簡易檢索 / 詳目顯示

研究生: 莊冠霆
Kuan-Ting Chuang
論文名稱: 磁控濺鍍金屬氧化物複合薄膜及其抗菌性研究
Metal oxide composite thin films made by magnetron sputtering for bactericidal application
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 薛人愷
Ren-Kae Shiue
邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 136
中文關鍵詞: 磁控濺鍍不織布殺菌
外文關鍵詞: RF sputter, non-woven fabric, bactericidal.
相關次數: 點閱:253下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是探討在室溫下以反應磁控濺鍍系統,先以銀靶材濺鍍找出能形成 Ag 2 O 的最適氬氣/氧氣的流量比後,再利用該最佳濺鍍條件進行由化學合成得到的氧化銀/氧化鋅複合粉體所熱壓的自製靶材來製作氧化銀/氧化鋅複合薄膜,該自製陶瓷靶材選用三種組成配方, 分別是 15 wt%、30 wt%、45 wt% Ag 2 O/ZnO 三種複合靶材,進行濺鍍含有細小奈米氧化銀顆粒均勻散佈的複合薄膜,採用基板有不織布及玻璃兩種。
    對這些不同條件處理之薄膜以 X 光繞射儀(XRD)分析薄膜的結構及結晶性;場發射掃描式電子顯微鏡(FESEM)觀察薄膜的表面形態;橢圓偏光儀(Ellipseometer)量測得到膜厚性質;原子力顯微鏡(AFM)進一步了解薄膜表面粗糙度;並以能量分散式光譜儀(EDS)半定量分析薄膜元素組成與銀、鋅、氧之含量變化。在光學性質量測方面,採用紫外光/可見光吸收光譜儀(UV-Vis spectrometer)量測薄膜樣品在不同光源下的吸收率。
    實驗結果顯示,分別在氬:氧比例為 7:1、3:1 、1:1 以及純氧的電漿條件下,來濺鍍製作氧化銀薄膜。發現當通以氬:氧比 7:1 時,可得到一價銀之 Ag 2 O;氬:氧比 3:1 時,薄膜以 AgO 單相存在;當純氧與氬:氧比 1:1 時,薄膜以(Ag+Ag 2 O)兩相共存。以本實驗氬:氧比 7:1 條件製備的 Ag 2 O 薄膜其表面型態非常平整,Ag 2 O 晶粒很小,且均勻地沉積在基材上。Ag 2 O/ZnO 複合薄膜會隨著氧化銀的增加,使得表面呈現不規則狀,晶粒變得較大,當 Ag 2 O 重量比由 15 wt%上升至45 wt%時,其表面粗糙度會由 1.68 nm 上升至 10.1 nm,此是為了堆疊出更多的半導體 p(Ag 2 O)-n(ZnO)異質接面,讓電子電洞可以更有效地分離,增加與細菌產生電荷牽引的機會,提升複合薄膜的抗菌性,使其達到與氧化銀相仿的抗菌能力。
    在抗菌測試上,我們以在初始菌量為 10 4 cfu/1ml 的情形下,進行金色葡萄球菌和大腸桿菌之抗菌能力試驗,得出 Ag 2 O 薄膜具有極佳的殺菌效果,即使在暗室下仍有強抗菌能力,而 45 wt% Ag 2 O/ZnO複合薄膜在兩項細菌的抗菌實驗上,不論是在亮室或暗室均有良好的成效,在第二小時幾乎都已 99.9%抑菌率,已十分接近氧化銀薄膜的抗菌能力,說明異質接面的形成可以彌補 Ag 2 O 的減少,且在薄膜附著性測試上也有不錯的表現,更是提升了其商業化的價值。


    The research focused on using RF magnetron reactive sputtering to deposit Ag-based oxide and oxide composite thin films at room temperature for the bactericidal purpose. At first stage, Ag-based oxide films were prepared with a Ag target at different argon-to-oxygen ratios in order to find the right processing condition for forming the right Ag 2 O phase. At the second stage, three kinds of 15 wt%, 30 wt%, and 45% silver oxide/zinc oxide composite cermet targets were made by hot pressing the Ag 2 O nanoparticle-attached ZnO powders. The 15 wt%, 30 wt%, and 45 wt% silver oxide/zinc oxide targets were used to deposited the composite films at the optimal oxygen input, based upon the processing data from the Ag target-formed Ag 2 O film. Two kinds of substrates were used, the glass and the non-woven fabric.
    All the oxide and oxide composite thin films were characterized for their the structure and crystallinity by X-ray diffraction, the morphology by field emission scanning electron microscopy, the thickness by Ellipseometer, the surface roughness by atomic force microscopy, the film compositions on Ag, Zn, and O by energy-dispersive spectrometer equipped on electron microscope and, and the film optical absorption property by the ultraviolet-visible spectrometer.
    Ag-based oxide films were obtained from t, the pure Ag target under different Ar:O 2 ratios of 7:1, 3:1, 1:1, and 0:1. At the Ar:O 2 ratio of 7:1, the film showed the Ag 2 O single phase and had the smooth surface
    morphology and fine grains. At the Ar:O 2 ratio of 3:1, the film show the AgO single phase. At the pure oxygen and the Ar:O 2 ratio of 1:1, the films both contained two phases of Ag and Ag 2 O. For Ag 2 O/ZnO composite films with different Ag 2 O weight ratios, the films became rougher with the roughness value of 1.68 nm at 15 wt% Ag 2 O increasing to 10.1 nm at 45 wt% Ag 2 O. As ZnO is a n-type semiconductor and Ag 2 O a p-type one, the composite films with increasing Ag 2 O content will form more the pn junctions in composite films. The generated pn junctions are for the purpose for effectively separately the photo-induced electron-hole pairs to prolong their lifetime in order to travel to the surface for redox reactions or even the bactericidal ability.
    For the antibacterial tests, we selected Escherichia coli and Staphylococcus aureus as the testing strains when their initial bacteria concentration was 10 4 cfu/1ml. We found that the antibacterial performance of Ag 2 O thin film was quite effective to inhibit bacteria even without light ,and antibacterial performance of 45 wt% Ag 2 O/ZnO composite thin film was nearly as good as Ag 2 O thin film regardless of dark room or light room. After two hours, they both almost achieved up to 99.9% antibacterial effect . Therefore, we proved that forming p-n junction could make up for reduing the amount of Ag 2 O. Moreover, they also have stable adhesion on substrate which could increase their commercial value obviously.

    摘要 I Abstract III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章、緒論 1 1-1 前言 1 1-2 奈米材料簡介 3 1-3 光觸媒概述 6 1-4 奈米複合材料分類 8 1-5 抗菌材料 10 1-6 研究動機與目的 12 第二章、理論基礎與文獻回顧 13 2-1 氧化鋅簡介 13 2-1-1 氧化鋅基本性質 13 2-1-2 氧化鋅製備方法 14 2-2 氧化銀簡介 15 2-2-1 氧化銀基本性質 15 2-2-2 氧化銀製備方法 16 2-3 濺射奈米薄膜 17 2-3-1 奈米薄膜 17 2-3-2 濺射基礎原理 17 2-3-3 反應式濺射 19 2-4 半導體異質接面 22 2-5 細菌構造簡介及分類 23 2-5-1 細菌之細胞壁 24 2-5-2 細菌分類 25 2-6 光觸媒抗菌機制 27 2-6-1 光觸媒反應機制 27 2-6-2 光觸媒抗菌原理 29 2-6-3 異質接面半導體光觸媒 31 2-6-4 半導體光觸媒抗菌分析 41 第三章、實驗方法與步驟 49 3-1實驗設備 49 3-1-1真空熱壓機 49 3-1-2鍍膜沉積系統 49 3-1-3 靶材製作以及製程相關設備 51 3-2實驗藥品與氣體 54 3-2-1藥品 54 3-2-2氣體 55 3-3實驗流程圖 56 3-3-1靶材之複合粉體製備 57 3-3-2氧化鋅/氧化銀複合靶材製備 58 3-3-3靶材濺鍍 58 3-4分析儀器 59 3-4-1高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 59 3-4-2高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 61 3-4-3紫外光、可見光/近紅外光分析儀 (UV-Vis/NIR spectrophotometer) 62 3-4-4 X射線光電子能譜儀 (X-Ray Photoelectron Sprectroscpoe,XPS) 63 3-4-5橢圓偏光儀 (Spectroscopic Ellipsometry) 63 3-4-6原子力顯微鏡 (Atomic Force Microscopy System) 65 3-5抗菌試驗 66 3-5-1 配置標準培養液 66 3-5-2 培養實驗所需細菌 67 3-5-3 光源 67 3-5-4 抗菌步驟 68 第四章、結果與討論 69 4-1氧化銀薄膜及氧化銀/氧化鋅複合薄膜之特性探討 71 4-1-1 X-Ray Diffraction (XRD)繞射分析 71 4-1-2 高解析度場發射掃描式電子顯微鏡(SEM)表面型態觀察 73 4-1-3 高解析度穿透式電子顯微鏡(HR-TEM)微觀結構觀察 76 4-1-4 X-ray Photoelectron Spectroscopy (XPS) 79 4-1-5紫外-可見光/近紅外光分析儀 (UV-VIS Spectroscopy) 84 4-1-6 橢圓偏光儀分析(Ellipsometry) 86 4-1-7 原子力顯微鏡 (Atomic Force Microscopy) 89 4-2 抗菌性之探討 92 4-2-1濺鍍氧化銀薄膜及氧化銀/氧化鋅複合薄膜之抗菌性 93 4-2-2抗菌性之時效測試 104 4-3薄膜之機械可撓實驗與附著性測試 111 4-3-1濺鍍薄膜披覆不織布之機械可撓實驗與分析 111 4-3-2濺鍍薄膜於玻璃基板上之附著性測試 113 第五章、結論 116 第六章、參考文獻 118

    [1] J. M. Jones, “In U.S., Concern About Environmental Threats Eases.”, (2015). http://www.gallup.com/poll/182105/concern-environmental-threats-eases.aspx
    [2]高濂,“奈米光觸媒” 五南圖書股份有限公司,(2004)。
    [3]馬遠榮,“奈米科技” 商周股份有限公司,(2002)。
    [4] P. Jha, “Applied Nanochemistry.” Wiley-VCH, New York (2013).
    [5]呂宗昕,“圖解奈米科技與光觸媒” 商周股份有限公司,(2003)。
    [6]王世敏,“奈米材料原理與製備” 五南圖書股份有限公司,(2004)。
    [7] D. Look, D. Reynolds, J. Sizelove, R. Jones, C. Litton, G. Cantwell, and W. Harsch, Electrical properties of bulk ZnO. Solid State Commum., 105 (1998) 399-401.
    [8] S. M. Peng, Y. K. Su, L. W. Ji, C. Z. Wu, W. B. Cheng, and W. C. Chao, ZnO nanobridge array UV photodetectors. J. Phys. Chem., 114 (2010) 3204-3208.
    [9] S. P. Anthony, J. I. Lee, and J. K. Kim, Tuning optical band gap of vertically aligned ZnO nanowire arrays grown by homoepitaxial electrodeposition. Appl. Phys. Lett., 90 (2007) 103107-103112.
    [10] M. W. Chen, C. Y. Chen, D. H. Lien, Y. Ding, and H. H. Jr, Photoconductive enhancement of single ZnO nanowire through localized Schottky effects. Opt. Express., 18 (2010) 14836-14841.
    [11] Y. H. Leung, Z. B. He, L. B. Luo, C. H. Tsang, N. B. Wong, W. J. Zhang, and S. T. Lee, ZnO nanowires array p-np-n homojunction and its application as a visible-blind ultraviolet photodetector. Appl. Phys. Lett., 96 (2010) 53102-53106.
    [12] J. B. Law and J. T. Thong, Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl. Phys. Lett., 88 (2006) 133114-133117.
    [13] X. Fang, J. Li, D. Zhao, D. Shen, B. Li, and X. Wang, Phosphorus-doped p-Type ZnO nanorods and ZnO nanorod p−n homojunction LED fabricated by hydrothermal method. J. Phys. Chem., 113 (2009) 21208-12121.
    [14] R. Konenkamp, R. Word, and M. Godinez, Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. Nano Lett., 5 (2005) 2005-2008.
    [15] A. B. Djurišić and Y. H. Leung, Optical properties of ZnO nanostructures. Nano-Micro Lett., 2 (2006) 944-961.
    [16] C. Tay, S. Chua, and K. Loh, Investigation of morphology and photoluminescence of hydrothermally grown ZnO nanorods on substrates pre-coated with ZnO nanoparticles. J. Cryst. Growth, 311 (2009) 1278-1284.
    [17]陳彥志,“氧化鋅奈米線材之研究及應用” 台灣科技大學化學工程研究所碩士論文,(2011)。
    [18] P. Norby, R. Dinnebier, and A. N. Fitch, Decomposition of silver carbonate;the crystal structure of two high-temperature modifications of Ag2CO3. Inorg. Chem., 41 (2002) 3628-3637.
    [19] G. I. Waterhouse, G. A. Bowmaker, and J. B. Metson, The thermal decomposition of silver(I,III) oxide : A combined XRD, FT-IR and Raman spectroscopic study. Phys. Chem. Chem. Phys., 3 (2001) 3838-3845.
    [20]陳光華,“奈米薄膜技術與應用” 五南圖書股份有限公司,(2005)。
    [21]羅吉宗,“薄膜技術與應用” 全華科技圖書股份有限公司,(2005)。
    [22]蔡宜蓁,“以反應磁控濺鍍沉積AZO透明導電膜之特性研究” 大同大學材料工程研究所碩士論文,(2007)。
    [23] L. Liljeholm, “Reactive Sputter Deposition of Functional Thin Films.” Uppsala Universitet (2012).
    http://www.avhandlingar.se/avhandling/8d47f648f8/
    [24]李嗣涔、管傑維、孫台平合著,“半導體元件物理” 三民書局股份有限公司,(1995)。
    [25] S. M. Sze and K. K. Ng, “Physics of semiconductor devices.” Wiley-Blackwell (2007).
    [26]徐明達,“細菌的世界” 二魚文化事業股份有限公司,(2012)。
    [27] R. E. Olson, Discovery of the lipoproteins, their role in fat transport and their significance as risk factors. J. Nutr., 128 (1998) 439-443.
    [28] N. Leyland, J. Podporska, J. Browne, S. J. Hinder, B. Quilty, and S. C. Pillai, Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Sci. Rep., 6 (2016) 24770-24775.
    [29] D. Sarkar, C. K. Ghosh, S. Mukherjee, and K. K. Chattopadhyay, Three dimensional Ag2 O/TiO2 Type-II (p − n) nanoheterojunctions for superior photocatalytic activity. ACS Appl. Mater. Interfaces, 5 (2013) 331-337.
    [30] M. Xiao, Y. Lu, Y. Li, H. Song, L. Zhu, and Z. Ye, A new type of p-type NiO/n-type ZnO nano-heterojunctions with enhanced photocatalytic activity. RSC. Adv., 4 (2014) 34649-34653.
    [31] X. Sun and Y. Li, Colloidal carbon spheres and Their core/shell structures with noble-metal nanoparticles. Chem. Int. Ed., 43 (2004) 597-601.
    [32] X. Sun, J. Liu, and Y. Li, Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J., 12 (2006) 2039-2047.
    [33] X. Wang, H. F. Wu, Q. Kuang, R. B. Huang, Z. X. Xie, and L. S. Zheng, Shape-dependent antibacterial activities of Ag2O polyhedral particles. Langmuir, 26 (2010) 2774-2778.
    [34] A. Sirelkhatim, S. Mahmud, A. Seeni, N. Haida , L. Chuo , S. Khadijah , H. Hasan, and D. Mohamad, Review on Zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 7 (2015) 219-242.
    [35] R. Krishnaveni and S. Thambidurai, Industrial method of cotton fabric finishing with chitosan–ZnO composite for anti-bacterial and thermal stability. Ind. Crops. Prod., 47 (2013) 160-167.

    QR CODE