簡易檢索 / 詳目顯示

研究生: 黃翔暐
Hsiang-Wei Huang
論文名稱: 以磁控濺鍍法製備生物活性玻璃薄膜之研究與性質探討
Preparation and characterization of thin film bioactive glass prepared by magnetron sputtering
指導教授: 周育任
Yu-Jen Chou
口試委員: 施紹儒
shao-ju.shih
曾修暘
Hsiu-Yang Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 生物活性玻璃薄膜磁控濺鍍法噴霧乾燥法生物活性
外文關鍵詞: thin film bioactive glass, magnetron sputtering, spray dry, bioactivity
相關次數: 點閱:213下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年有賴科技產業的蓬勃發展與醫療技術的飛速進步,人類的壽命延長,人們步入高齡化社會的進程,人體老化導致骨骼疏鬆的問題日益嚴重,使得骨折風險大大增加,因此替代骨骼的醫療應用越發受到重視。在現今大多使用的醫療植入物材料為金屬,而金屬植入物在人體體內長期使用磨損和磨耗,導致金屬離子析出,堆積在植入物與關節間或釋出於血液中,前者造成假腫瘤的產生,進而引發異物反應與排斥作用,後者於循環系統中流至各器官,輕則造成患者精神渙散,重則可能導致各器官衰竭。

    因此本研究提出表面改質方式,以磁控濺鍍法製備生物活性玻璃薄膜於純鈦金屬,改善純鈦金屬生物相容性和生物活性不足的問題。本實驗靶材製備所需之生物活性玻璃粉末,以噴霧乾燥法製造,不僅能達到快速量產且此製程可調整前驅物溶液之配比,以達到不同比例之BG粉末需求,使靶材製備具有高度化學可調性,爾後搭配射頻磁控濺鍍法,披覆BG薄膜於(100)矽晶圓及純鈦金屬。薄膜性質之分析,藉由能量散射光譜儀及X光繞射分析儀判別薄膜之化學組成與結晶結構,並利用聚焦型離子束顯微鏡觀察薄膜表面形貌及量測薄膜厚度,在薄膜機械性質的測量上,使用奈米壓痕儀測量薄膜微硬度。最後將薄膜浸泡至人體模擬體液中,進行生物活性測試,並採用傅立葉紅外線光譜儀和聚焦型離子束顯微鏡來鑑定其生物活性及其薄膜表面形貌之變化。

    本研究成功設計一套運用於磁控濺鍍法之靶材製程。並透過SEM、EDS檢測粉體形貌、平均粒徑、粉體成分均勻性,皆符合靶材粉體之需求。磁控濺鍍法製備生物活性玻璃薄膜,於EDS鑑定下與58S生物活性玻璃配比相近,以此證明成功運用磁控濺鍍系統披覆生物活性玻璃薄膜於純鈦金屬。由生物活性測試之結果,可推斷本研究所製備之薄膜具備生物活性之潛力。


    In recent years, thanks to the vigorous development of the science and technology industry and the rapid advancement of medical technology, the life span of human beings has been lengthened, and people have entered the process of an aging society. The aging of the human body has led to an increasingly serious problem of bone loss, which greatly increases the risk of fractures. Therefore, alternative bone medical treatment The application is getting more and more attention. Most of the medical implant materials used today are metal. The long-term use of metal implants in the human body causes abrasion and abrasion, resulting in the precipitation of metal ions, which accumulate between the implant and the joint or release into the blood. Among them, the former causes false tumors, which in turn triggers foreign body reactions and rejection, and the latter flows to various organs in the circulatory system, which may cause the patient's mental dissociation, and may lead to the failure of various organs.

    Therefore, this study proposes a surface modification method to prepare bioactive glass films on pure titanium by magnetron sputtering to improve the biocompatibility and insufficient biological activity of pure titanium. The bioactive glass powder required for the preparation of the target material in this experiment is manufactured by spray drying method, which can not only achieve rapid mass production, but also can adjust the ratio of the precursor solution in this process to meet the requirements of different proportions of BG powder, so that the target material can be prepared It has a high degree of chemical tenability, and then used with radio frequency magnetron sputtering method to coat (100) silicon wafer and pure titanium with BG film. For the analysis of film properties, use energy scattering spectrometer and X-ray diffraction analyzer to determine the chemical composition and crystalline structure of the film, and use a focused ion beam microscope to observe the surface morphology of the film and measure the thickness of the film. In the measurement of the mechanical properties of the film Above, use a Nano-indenter to measure the micro hardness and adhesion strength of the film. Finally, the film was immersed in a simulated human body fluid to conduct a biological activity test, and a Fourier infrared spectrometer and a focused ion beam microscope were used to identify its biological activity and changes in the surface morphology of the film.

    In this research, we successfully designed a set of target manufacturing processes used in magnetron sputtering. The powder morphology, average particle size, and uniformity of powder composition are tested by SEM and EDS, which all meet the requirements of target powder. The bioactive glass film prepared by the magnetron sputtering method is similar to 58S bioactive glass under EDS identification, which proves the successful use of the magnetron sputtering system to coat the bioactive glass film on pure titanium. From the results of the biological activity test, it can be inferred that the film prepared in this research has the potential of biological activity.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 研究介紹 1 第二章 文獻回顧 3 2.1 生醫材料 3 2.1.1 氫氧基磷灰石 4 2.1.2 三鈣磷酸鹽 5 2.1.3 生物活性玻璃 6 2.2 生物活性玻璃 7 2.2.1 生物活性玻璃的材料特性 7 2.2.2 生物活性的機制 10 2.2.3 生物活性分析 12 2.2.4 生物活性玻璃製備方法 15 2.2.4.1 傳統玻璃製程 15 2.2.4.2 溶膠-凝膠法 16 2.2.4.3 噴霧熱解法 16 2.2.4.4噴霧乾燥法 17 2.3 生物活性玻璃薄膜製程方法 18 2.3.1 真空蒸鍍法 20 2.3.2 雷射脈衝沉積法 21 2.4 磁控濺鍍法 23 2.4.1 濺鍍原理 26 2.4.2 射頻與直流濺鍍系統 26 2.4.3 磁控濺鍍 28 2.4.4 電漿生成 32 2.4.5 薄膜成長機制 33 2.4.6 薄膜微觀結構 37 第三章、實驗目的與方法 39 3.1 實驗設計及其目的 39 3.2 實驗原料 42 3.3 實驗儀器設備 43 3.4 樣品製備之流程 44 3.4.1 粉體與靶材製造 44 3.4.2 薄膜製備 45 3.5 樣品性質及分析方法 46 3.5.1 熱重分析儀 46 3.5.2 X光繞射儀 46 3.5.3 聚焦型離子束顯微鏡 47 3.5.4 奈米壓痕機械性質分析儀 48 3.5.5 傅立葉轉換紅外線光譜儀 48 3.6 體外生物活性測試 49 第四章、實驗結果 50 4.1 探討製備運用於磁控濺鍍系統之靶材參數 50 4.2 生物活性玻璃粉體之性質分析 53 4.3 生物活性玻璃薄膜之性質分析 56 4.3.1 晶體結構分析 56 4.3.2 薄膜表面形貌及厚度觀察 59 4.3.3 薄膜元素組成分析 64 4.3.4 薄膜機械性質分析 65 4.3.5 生物活性分析 67 第五章、結果討論 73 5.1 生物活性玻璃薄膜 73 5.2 生物活性玻璃薄膜形貌探討 74 5.3 生物活性玻璃薄膜之厚度探討 75 5.4 生物活性玻璃薄膜之生物活性探討 77 第六章、結論 79 第七章、未來工作 80 參考文獻 81

    [1] T. Thamaraiselvi, S. Rajeswari, Biological evaluation of bioceramic materials-a review, Carbon, 24 (2004) 172.
    [2] L. Galea, M. Bohner, J. Thuering, N. Doebelin, C.G. Aneziris, T. Graule, Control of the size, shape and composition of highly uniform, non-agglomerated, sub-micrometer β-tricalcium phosphate and dicalcium phosphate platelets, Biomaterials, 34 (2013) 6388-6401.
    [3] D. Bellucci, A. Sola, V. Cannillo, Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications, Journal of Biomedical Materials Research Part A, 104 (2016) 1030-1056.
    [4] M.O. WELLER, M.T. Weller, T. Overton, J. Rourke, F.A. Armstrong, INORGANIC CHEMISTRY 7E, Oxford University Press, 2018.
    [5] W. Xiao, B.S. Bal, M.N. Rahaman, Preparation of resorbable carbonate-substituted hollow hydroxyapatite microspheres and their evaluation in osseous defects in vivo, Materials Science and Engineering: C, 60 (2016) 324-332.
    [6] K. De Groot, Medical applications of calciumphosphate bioceramics, J. Ceram. Soc. Jpn., 99 (1991) 943-953.
    [7] S. Bose, S. Tarafder, J. Edgington, A. Bandyopadhyay, Calcium phosphate ceramics in drug delivery, JOM, 63 (2011) 93-98.
    [8] K. de Groot, Bioceramics Calcium Phosphate, CRC press, 2018.
    [9] G. Kostorz, High-tech Ceramics: Viewpoints and Perspectives, Elsevier, 2016.
    [10] F. Caroff, K.-S. Oh, R. Famery, P. Boch, Sintering of TCP–TiO2 biocomposites: Influence of secondary phases, Biomaterials, 19 (1998) 1451-1454.
    [11] K. Sugiyama, M. Tokonami, Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca 3 (PO 4) 2: A host to accommodate large lithophile elements in the earth's mantle, Phys. Chem. Miner., 15 (1987) 125-130.
    [12] M. Maciejewski, T.J. Brunner, S.F. Loher, W.J. Stark, A. Baiker, Phase transitions in amorphous calcium phosphates with different Ca/P ratios, Thermochim. Acta, 468 (2008) 75-80.
    [13] R.G. Carrodeguas, S. De Aza, α-Tricalcium phosphate: Synthesis, properties and biomedical applications, Acta Biomater., 7 (2011) 3536-3546.
    [14] D. Liu, Y. Zuo, W. Meng, M. Chen, Z. Fan, Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology, Materials Science and Engineering: C, 32 (2012) 1253-1258.
    [15] A. Rámila, B. Munoz, J. Pérez-Pariente, M. Vallet-Regí, Mesoporous MCM-41 as drug host system, J. Sol-Gel Sci. Technol., 26 (2003) 1199-1202.
    [16] M. Vallet‐Regí, Nanostructured mesoporous silica matrices in nanomedicine, J. Intern. Med., 267 (2010) 22-43.
    [17] L.L. Hench, R.J. Splinter, W. Allen, T. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res., 5 (1971) 117-141.
    [18] L.L. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc., 74 (1991) 1487-1510.
    [19] S. Kargozar, F. Baino, S. Hamzehlou, R.G. Hill, M. Mozafari, Bioactive glasses: sprouting angiogenesis in tissue engineering, Trends Biotechnol., 36 (2018) 430-444.
    [20] P. Li, Z. Jia, Q. Wang, P. Tang, M. Wang, K. Wang, J. Fang, C. Zhao, F. Ren, X. Ge, A resilient and flexible chitosan/silk cryogel incorporated Ag/Sr co-doped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties, Journal of Materials Chemistry B, 6 (2018) 7427-7438.
    [21] J. Damen, J. Ten Cate, Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation, J. Dent. Res., 71 (1992) 453-457.
    [22] L.L. Hench, The story of Bioglass®, J. Mater. Sci. Mater. Med., 17 (2006) 967-978.
    [23] L. Hench, Bioactive ceramics: Theory and clinical applications, in: Bioceramics, Elsevier, 1994, pp. 3-14.
    [24] P. DUCHEYNE, Bioceramics: material characteristics versus in vivo behavior, J. Biomed. Mater. Res., 21 (1987) 219-236.
    [25] D. Sanders, L. Hench, Mechanisms of glass corrosion, J. Am. Ceram. Soc., 56 (1973) 373-377.
    [26] A. Clark Jr, C. Pantano Jr, L. Hench, Auger spectroscopic analysis of bioglass corrosion films, J. Am. Ceram. Soc., 59 (1976) 37-39.
    [27] S.-J. Shih, Y.-J. Chou, L.V.P. Panjaitan, Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass, Ceram. Int., 39 (2013) 8773-8779.
    [28] Q. Chen, A.R. Boccaccini, Poly (D, L‐lactic acid) coated 45S5 Bioglass®‐based scaffolds: Processing and characterization, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77 (2006) 445-457.
    [29] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, J. Appl. Biomater., 2 (1991) 231-239.
    [30] O.P. Filho, G.P. La Torre, L.L. Hench, Effect of crystallization on apatite‐layer formation of bioactive glass 45S5, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 30 (1996) 509-514.
    [31] S.-J. Shih, L.-Y.S. Chang, C.-Y. Chen, K.B. Borisenko, D.J. Cockayne, Nanoscale yttrium distribution in yttrium-doped ceria powder, J. Nanopart. Res., 11 (2009) 2145-2152.
    [32] T. Pluym, Q. Powell, A. Gurav, T. Ward, T. Kodas, L. Wang, H. Glicksman, Solid silver particle production by spray pyrolysis, J. Aerosol Sci, 24 (1993) 383-392.
    [33] T. González-Carreño, M.P. Morales, M. Gracia, C.J. Serna, Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis, Mater. Lett., 18 (1993) 151-155.
    [34] S. CHE, O. SAKURAI, T. YASUDA, K. SHINOZAKI, N. MIZUTANI, Preparation and formation mechanism of silica-encapsulated palladium particles by spray pyrolysis, J. Ceram. Soc. Jpn., 105 (1997) 269-271.
    [35] E.H.J. Kim, X.D. Chen, D. Pearce, Surface composition of industrial spray-dried milk powders. 2. Effects of spray drying conditions on the surface composition, J. Food Eng., 94 (2009) 169-181.
    [36] C. Vervaet, J.P. Remon, Continuous granulation in the pharmaceutical industry, Chem. Eng. Sci., 60 (2005) 3949-3957.
    [37] F. Baino, E. Fiume, M. Miola, E. Verné, Bioactive sol‐gel glasses: processing, properties, and applications, International Journal of Applied Ceramic Technology, 15 (2018) 841-860.
    [38] G. Molino, A. Bari, F. Baino, S. Fiorilli, C. Vitale-Brovarone, Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass–ceramic scaffolds for bone tissue regeneration, Journal of Materials Science, 52 (2017) 9103-9114.
    [39] B. Lei, X. Chen, Y. Wang, N. Zhao, C. Du, L. Fang, Synthesis and bioactive properties of macroporous nanoscale SiO2–CaO–P2O5 bioactive glass, J. Non-Cryst. Solids, 355 (2009) 2678-2681.
    [40] A. Rizkalla, D. Jones, D. Clarke, G. Hall, Crystallization of experimental bioactive glass compositions, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 32 (1996) 119-124.
    [41] S. Liste, J. Serra, P. González, J. Borrajo, S. Chiussi, B. León, M. Pérez-Amor, The role of the reactive atmosphere in pulsed laser deposition of bioactive glass films, Thin Solid Films, 453 (2004) 224-228.
    [42] E. Thian, J. Huang, S. Best, Z. Barber, W. Bonfield, Silicon‐substituted hydroxyapatite thin films: Effect of annealing temperature on coating stability and bioactivity, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 78 (2006) 121-128.
    [43] A.P. Hale, Preparation and evaluation of epitaxial silicon films prepared by vacuum evaporation, Vacuum, 13 (1963) 93-100.
    [44] Y.-L. Huang, H.-J. Liu, C.-H. Ma, P. Yu, Y.-H. Chu, J.-C. Yang, Pulsed laser deposition of complex oxide heteroepitaxy, Chinese Journal of Physics, 60 (2019) 481-501.
    [45] D.M. Mattox, Chapter 6 - Vacuum Evaporation and Vacuum Deposition, in: D.M. Mattox (Ed.) Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), William Andrew Publishing, Boston, 2010, pp. 195-235.
    [46] J.V. Rau, R. Teghil, M. Fosca, A. De Bonis, I. Cacciotti, A. Bianco, V.R. Albertini, R. Caminiti, A. Ravaglioli, Bioactive glass–ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol–gel vs melt-processing route), Mater. Res. Bull., 47 (2012) 1130-1137.
    [47] A. Sola, D. Bellucci, V. Cannillo, A. Cattini, Bioactive glass coatings: a review, Surf. Eng., 27 (2011) 560-572.
    [48] G. Stan, S. Pina, D. Tulyaganov, J. Ferreira, I. Pasuk, C. Morosanu, Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering, J. Mater. Sci. Mater. Med., 21 (2010) 1047-1055.
    [49] J. Musil, Low-pressure magnetron sputtering, Vacuum, 50 (1998) 363-372.
    [50] K. Wasa, I. Kanno, H. Kotera, Handbook of sputter deposition technology: fundamentals and applications for functional thin films, nano-materials and MEMS, William Andrew, 2012.
    [51] M.O. Mavukkandy, S.A. McBride, D.M. Warsinger, N. Dizge, S.W. Hasan, H.A. Arafat, Thin film deposition techniques for polymeric membranes– A review, J. Membr. Sci., 610 (2020) 118258.
    [52] R. Buckley, J. Woods, Variations in the resistivity of evaporated films of cadmium sulphide, J. Phys. D: Appl. Phys., 6 (1973) 1084.
    [53] E.B. Graper, Distribution and apparent source geometry of electron-beam-heated evaporation sources, Journal of vacuum science and technology, 10 (1973) 100-103.
    [54] R. Triboulet, J. Perrière, Epitaxial growth of ZnO films, Prog. Cryst. Growth Charact. Mater., 47 (2003) 65-138.
    [55] V.S. Smentkowski, Trends in sputtering, Prog. Surf. Sci., 64 (2000) 1-58.
    [56] A. Zangwill, Physics at surfaces, Cambridge university press, 1988.
    [57] M.P. Seah, D. Briggs, Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy, John Wiley & Sons, 1990.
    [58] <adnanotek_catalogue_2015.pdf>.
    [59] S. Swann, S. Collett, I. Scarlett, Film thickness distribution control with off‐axis circular magnetron sources onto rotating substrate holders: Comparison of computer simulation with practical results, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8 (1990) 1299-1303.
    [60] G.E. Stan, D. Bojin, Adherent glass-ceramic thin layers with bioactive potential deposited by magnetron sputtering techniques, UPB Buletin Stiintific, Series B: Chemistry and Materials Science, 72 (2010) 187-196.
    [61] S.A. Campbell, The science and engineering of microelectronic fabrication, Oxford university press, 2001.
    [62] I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, Surf. Coat. Technol., 127 (2000) 203-218.
    [63] J.A. Thornton, Substrate heating in cylindrical magnetron sputtering sources, Thin Solid Films, 54 (1978) 23-31.
    [64] R.K. Waits, Planar magnetron sputtering, Journal of Vacuum Science and Technology, 15 (1978) 179-187.
    [65] D. Depla, S. Mahieu, J.E. Greene, Chapter 5 - Sputter Deposition Processes, in: P.M. Martin (Ed.) Handbook of Deposition Technologies for Films and Coatings (Third Edition), William Andrew Publishing, Boston, 2010, pp. 253-296.
    [66] S. Swann, Magnetron sputtering, Physics in technology, 19 (1988) 67.
    [67] D. Depla, J. Haemers, G. Buyle, R. De Gryse, Hysteresis behavior during reactive magnetron sputtering of Al 2 O 3 using a rotating cylindrical magnetron, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 24 (2006) 934-938.
    [68] D.M. Mattox, Chapter 5 - The Low Pressure Plasma Processing Environment, in: D.M. Mattox (Ed.) Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), William Andrew Publishing, Boston, 2010, pp. 157-193.
    [69] D. Depla, S. Mahieu, R. De Gryse, Magnetron sputter deposition: Linking discharge voltage with target properties, Thin Solid Films, 517 (2009) 2825-2839.
    [70] J.E. Greene, Chapter 12 - Thin Film Nucleation, Growth, and Microstructural Evolution: An Atomic Scale View, in: P.M. Martin (Ed.) Handbook of Deposition Technologies for Films and Coatings (Third Edition), William Andrew Publishing, Boston, 2010, pp. 554-620.
    [71] J.A. Thornton, Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings, Journal of Vacuum Science and Technology, 12 (1975) 830-835.
    [72] A. Dirks, H. Leamy, Columnar microstructure in vapor-deposited thin films, Thin Solid Films, 47 (1977) 219-233.
    [73] P. Barna, M. Adamik, Fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin Solid Films, 317 (1998) 27-33.
    [74] C. Berbecaru, H.V. Alexandru, G.E. Stan, D.A. Marcov, I. Pasuk, A. Ianculescu, First stages of bioactivity of glass-ceramics thin films prepared by magnetron sputtering technique, Materials Science and Engineering: B, 169 (2010) 101-105.
    [75] H.E. Skallevold, D. Rokaya, Z. Khurshid, M.S. Zafar, Bioactive glass applications in dentistry, Int. J. Mol. Sci., 20 (2019) 5960.
    [76] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3, J. Biomed. Mater. Res., 24 (1990) 721-734.
    [77] R. Bal, B.B. Tope, T.K. Das, S.G. Hegde, S. Sivasanker, Alkali-Loaded Silica, a Solid Base: Investigation by FTIR Spectroscopy of Adsorbed CO2 and Its Catalytic Activity, J. Catal., 204 (2001) 358-363.
    [78] M. Markovic, B.O. Fowler, M.S. Tung, Preparation and comprehensive characterization of a calcium hydroxyapatite reference material, J. Res. Natl. Inst. Stand. Technol., 109 (2004) 553.
    [79] G. Stan, I. Pasuk, M. Husanu, I. Enculescu, S. Pina, A. Lemos, D. Tulyaganov, K. El Mabrouk, J. Ferreira, Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature, J. Mater. Sci. Mater. Med., 22 (2011) 2693-2710.
    [80] G. Stan, D. Marcov, I. Pasuk, F. Miculescu, S. Pina, D. Tulyaganov, J. Ferreira, Bioactive glass thin films deposited by magnetron sputtering technique: The role of working pressure, Appl. Surf. Sci., 256 (2010) 7102-7110.
    [81] G. Stan, A. Popescu, I. Mihailescu, D. Marcov, R. Mustata, L. Sima, S. Petrescu, A. Ianculescu, R. Trusca, C. Morosanu, On the bioactivity of adherent bioglass thin films synthesized by magnetron sputtering techniques, Thin Solid Films, 518 (2010) 5955-5964.
    [82] L.-J. Meng, M. Dos Santos, Influence of the target-substrate distance on the properties of indium tin oxide films prepared by radio frequency reactive magnetron sputtering, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18 (2000) 1668-1671.
    [83] S. Rahmane, M.A. Djouadi, M.S. Aida, N. Barreau, B. Abdallah, N. Hadj Zoubir, Power and pressure effects upon magnetron sputtered aluminum doped ZnO films properties, Thin Solid Films, 519 (2010) 5-10.
    [84] B. Stuart, M. Gimeno-Fabra, J. Segal, I. Ahmed, D.M. Grant, Preferential sputtering in phosphate glass systems for the processing of bioactive coatings, Thin Solid Films, 589 (2015) 534-542.
    [85] T. Lee, E. Chang, B. Wang, C. Yang, Characteristics of plasma-sprayed bioactive glass coatings on Ti-6A1-4V alloy: an in vitro study, Surf. Coat. Technol., 79 (1996) 170-177.
    [86] A. Cattini, L. Łatka, D. Bellucci, G. Bolelli, A. Sola, L. Lusvarghi, L. Pawłowski, V. Cannillo, Suspension plasma sprayed bioactive glass coatings: Effects of processing on microstructure, mechanical properties and in-vitro behaviour, Surf. Coat. Technol., 220 (2013) 52-59.

    無法下載圖示 全文公開日期 2023/09/17 (校內網路)
    全文公開日期 2026/09/17 (校外網路)
    全文公開日期 2026/09/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE