簡易檢索 / 詳目顯示

研究生: 曾志隆
Chih-lung Tseng
論文名稱: 摻鉺光纖雷射研製及其於光纖網路系統之應用
Realization of Erbium-Doped Fiber Lasers and Their Applications to Optical Fiber Network Systems
指導教授: 劉政光
Cheng-kuang Liu
口試委員: 鄭木海
none
王立康
none
李三良
none
張嘉男
none
施天從
none
楊淳良
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 105
中文關鍵詞: 摻鉺光纖雷射光纖網路系統
外文關鍵詞: Erbium-Doped Fiber Laser, Optical Fiber Network System
相關次數: 點閱:341下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究重點包括兩種型式雷射光源之研製及其於三種光纖網路技術之應用。主要研製直線型主振盪功率放大式多波長摻鉺光纖雷射及環型波長可調式單縱模半導體光放大摻鉺光纖雷射,並將雷射實際應用於10-Gbps高速光纖網路傳輸、波長轉換以及雙向傳輸存取網路。
    本文首先說明直線型主振盪功率放大式多波長摻鉺光纖雷射的研製,雷射共振腔其中一端的反射面,採用自製的低成本寬頻光纖迴路反射鏡,來取代六個較昂貴之窄頻光纖布拉格光柵,大大改善傳統雙端光纖光柵波長對準問題,並克服六波長雷射在共振腔彼此重疊互相影響,同時產生六波長摻鉺光纖雷射。使用每段增益僅10-cm長的摻鉺光纖,雷射輸出最大功率為-12.5 dBm、訊雜比為50 dB、線寬為450 kHz、波長飄移為0.05 nm及功率擾動為0.4 dB。另外,利用模擬軟體來驗證了實驗結果,並求得主振盪功率放大式雷射之最佳化光纖長度為1.5 m,可實際提高雷射增益約6 dB。
    其次,說明環型波長可調式單縱模半導體光放大摻鉺光纖雷射的研製,採用半導體光大器與環型摻鉺光纖雷射架構,研究半導體光大器飽和吸收高通濾波與抑制低頻擾動腔模分佈雜訊之功能,研製出單縱模摻鉺光纖雷射。雷射輸出最大功率為-6.5 dBm、訊雜比為53 dB、線寬為150 kHz、波長可調範圍為30 nm、波長間距為0.8 nm。此外,也利用此環型摻鉺光纖雷射高速調變10-Gbps訊號,實際單向下行傳輸單模光纖50 km,功率償付為2.4 dB。
    接著,將環型波長可調式摻鉺光纖雷射應用於波長轉換,採用半導體光放大器與電吸收調變器研製單縱模光源波長轉換,我們實驗室首先將光纖雷射與電吸收調變器結合,實現了10-Gbps高速訊號波長轉換。在10-9之誤碼率與15- nm的波長轉換範圍下,功率償付為1.5~6 dB。
    最後,探討注入鎖模法布里-比洛雷射之應用,在雙向傳輸存取網路中,將光纖雷射注入鎖模法布里-比洛雷射,注入後旁模雜訊比可達到40 dB,實現了10-Gbps訊號上行與1.25-Gbps訊號下行的同時雙向傳輸,傳輸10-km單模光纖後,上下行功率償付分別為0.5 dB與0.9 dB。


    In this dissertation, the realization of two types of fiber lasers and their applications to fiber networks are investigated. Two types of lasers are: linear type master-oscillation-power-amplifier (MOPA) multiwavelength erbium-doped fiber lasers (EDFLs) and ring type wavelength tunable single-longitudinal-mode (SLM) EDFLs. Their applications to fiber access networks are studied for a 10-Gbps transmission, a wavelength conversion, and an injection-locked bidirectional transmission.
    Firstly, we present the realization of six-wavelength EDF-MOPA linear lasers. Using a single low-cost fiber loop mirror (FLM) to replace six more expensive FBGs in the resonance cavity, we can not only reduce system cost, but also resolve overlapping problems of the six FBGs in the same resonance cavity, such as the wavelength alignment problem in a FBG pair. Using 10-cm EDF for each section, the maximum laser output power, optical signal to noise ratio (OSNR), linewidth, wavelength drift, and power fluctuation are -12.5 dBm, 50 dB, 450 kHz, 0.05 nm, and 0.4 dB, respectively. In addition, our results of simulations are in good agreement with experiments. The optimal EDF length is 1.5 m for the same pumping power and the overall gain increases by about 6 dB.
    Next, the realization of wavelength tunable SLM SOA-EDF ring lasers is presented. Using an SOA as a saturable absorption high-pass filter to suppress cavity mode partition noise at low frequencies, we can obtain a stable and single-frequency laser. The maximum laser output power, OSNR, linewidth, tunable wavelength range, and wavelength spacing are -6.5 dBm, 53 dB, 150 kHz,30 nm, and 0.8 nm, respectively. It can be applied to a 10-Gbps 50-km single-mode-fiber (SMF) transmission with a power penalty of 2.4 dB.
    Then, a use of the wavelength tunable SLM SOA-EDF ring lasers as probe light in wavelength conversion is described. A fiber laser and an electro-absorption modulator (EAM) have been applied to establish a 10-Gbps signals wavelength conversion. With bit error ratio below 10-9, the power penalty range is 1.5~6 dB, for a 15-nm wavelength range.
    Finally, we present the application of injection-locked Fabry-Perot laser diode (FP-LD) to bidirectional transmission. sidemode suppression ratio (SMSR) after injection can reach up to 40 dB. Power penalties less than 0.9 dB and 0.5 dB are demonstrated for the simultaneously transmission over 10-km SMF of 10-Gbps downstream data and 1.25-Gbps upstream data, respectively.

    Chinese Abstract ----------------------------------------------------------------------------- I English Abstract ----------------------------------------------------------------------------- II Acknowledgments -------------------------------------------------------------------------- IV Contents --------------------------------------------------------------------------------------- V List of Figures and Tables ---------------------------------------------------------------- VII Nomenclature ------------------------------------------------------------------------------- XI Chapter 1 Introduction -------------------------------------------------------------------- 1 1.1 Overview of Optical Communications -------------------------------------------- 1 1.2 History of Erbium-Doped Fiber Laser -------------------------------------------- 6 1.3 Research Motivation and Objectives ---------------------------------------------- 7 1.4 Organization of the Dissertation --------------------------------------------------- 9 Chapter 2 Multiwavelength EDF-MOPA Linear Lasers ----------------------- 10 2.1 Introduction -------------------------------------------------------------------------- 10 2.2 Theoretical Analysis of Linear Cavity EDFL ----------------------------------- 11 2.3 Characteristics of Fiber Loop Mirror -------------------------------------------- 19 2.4 Optimal Analysis of Software Simulations --------------------------------------24 2.5 Experimental Results and Discussion ------------------------------------------- 27 2.6 Summary of Chapter 2 ------------------------------------------------------------- 36 Chapter 3 Wavelength Tunable SLM SOA-EDF Ring Lasers -------------- 37 3.1 Introduction ------------------------------------------------------------------------- 37 3.2 Theoretical Analysis of Ring Cavity EDFL ------------------------------------- 38 3.3 Characteristics of Semiconductor Optical Amplifier -------------------------- 43 3.4 Wavelength Tunable Single-Longitudinal-Mode Fiber Laser ---------------- 49 3.5 Applications of Fiber Laser to 10-Gbps Unidirectional Transmission ------ 52 3.6 Summary of Chapter 3 ------------------------------------------------------------- 55 Chapter 4 Applications of Fiber Laser to 10-Gbps Wavelength Conversion 58 4.1 Introduction -------------------------------------------------------------------------- 58 4.2 Theoretical Analysis of Cross Absorption Modulation ----------------------- 59 4.3 Characteristics of Electro-Absorption Modulation ---------------------------- 63 4.4 10-Gbps Wavelength Conversion in WDM Distribution Networks --------- 68 4.5 Experimental Results and Discussion ------------------------------------------- 70 4.6 Summary of Chapter 4 ------------------------------------------------------------- 73 Chapter 5 Applications of Fiber Laser to Bidirectional Transmission --- 74 5.1 Introduction -------------------------------------------------------------------------- 74 5.2 Theoretical Analysis of Injection Mode-Locked Laser ------------------------ 75 5.3 Characteristics of Fabry-Perot Laser --------------------------------------------- 77 5.4 Bidirectional Transmission in WDM Access Networks ----------------------- 79 5.5 Experimental Results and Discussion ------------------------------------------- 81 5.6 Summary of Chapter 5 ------------------------------------------------------------- 86 Chapter 6 Conclusions and Future Work ------------------------------------------- 87 6.1 Conclusions -------------------------------------------------------------------------- 87 6.2 Future Work ------------------------------------------------------------------------- 89 References ---------------------------------------------------------------------------- 91 Publication List ---------------------------------------------------------------------------- 101 Biography -----------------------------------------------------------------------------------105

    [1] G. Keiser, “A review of WDM technology and applications,” Optical Fiber Technology, vol. 5, pp. 3-39, 1999.
    [2] M. J. Yadlowsky, E. M. Deliso and V. L. D. Silva, “Optical fiber and amplifiers for WDM systems,” IEEE Proceedings, vol. 85, pp. 1765-1779, 1997.
    [3] B. Nyman, M. Farries and C. Si, “Technology trends in dense WDM demultiplexers,” Optical Fiber Technology, vol. 7, pp. 255-274, 2001.
    [4] K. Fukuchi, “Wideband and ultra-dense WDM transmission technologies toward over 10-Tb/s capacity,” Optical Fiber Communication Conference and Exhibit OFC 2002 Conference, pp. 558-559, 2002.
    [5] M. Scheutzow, M. Reisslein, M. Maier and P. Seeling, “Multicast capacity of packet-switched ring WDM networks,” IEEE Transactions on Information Theory, vol. 54, pp. 623-644, 2008.
    [6] C. Youngbok, H. Tode, H. Okada and H. Ikeda, “A large capacity photonic ATM switch for wavelength division multiplexing networks,” Computer Communications and Networks 1995 4th International Conference, pp. 414-419, Vegas, NV, USA, 1995.
    [7] N. S. Bergano, “Wavelength division multiplexing in long-haul transoceanic transmission systems,” IEEE Journal of Lightwave Technology, vol. 23, pp. 4125-4139, 2005.
    [8] A. N. Pilipetskii, “High-capacity undersea long-haul systems,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, pp. 484-496, 2006.
    [9] M. M.-K. Liu, Principles and Applications of Optical Communications, Thomson, USA, 1996.
    [10] J. N. Downing, Fiber-Optic Communications, Irwin, USA, 2005.
    [11] D. Gallant, “Optical network foundation for triple play services roll-out,” Optical Fiber Communication and National Fiber Optic Engineers OFC/NFOEC 2006 Conference, pp. 6, Richardson, TX, USA, 2006.
    [12] M. Baldi, “Triple play support for the next generation internet,” Telecommunications Network Strategy and Planning Symposium 2006 12th International Conference, pp. 1-7, New Delhi, India, 2006.
    [13] M. Zuhdi, “Next generation triple play access network feasibility and challenges,” Information and Communication Technologies ICTTA 2006 2nd Conference, pp. 3082-3087, Damascus, Syria, 2006.
    [14] A. Nikitin, V. Pyattaev and B. W. Kim, “Technological aspects of the triple play service on fixed access networks,” Advanced Communication Technology ICACT 2009 11th International Conference, pp. 1890-1893, Phoenix Park, 2009.
    [15] J. Yu, O. Akanbi, Y. Luo, L. Zong, Z. Jia, T. Wang, G. K. Chang and J. C. Palais, “A Novel WDM-PON architecture with centralized lightwaves in the OLT for providing triple play services,” Optical Fiber Communication and the National Fiber Optic Engineers OFC/NFOEC 2007 Conference, pp. 1-3, Anaheim, CA, USA, 2007.
    [16] J. Mocerino, “Carrier class Ethernet service delivery migrating SONET to IP & triple play offerings,” Optical Fiber Communication and National Fiber Optic Engineers OFC/NFOEC 2006 Conferenc, pp. 396-401, Richardson, TX, USA, 2006.
    [17] J. Ulm and B. Weeks, “Next play evolution: beyond triple play & quad play,” Consumer Electronics ISCE 2007 IEEE International Symposium, pp. 1-6, Irving, TX, USA, 2007.
    [18] C. H. Lee, W. V. Sorin and B. Y. Kim, “Fiber to the home using a PON infrastructure,” IEEE Journal of Lightwave Technology, vol. 24, pp. 4568-4583, 2006.
    [19] D. Kettler, H. Kafka and D. Spears, “Driving fiber to the home,” IEEE Communications Magazine, vol. 38, pp. 106-110, 2000.
    [20] I. Yamashita, “The latest FTTH technologies for full service access networks,” IEEE Asia Pacific Conference, pp. 263-268, 1996.
    [21] M. N. Rensom, “Fiber-to-the-home in a competitive era,” Optical Fiber Communication, pp. 26-27, 1997.
    [22] P. W. Shumate, “Fiber to and in the home,” Integrated Optics and Optical Fiber Communications, vol. 2, pp. 289-292, 1997.
    [23] E. Snitzer and R. Woodcock, “Yb3+-Er3+ glass fiber,” Applied Physics Letters, vol. 6, pp.45-47, 1965.
    [24] M. A. Arbore, Y. Zhou, G. Keaton, and T. Kane, “34 dB gain at 1500 nm in S-band EDFA with distributed ASE suppression,” 28th European Conference on Optical Communication ECOC’2002, vol. 1, Copenhagen, Denmark, 2002.
    [25] L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne, “Tunable single-mode fiber lasers,” IEEE Journal of Lightwave Technology, vol. 7, pp. 956-960, 1986.
    [26] N. Park, J. W. Dawson and K. J. Vahala, “Multiple wavelength operation of an erbium-doped fiber laser,” IEEE Photonics Technology Letters, vol. 4, pp. 540-541, 1992.
    [27] P. Myslinski, C. Barnard, X. Pan, Q. Wu, J. Chrostowski, “Applications of rare-earth-doped fibres,” IEEE Instrumentation and Measurement Technology Conference, 1993. IMTC/93. Conference Record, pp. 290-294, Irvine, CA, USA, 1993.
    [28] D. S. Gasper, P. F. Wysocki, W. A. Reed and A. M. Vengsarkar, “Evaluation of chromatic dispersion in erbium-doped fibers,” Lasers and Electro-Optics Society Annual Meeting 1993. LEOS Conference Proceedings, pp. 167-168, San Jose, CA, USA, 1993.
    [29] I. Mozjerin, A. Hardy and S. Ruschin, “Analysis and design of unidirectional erbium-doped waveguide ring lasers,” IEEE Journal of Quantum Electronics, vol. 42, pp. 600-607, 2006.
    [30] Y. Hu, C. Spiegelberg, J. Geng, T. Luo, Y. Kaneda, J. Wang, S. Hocde, S. Jiang and N. Peyghambarian, “High power single-frequency narrow-linewidth erbium-doped fiber laser,” Lasers and Electro-Optics Society LEOS 2003, pp. 794-795, 2003.
    [31] L. Marciniak and E. M. Beres-Pawlik, “Tunability of multiwavelength spectrum in PM erbium doped ring fiber laser, ” Proceedings of the 10th Anniversary International Conference on Transparent Optical Networks ICTON 2008, Warsaw, Poland, pp. 218–221, 2008.
    [32] A. Zhang, H. Liu, M. S. Demokan and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photonics Technology Letters, vol. 17, pp. 2535-2537, 2005.
    [33] R. Slavík, I. Castonguay, S. LaRochelle and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry–Pérot structure,” IEEE Photonics Technology Letters, vol. 16, pp. 1017-1019, 2004.
    [34] C. L. Tseng, Study of Multiwavelength Erbium-Doped Fiber Laser Fabrication, National Taiwan University of Science and Technology Master Thesis, Taiwan, R.O.C., 2003.
    [35] C. L. Tseng, S. K. Liaw, C. K. Liu, and J. J. Jou, “Power equalized multiwavelength erbium-doped fiber lasers with stable wavelengths and variable output,” in Optics Photonics Taiwan’03, Taipei, Taiwan, R.O.C., pp. 280-282, 2003.
    [36] S. Yamashita and K. Hotate, “Multiwavelength erbium doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electronics Letters, vol. 32, pp. 1298–1299, 1996.
    [37] N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium doped fiber-ring laser,” IEEE Photonics Technology Letters, vol. 8, pp. 1459–1461, 1996.
    [38] E. Desurvire, J. L. Zyskind and J. R. Simpson, “Spectral gain holeburning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photonics Technology Letters, vol. 2, pp. 246–248, 1990.
    [39] A. Bahrampour, S. Keyvaninia, M. Karvar, “An inhomogeneous theory for the analysis of an all-optical gain-stabilized multichannel erbium-doped fiber amplifier in the presence of ion pairs,” Optical Fiber Technology, vol. 14, pp. 54–62, 2008.
    [40] C. L. Tseng, J. J. Jou, J. J. Hung, C. F. Chen and C. K. Liu, “Low-noise multiwavelength erbium-doped fiber lasers with a fiber loop mirror and cascaded FBGs in MOPA configuration,” in 1st Applied Science and Technology Conference-Photonics and Communications, Kaohsiung, Taiwan, R.O.C., A07, 2004.
    [41] C. L. Tseng, J. J. Jou, H. C. Lee, J. H. Jian and C. K. Liu, “Design of multiwavelength erbium-doped fiber lasers with linear cavities in MOPA configuration,” in 2005 Symposium on Technology Fusion of Optoelectronics and Communications (STFOC’05), International Conference on Photonics, Taipei, Taiwan, R.O.C., pp. 150-151, 2005.
    [42] C. L. Tseng, J. J. Jou, C. K. Liu and J. H. Jian, “A multiwavelength erbium-doped fiber MOPA laser with partial overlapping linear cavities,” Optica Applicata, vol. 39, pp. 579-585, 2009.
    [43] C. Barnard, P. Myslinski, Member, J. Chrostowski and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifier and lasers,” IEEE Journal of Quantum Electronics, vol. 30, pp. 1817-1830, 1994.
    [44] D. B. Mortimore, “Fiber Loop Reflectors,” Journal of Lightwave Technology, vol. 6, pp. 1217-1224, 1988.
    [45] J. M. Estudillo-Ayalaa, J. Ruiz-Pinalesa, R. Rojas-Lagunaa, J. A. Andrade-Lucioa, O. G. Ibarra-Manzanoa, E. Alvarado-Mendeza, M. Torres-Cisnerosa, B. Ibarra- Escamillab, E. A. Kuzinb, “Analysis of a Sagnac interferometer with low-birefringence twisted fiber,” Optics and Lasers in Engineering, vol. 39, pp. 635–643, 2003.
    [46] K. Kobayashi and I. Mito, “Single frequency and tunable laser diodes,” Journal of Lightwave Technology, vol. 6, pp. 1623-1633, 1988.
    [47] K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Optics Letters, vol. 16, pp. 910-912, 1991.
    [48] J. Zhang, C. Y. Yue, G. W. Schinn, W. R. L. Clements, J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” Journal of Lightwave Technology, vol. 14, pp. 104-109, 1996.
    [49] P. L. Scrivener, E. J. Tarbox and P. D. Maton, “Broadband tunable single frequency diode-pumped erbium doped fiber laser,” Electronics Letters, vol. 25, pp. 549-550, 1989.
    [50] C. R. Cochlain and R. J. Mears, “Broadband tunable single frequency diode-pumped erbium doped fiber laser,” Electronics Letters, vol. 28, pp. 124-126, 1992.
    [51] T. Haber, K. Hsu and Y. Bao, “Tunable erbium-doped fiber ring laser precisely locked to the 50-GHz ITU frequency grid,” IEEE Photonics Technology Letters, vol. 12, pp. 1456-1458, 2000.
    [52] X. Zhang, N. H. Zhu, L. Xie and B. X. Feng, “A stabilized and tunable single-frequency erbium-doped fiber ring laser employing external injection locking,” Journal of Lightwave Technology, vol. 25, pp. 1027-1033, 2007.
    [53] M. Matsuura and N. Kishi, “Frequency control characteristics of a single-frequency fiber laser with an external light injection,” IEEE Journal Selected Topic Quantum Electronics, vol. 7, pp. 55-58, 2001.
    [54] M. S. Kang, M. S. Lee, J. C. Yong and B. Y. Kim, “Characterization of wavelength-tunable single-frequency fiber laser employing acoustooptic tunable filter,” Journal of Lightwave Technology, vol. 24, pp. 1812-1823, 2006.
    [55] H. Chen, F. Babin, M. Leblanc and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technology Letters, vol. 15, pp. 185-187, 2003.
    [56] Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technology Letters, vol. 13, pp. 1167-1169, 2001.
    [57] H. Y. Ryu, W. K. Lee, H. S. Moon, S. K. Kim, H. S. Suh and D. Lee, “Stable single-frequency fiber ring laser for 25-GHz ITU-T grids utilizing saturable absorber filter,” IEEE Photonics Technology Letters, vol. 17, pp. 1824-1826, 2005.
    [58] C. L. Tseng, C. K. Liu, Z. R. Lin, C. M. Chiu and K. H. Lai, “Stable tunable single-longitudinal-mode SOA-EDF ring lasers for 10 Gbps transmission over 50 km single-mode fiber,” accepted and will be published in the vol. 40 of Optica Applicata, 2010.
    [59] K. Ogawa, “Analysis of mode partition noise in laser transmission systems,” IEEE Journal on Quantum Electronics, vol. QE-18, pp. 849–855, 1982.
    [60] Y. Okano, K. Nakagawa and Takeshiito, “Laser mode partition noise evaluation for optical fiber transmission,” IEEE Transactions on Communications, vol. COM-18, pp. 238–243, 1980.
    [61] K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE Journal Selected Topics Quantum Electronics, vol.7, pp. 328-333, 2001.
    [62] A. C. Kam and K. Y. Siu, “Supporting bursty traffic with bandwidth guarantee in WDM distribution networks,” IEEE Journal on Selected Areas in Communication, vol. 18, pp. 2029–2040, 2000.
    [63] T. Yazaki, R. Inohara, K. Nishimura, and M. Usami, “Experimental demonstration of 10G bit/s wavelength conversion based on cross gain modulation in cascaded semiconductor optical amplifiers,” Global Telecommunications Conference IEEE, TP-32, pp. 241–244, 2004.
    [64] S. M. Shin and S. K. Han, “Probe signal dependence of XPM wavelength converters,” Lasers and Electro-Optics CLEO/Pacific Rim '99, The Pacific Rim Conference, vol. 3, pp. 1034–1035, 1999.
    [65] Y. Dong, Z. Li, C. Lu, Y. Wang, and T. H. Cheng, “3R all-optical regeneration and wavelength conversion based on cross polarization modulation effect from a single semiconductor optical amplifier,” Lasers and Electro-Optics Society LEOS, The 16th Annual Meeting of the IEEE, vol. 1, pp. 403–404, 2003.
    [66] C. Wu, H. Fan, N. K. Dutta, and U. Koren, “‘Four wave mixing in semiconductor optical amplifier,” Lasers and Electro-Optics, CLEO Summaries of Papers Presented at the Conference, CWF26, pp. 267–268, 1999.
    [67] K. K. Chow and C. Shu, “All-optical wavelength conversion with multicasting at 6x10 Gbit/s using electro-absorption modulator,” Electronics Letters, vol. 39, pp. 1395–1397, 2003.
    [68] N. Edagawa, M. Suzuki, and S. Yamamoto, “Novel wavelength converter using an electro-absorption modulator,” IEICE Transactions Electronics, vol. E81-C, pp. 1251–1257, 1998.
    [69] K. Nishimura, R. Inohara, M. Usami and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 278–284, 2005.
    [70] P. S. Cho, D. Mahgereftch and J. Goldhar, “All optical 2R regeneration and wavelength conversion at 20 Gb/s using an electro-absorption modulator,” IEEE Photonics Technology Letters, vol. 11, pp. 1662–1664, 1999.
    [71] C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” IEEE Journal of Lightwave Technology, vol. 22, pp. 57–62, 2004.
    [72] M. Matsuura and N. Kishi, “Frequency control characteristics of a single-frequency fiber laser with an external light injection,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, pp. 55–58, 2001.
    [73] N. Cheng and J. C. Cartledge, “Measurement-based model for cross-absorption modulation in an MQW electroabsorption modulator,” IEEE Journal of Lightwave Technology, vol. 22, pp. 1805-1810, 2004.
    [74] F. T. An, K. S. Kim, D. Gutierrez, S. Yam, E. S. T. Hu, K. Shrikhande and L. G. Kazovsky, “SUCCESS: A next-generation hybrid WDM/TDM optical access network architecture,” IEEE Journal of Lightwave Technology, vol. 22, pp. 2557-2569, 2004.
    [75] H. Kim, J. Hwang and M. Yoo, “A cost-efficient WDM-PON architecture supporting dynamic wavelength and time slot allocation,” in Proceedings IEEE International Conference Advanced Communications Technology, pp. 1564-1568, Korea, 2007.
    [76] C. Bock, J. Prat and S. D. Walker, “Optical next-generation access networks featuring combined WDM and TDM,” in Proceedings IEEE International Conference Transparent Optical Networks, pp. 270-275, Rome, Italy, 2007.
    [77] D. K. Jung, H. Kim, K. H. Han and Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electronics Letters, vol. 37, pp. 308-309, 2001.
    [78] P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electronics Letters, vol. 37, pp. 1181-1182, 2001.
    [79] L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulator for WDM access networks,” Electronics Letters, vol. 38, pp. 43-45, 2002.
    [80] S. M. Lee, K. M. Choi, S. G. Mun, J. H. Moon and C. H. Lee, “Dense WDM-PON based on wavelength-locked Fabry-Perol laser diodes,” IEEE Photonics Technology Letters, vol. 17, pp. 1579–1581, 2005.
    [81] K. M. Choi, J. S. Baik and C. H. Lee, “Broad-band light source using mutually injected Febry-Perot laser diodes for WDM-PON,” IEEE Photonics Technology Letters, vol. 17, pp. 2529-2561, 2005.
    [82] C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot Laser diodes for wdm access networks,” IEEE Photonics Technology Letters, vol. 10, pp. 794–796, 2008.
    [83] J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photonics Technology Letters, vol. 8, pp. 34 -36, 1996.
    [84] L. A. Coldren and S. W. Corzine, Diode Laser and Photonic Integrated Circuits, John Wiley, 1995
    [85] M. D. Feuer, M. A. Thomas and L. M. Lunardi, “Backreflection and loss in single-fiber loopback networks,” IEEE Photonics Technology Letters., vol. 12, pp. 1106-1108, 2000.
    [86] H. C. Kwon, W. S. Jang and S. K. Han, “Optimisation of remote seeding source in wavelength-locked FP-LD bidirection WDM access optical link,” IEE Proceedings Optoelectronics, vol. 152, pp. 247-249, 2005.
    [87] W. Hung, C. K Chan, L. K. Chen and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photonics Technology Letters, vol. 15, pp. 1476-1478, 2003.

    無法下載圖示 全文公開日期 2015/01/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE