奈米碳管純化........................................................................22 1.2.4.3.1 氧化法...........................................................................22 1.2.4.3.2 過濾法...........................................................................23 1.2.5 奈米碳管/高分子複合材料..........................................................24 1.2.5.1 奈米碳管/高分子複合材料簡介...........................................24 1.2.5.2 具方向性排列之奈米碳管/高分子複合材料..............25 1.3 參考文獻……………………………………………………...………31 第二章 超高分子量聚乙烯與低分子量聚乙烯摻混凝膠高強力纖維延伸機理與結構研究.......................................................35 2.1簡介..........................................35 2.2 實驗..........................................................................................42 2.2.1 原料及樣品製備..................................................................42 2.2.2 延伸後UHMWPE fiber樣品之雙折射性質分子順向度檢測..43 2.2.3 凝膠纖維延伸性能、抗張強力及模數之測定............45 2.2.4 凝膠纖維熱學性質分析..................................................45 2.2.5 掃描式電子顯微鏡( Scanning Electron Microscopy, SEM )…...45 2.2.6廣角X射線繞射儀( Wide Angle X-ray Diffraction, WAXD )…46 2.3 結果與討論...............................................................48 2.3.1 不同延伸倍率製備的凝膠纖維之表面形態分析.................48 2.3.2 不同延伸倍率製備的凝膠纖維之廣角X射線繞射( Wide Angle X-ray Diffraction, WAXD )分析..................................50 2.3.3 示差掃瞄熱分析儀( DSC )測試..................................57 2.3.4 楊氏係數與強度測試.................................................59 2.4結論..................................................................61 2.5參考文獻.....................................................63 第三章 不同濃度及溫度紡液之可紡性及其製備超高分子量聚乙烯纖維/ 奈米碳管延伸性質之探討..............................................65 3.1簡介………………………………………………………67 3.2 實驗................................................................67 3.2.1 原料及樣品製備...........................................67 3.2.1.1 凝膠溶液的製備.........................................67 3.2.2 凝膠紡絲條件與流程...........................................68 3.2.3 凝膠溶液剪切黏度分析...................................70 3.2.4 凝膠纖維表面型態及熱學性質分析........................71 3.2.5 凝膠纖維熱延伸性質之測定...............................72 3.2.6 凝膠纖維分子順向度分析............................73 3.2.7 凝膠纖維抗張性質分析..............................................74 3.3 結果與討論......................................................75 3.3.1 UHMWPE及UHMWPE/CNTs凝膠溶液剪切黏度分析.........75 3.3.2 UHMWPE和UHMWPE/CNTs初絲樣品之熱學性質分析....79 3.3.3 UHMWPE和UHMWPE/CNTs初絲樣品之表面型態分析...83 3.3.4 UHMWPE和UHMWPE/CNTs初絲樣品之可延伸性質..85 3.3.5 UHMWPE和UHMWPE/CNTs初絲與延伸纖維樣品分子順向度............................................................89 3.3.6 UHMWPE和UHMWPE/CNTs初絲與延伸纖維樣品抗張性 質.......................................................................94 3.4 結論...........................................................................97 3.5 參考文獻.....................................................99 第四章 未來研究方向......................................101

    1. P. Smith, P. J. Lemstra, J. Mater. Sci., 15, 505 (1980).
    2. P. Smith, P. J. Lemstra and H. C. Booij, J. Mater. Sci., 19, 877 (1981).
    3. J. Smook, A. J. Pennings, J. Mater. Sci., 19, 31 (1984).
    4. P. Smith, P. J. Lemstra, J. P. L. Pippers and, A. M. Kiel, Coll. Polym. Sci., 258, 1070 (1981).
    5. J. Bore, H. J. Vanden Berg and A. J. Pennings, Polymer, 25, 513 (1984).
    6. M. Matsuo and R. St. J. Manley, Macromolecules, 15, 985 (1982).
    7. T. Kanamoto, A. Tsuruta, K. tanaka, T. Takeda and R. S. Porter, Polym. J., 15, 327 (1983).
    8. K. Furuhata, T. Yokokawa and K. Miyasaka, J. Polym. Sci., Polym. Phys. Ed., 22, 133 (1984).
    9. A. Zhang, K. Chen, H. Zhao and Z. Wu, J. Appl. Polym. Sci., 38, 1369 (1989).
    10. K. Chen, A. Zhang, P. Lu and Z. Wu, J. Appl. Polym. Sci., 38, 1377 (1989).
    11. X. Wang. S. Li and R. Salovey, J. Appl. Polym. Sci., 35, 2165 (1988).
    12. A. E. Zacharrriades and R. S. Porter, Ed., "The Strength and Stiffness of Polymer", Marcel Dekker, Inc., New Tork (1983).
    13. N. Nakajima, J. Ibata, Japan Patents 57177035, 57177036, 57177037 (1983).
    14. C. Sawatari, and M. Matsuo, Polymer, 30, 1603 (1989).
    15. I. Simeonov, Z. Nikolova, P. Komitov, K. Naidenova, Bulgarian Patent 31,868 (1982).
    16. M. Mihailov and L. Minkova, Coll. & Polym. Sci., 265, 681 (1987).
    17. Y. L. Huang and N. Brown, Polymer, 33, 2989 (1992).
    18. J. T. Yeh, Y. L. Lin and C. C. Fan-Chiang, Macromol. Chem. Phys.,
    197, 3531 (1996).
    19. J. T. Yeh and H. C. Wu, Polym. J., 30, 1 (1998).
    20. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 70, 149 (1998).
    21. J. T. Yeh and S. S. Chang, J. Mater. Sci., 35, 3227 (2000).
    22. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 79, 1890 (2001)
    23. J. T. Yeh and S. S. Chang, Polym. Eng. Sci., 42, 1558 (2002).
    24. J. T. Yeh, Y. T. Lin and K. N. Chen, J. Polym. Res., 10, 55 (2003).
    25. W. M. Perkins, N. J. Capiati, and R. S. Porter, Polym. Eng. Sci., 16, 200 (1976).
    26. A. E. Zahariades, T. Kanamoto and R. S. Porter, J. Polym. Sci., Polym. Phy. Ed., 18, 575 (1980).
    27. D. M. Bigg, M. M. Epstein, R. J. Fiorentine and E. G. Smith, J. Appl. Polym. Sci., 26, 395 (1981).
    28. W. Wu and W. B. Black, Polym. Eng. Sci., 19, 1169 (1979).
    29. W. Wu, P. G. Simpson and W. B. Black, J. Polym. Sci., Polym. Phys. Ed., 18, 751 (1970).
    30. W. N. Taylor and E. S. Clark, Polym. Eng. Sci., 18, 518 (1978).
    31. E. S. Clark and L. S. Scott, Polym. Eng. Sci., 14, 682 (1974).
    32. H. Kiho and K. Asai, Kobunshi Toronkai Preprint (Japan), 835 (1974).
    33. M. Kamezawa, K. Yamada and M. Takayanagi, J. Appl. Polym. Sci., 24, 1227 (1979).
    34. S. N. Zurkov, B. Ya. Levin and A. V. Savitskij, Dokl. Ahad. Nauk SSSR, 186, 32 (1969).
    35. A. Zweinenburg, PhD thesis, State Univ. of Groningen (1978).
    36. A. J. Pennings and C. J. H. Schouteten and A. M. Kiel, J. Appl. Polym. Sci., 167 (1972).
    37. P. Smith, P. J. Lemstra, B. Kalb and A. J. Pennings, Polym. Bull., 1, 733 (1979).
    38. J. Smook, C. J. Torf, P. F. VanHutten and A. J. Pennings, Polym. Bull., 2, 293 (1980).
    39. P. J. Barham and A. Keller, J. Mater. Sci., 15, 2229 (1980).
    40. R. H. Baughman, A. A. Zakhidov, W. A. Heer, Sci., C, 297 (2002).
    41. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, R. E. Smalley, Science, 280, 1253(1998).
    42. S. C. Tsang, P. J. F. Harris, M. L. H. Green, Nature, 362, 520(1993).
    43. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature, 372, 159 (1995).
    44. B. C. Satishkumar, A. Govindaraj, J. Mofokeng, G. N. Subbanna, C. N. R. Rao, J. Appl. Polym. Sci., 29, 4925(1996).
    45. Y. H. Lee, Y. S. Park, Y. C. Choi,K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, Carbon, 39, 655 (2001).
    46. J. M. Bonard, T. Stora, J. P. Salvetat, F. Maier, T. Stöckli, C. Duschl, L. Forro, W. A. De Heer, A. Chatelain, Adv. Mater., 9, 827 (1997).
    47. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund, Chem. Phys., 101, 8839(1997).
    48. K. B. Shelimov, R. O. Rinat, A. G. Rinzler, C. B. Huffmann, R. E. Smalley, Chem. Phys. Lett., 282, 429 (1998).
    49. M. S. P. Shaffer, A. H. Windle, Advanced Materials, 11, 93741(1999).
    50. D. Qian, E. C. Dickey, R. Andrews, T. Rantell, J. Appl. Polym. Sci., 76, 2868 (2000).
    51. V. Lordi, N. Yao, J. Phys. Chem., 15, 2770 (2000).
    52. H. D. Wagner, O. Lourie, Y. Feldmen, R. Tenne, J. Appl. Polym. Sci., 72, 188 (1998).
    53. L. Jin, C. Bower, O. Zhou, J. Appl. Polym. Sci., 73, 1197 (1998).
    54. R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, K. I. Winey, Phys. Chem., 330, 219 (2000).
    55. R. Andrew, D. Jacques, A. M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Appl. Polym. Sci., 75, 1329 (1999).
    56. B. Vigolo, A. Pe´nicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science, 290, 1331(2000).
    57. J. C. Kearns, R. L. Shambaugh, J. Appl. Polym. Sci., 86, 2079(2002).
    58. S. L. Ruana, P. Gaob, X.G. Yangb, T. X. Yu, Polymer, 44, 5643(2003).

    無法下載圖示 全文公開日期 2012/10/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE