簡易檢索 / 詳目顯示

研究生: 黃孟槺
Meng-Kuang Huang
論文名稱: 無鉛焊接之可靠度研究
The Reliability of Lead - Free Soldering
指導教授: 李嘉平
Chiapyng Lee
口試委員: 葛煥彰
none
高振宏
none
呂志鵬
none
顏怡文
Yee-wen Yen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 184
中文關鍵詞: 焊點可靠度熱循環拉力強度表面處理
外文關鍵詞: Solder joint, reliability, thermal cycling, pull strength, surface finish
相關次數: 點閱:216下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文首先研究J型引腳小外型封裝(SOJ)與SnPb焊料間所生成之介金屬化合物,此介金屬化合物之形成與生長與印刷電路板(PCB)之表面處理與熱機械疲勞(TMF)有關。由實驗結果可知,在剛焊接完且使用Au/Ni鍍層時,SOJ/SnPb介面所形成的IMC層之厚度,是使用OSP鍍層,SOJ/SnPb介面所形成的IMC層之厚度的1.3倍。由於成長過程是隨拋物線TMF之形式而變,故成長控制屬於固態擴散之控制。不論是Au/Ni鍍層或OSP鍍層在SOJ/SnPb介面之IMC生長擴散係數均約為6.83×10-15cm2/sec,此種動力參數之相似性,表示使用不同之PCB鍍層,不會影響固態擴散機制。在SOJ/SnPb介面IMC層之總厚度與PCB鍍層有關,使用Au/Ni鍍層產生之IMC層厚度比使用OSP鍍層所產生之IMC厚度厚。用Cu-Ni-Sn三相圖可知Ni之存在,無Cu3Sn之成長而利於Cu6Sn5之成長。換言之,對SnPb/OSP焊點而言,IMC層是由Cu6Sn5與Cu3Sn兩層所構成,而對SnPb/AuNi焊點而言,其IMC僅含一層Cu6Sn5。
其次研究在晶片尺寸封裝(CSP)中,分別以機械拉力試驗,金屬板檢測與電性量測之實驗,觀察熱循環以及PCB表面處理對於焊點之拉力強度、故障模式、可靠度等各項所產生之效應。實驗結果顯示,Sn-Ag-Cu/(Au/Ni)焊點之拉力強度隨熱循環次數之增加無顯著變化,但Sn-Pb/(Au/Ni)焊點之拉力強度則隨熱循環次數之增加而劇烈退化,此外Sn-Ag-Cu/OSP與Sn-Pb/OSP焊點之拉力強度隨著熱循環次數之增加而微量遞減。當剛焊接完未經熱循環處理時,使用Au/Ni鍍層,經拉力試驗後,不論是使用Sn-Ag-Cu或Sn-Pb焊料,CSP斷裂位置大部分集中在錫球,對於Sn-Ag-Cu/(Au/Ni)與Sn-Ag-Cu/OSP焊點而言,隨著熱循環次數增加,CSP斷裂在component位置之比例明顯減少,而斷裂在PCB基板位置,則顯著增加。CSP焊點之可靠度Weibull壽命分佈依序為Sn-Pb/(Au/Ni)< Sn-Pb/OSP < Sn-Ag-Cu/OSP < Sn-Ag-Cu/(Au/Ni)。
最後研究以Sn-3.0Ag-0.5Cu焊球/Sn-58Bi引腳鍍層且錫膏為無鉛之BGAs、CSPs、QFPs 與TSOPs之板層次可靠度,將此結果與Sn-37Pb焊球/Sn-37Pb引腳鍍層且錫膏為無鉛之BGAs、CSPs、QFPs與TSOPs之板層次可靠度做一比較。此板層次可靠度是以溫度介於-40℃與125℃之熱循環測試來估算。實驗數據是以兩參數Weibull分佈來分析。以無鉛焊球/無鉛引腳鍍層且PCB之表面處理為Au/Ni之四種封裝(BGAs, CSPs, QFPs, 與TSOPs)之測試板進行實驗,由實驗得知,封裝之改變對可靠度並無影響。以無鉛焊球/無鉛引腳鍍層且PCB之表面處理為OSP之四種封裝(BGAs, CSPs, QFPs, 與TSOPs)之測試板進行實驗,由實驗得知,不同之封裝與不同表面處理對板層次可靠度並無影響。PCB上不論使用Au/Ni或OSP表面處理對板層次可靠度或封裝層次可靠度無任何影響。以Sn-Pb焊球/Sn-Pb引腳鍍層且PCB之表面處理為Au/Ni之四種封裝(BGAs, CSPs, QFPs, 與TSOPs)之實驗結果可知,採用無鉛焊球/無鉛引腳鍍層之封裝的可靠度比採用Sn-Pb焊球/Sn-Pb引腳鍍層之封裝的可靠度高。


The effects of printed circuit board (PCB) surface finish and thermomechanical fatigue (TMF) on the formation and growth of intermetallic compounds (IMCs) between Small Outline J (SOJ) leads and Sn-37Pb solder were investigated. The thickness of the IMC layer formed initially at as-soldered SOJ/Sn-Pb interface over Au/Ni PCB surface finish was about 1.3 times of that over OSP PCB surface finish. The parabolic TMF cycle dependence clearly suggests that the growth processes are controlled primarily by solid-state diffusion. The diffusion coefficient for the growth of total IMC layer at SOJ/Sn-Pb interface over Au/Ni PCB surface finish is the same as that over OSP PCB surface finish and, thus, the total IMC layer at the SOJ/Sn-Pb interface over Au/Ni PCB surface finish is thicker than that over OSP PCB surface finish. Using the Cu-Ni-Sn ternary isotherm, the anomalous phenomenon that the presence of Ni retards the growth of the Cu3Sn layer while increasing the initial growth of the Cu6Sn5 layer can be addressed.
Mechanical pull test, metallographic examination and electrical measurement were conducted to investigate the effects of thermal fatigue and PCB surface finish on the pull strength, failure modes and reliability of solder joints, respectively, in chip scale packages(CSPs). Experimental results showed that the pull strength of the Sn-Ag-Cu/(Au/Ni) solder joint did not change noticeably with an increasing number of thermal cycles. But the pull strength of the Sn-Pb/(Au/Ni) solder joint drastically degraded and that of Sn-Ag-Cu/OSP and Sn-Pb/OSP solder joints slightly decreased during thermal cycling. For both Sn-Ag-Cu and Sn-Pb alloys, the solder joint fracture of as-soldered samples was the major failure mode when Au/Ni surface finish was used. For the Sn-Ag-Cu/(Au/Ni) and Sn-Ag-Cu/OSP solder joints, the proportion of component trace tearing considerably decreased, whereas that of PCB trace tearing considerably increased, during thermal cycling. The Weibull lifetimes of solder joints are increasingly extended in the order of Sn-Pb/(Au/Ni), Sn-Pb/OSP, Sn-Ag-Cu/OSP, and Sn-Ag-Cu/(Au/Ni).
The board level reliability test results of four IC packages with lead-free balls/platings, soldered with lead-free solder paste, during thermal cycling. The board level reliability test results of entirely tin-lead balls/platings soldered with lead-free solder paste have also been included for comparison. Four different packages, i.e. Ball Grid Array (BGA), Chip Scale Package (CSP), Quad Flat Package (QFP), and Thin Small Outline Package (TSOP), were assembled on a test printed circuit board (PCB) as the test vehicle. Lead-free and tin-lead BGA/CSP packages were equipped with Sn-3.0Ag-0.5Cu and Sn-Pb solder balls, respectively. The lead-frames of lead-free QFP/TSOP leaded-packages were plated with Sn-58Bi and those of tin-lead QFP/TSOP leaded-packages, Sn-37Pb. The lead-free solder paste used in this study was Sn-3.0Ag-0.5Cu. Two kinds of surface finishes, immersion gold over electroless nickel (Au/Ni) and organic solderability preservative (OSP), were used on the PCBs. The test PCBs were thermal cycled for 5000 times within the temperature range of –40℃ to 125℃ and electrically monitored during the thermal cycling. The results of the thermal cycling test were: The tin-lead balled/plated BGAs, CSPs, QFPs, and TSOPs soldered with lead-free solder paste showed serious board level reliability risks as their abilities to withstand thermal cycling stresses are much weaker than those of entirely lead-free assemblies. Neither package nor surface finish was found to have any effects on the board level reliability of test vehicles with lead-free balled/plated BGAs, CSPs, QFPs, and TSOPs. Metallographic examinations were conducted to investigate the effect of thermal cycling on the failure modes of solder joints.

中文摘要………………………………………………………………I 英文摘要……………………………………………..........................III 誌謝………………………………………………………....................VI 目錄…………………………………………………………………..VII 圖索引………………………………………………………………..IX 表索引………………………………………………………………XIV 第一章 前言……………………………………………....................1 1.1 採用無鉛材料之原因………………………………………….1 1.2 無鉛材料的規定……………………………………………….1 1.3 無鉛錫膏與產品……………………………………………….3 1.4 無鉛零組件…………………………………………………….5 1.5 無鉛印刷電路板……………………………………………...11 1.6 無鉛表面黏著封裝製程……………………………………...14 1.7 無鉛焊接點可靠度…………………………………………...15 1.8 無鉛的轉換問題……………………………………………...22 1.9 無鉛材料的代用品…………………………………………...26 1.10 電子封裝的歷程…………………………………………….29 1.11 TSOP, QFP, BGA與CSP簡介……………………………….32 1.12 可靠度分析………………………………………………….38 第二章 基礎知識與文獻回顧…………………….………….52 2.1 無鉛焊料之對比與選擇……………………………………...52 2.2 表面處理技術………………………………………………...57 2.3 無鉛焊點的各種缺失………………………………………...66 2.4 迴焊中出現的缺陷及其解決方案…………………………...73 2.5 微電子封裝技術的發展趨勢………………………………...84 2.6 預燒與可靠度分析…………………………………………...90 2.7 威布爾分佈…………………………………………………...93 第三章 實驗方法與步驟……………………………………..117 3.1 SOJ/SnPb介金屬化合物之實驗…………………………….117 3.2 CSP之可靠度實驗…………………………………………...127 3.3 BGAs, CSPs, QFPs與TSOPs之可靠度實驗………………..131 第四章 結果與討論....................................................................135 4.1 不同PCB鍍層對IMC成長之影響…………………………135 4.2 CSP之可靠度研究…………………………………………...143 4.3 BGAs, CSPs, QFPs與TSOPs之板層次可靠度研究………..155 第五章 結論………………………………………………………169 參考文獻……………………………………………………………172 附錄…………………………………………………………………..180 符號索引……………………………………………………………181 作者簡介……………………………………………………………182 論文著作……………………………………………………………183 圖索引 圖1-1 迴焊程序的分類……………………………………...........….6 圖1-2 在銅基板上的灰白\錫晶鬚不同階段的斷面聚焦離子 束影像……………………………………...............................8 圖1-3 錫晶鬚的成長………………………………..………………..8 圖1-4 利用底層的鎳阻隔層來阻擋銅擴散進灰白錫金屬層。錫金 屬層的應力因為鎳化錫(Ni3Sn4)介金屬化合物(IMC)的形 成而呈現張力的情況。…...………………..…………..........10 圖1-5 印刷電路板……………………………………..…………....12 圖1-6 錫鉛與SnAgCu焊錫的楊氏模數…………..……………......17 圖1-7 95.5Sn-3.9Ag-0.6Cu與Sn-37Pb在-25℃之潛應變變化率 與應力之關係圖……...……………...…………………….....18 圖1-8 95.5Sn-3.9Ag-0.6Cu與Sn-37Pb在75℃之潛應變變化率 與應力之關係圖…………...………………….……………...18 圖1-9 95.5Sn-3.9Ag-0.6Cu與Sn-37Pb在125℃之潛應變變化率 與應力之關係圖..…………………………………………....19 圖1-10 剪應力與潛變的剪應變之遲滯迴圈曲線…………………..20 圖1-11 錫鉛與Sn-Ag-Cu焊錫的遲滯迴圈曲線…………………….22 圖1-12 具有覆晶、晶圓級的晶片尺寸封裝與PBGA的環保產品….23 圖1-13 無鉛轉換的途徑……………………………………………..23 圖1-14 模板印刷機…………………………………………………..27 圖1-15 網印刷機……………………………………………………..27 圖1-16 沒有自我對位………………………………………………..28 圖1-17 TO型封裝…………………………………………………….30 圖1-18 雙列直插式封裝DIP………………………………………...30 圖1-19 薄型小外形封裝TSOP………………………………………33 圖1-20 方形扁平式封裝QFP………………………………………..34 圖1-21 球柵陣列封裝BGA………………………………………….36 圖1-22 晶片尺寸封裝CSP…………………………………………...37 圖1-23 對數正態分佈密度函數..........................................................40 圖1-24 指數分佈密度函數…………………………………………..43 圖1-25 正態分佈密度函數…………………………………………..44 圖1-26 指數分佈可靠度對時間的圖………………………………..45 圖1-27 正態分佈可靠度對時間的圖………………………………..46 圖1-28 對數正態分佈可靠度對時間的圖…………………………..47 圖1-29 指數分佈失效率曲線………………………………………..48 圖1-30 正態分佈失效率曲線………………………………………..49 圖1-31 對數正態分佈失效率曲線…………………………………..50 圖2-1 苯並咪唑(benzimidazole) OSP………………..……………..58 圖2-2 漏焊…………………………..………………………………66 圖2-3 BGA會發生Popcorn式的龜裂與變形…………...…………67 圖2-4 焊點浮裂………………..……………………………………68 圖2-5 玻纖紗陽極性漏電CAF……………………………………70 圖2-6 板面相鄰之兩導體會發生銅鹽的電遷移行為……………..71 圖2-7 焊料球…………………………………… .…………………74 圖2-8 立片現象……………………………………………..………76 圖2-9 橋焊…………………..………………………………………78 圖2-10 晶吸現象……………………………………………………..79 圖2-11 QFP拉力強度試驗…………………………………………..82 圖2-12 覆晶………………………………………….. ……………...89 圖2-13 多晶片模組………………………………….. ……………...90 圖2-14 威布爾分佈的失效分佈密度曲線…………………………..95 圗2-15 威布爾分佈密度函數曲線………………………...………...99 圗2-16 威布爾分佈函數曲線………………………………………101 圗2-17 威布爾分佈失效率曲線………………………………..…..103 圖2-18 威布爾數據圖估法……………………..…………………..105 圖2-19 三參數威布爾分佈圖估法………..………………………..108 圖3-1 本實驗之SOJ元件外觀尺寸圖……………...………..……119 圖3-2 實驗用之印刷機………………...……………………...…..120 圖3-3 實驗用之置件機………………...……………………...…..121 圖3-4 實驗用之迴焊爐………………...……………………...…..122 圖3-5 實驗用之熱應力試驗機………...……………………...…..123 圖3-6 熱循環圖………...…………………..…...……………..…..124 圖3-7 實驗用之研磨機及拋光機…………..…...……………..….125 圖3-8 實驗用之光學顯微鏡…………..…...…………………..….126 圖3-9 Daisy Chain之示意圖………..…...…..…………………….128 圖3-10 實驗用之機械強度萬用試驗機......……...………………...129 圖3-11 實驗用之拉力試驗機…...………………………………….130 圖3-12 CSP截面之斷點裂縫位置圖……………………………….130 圖3-13 實驗測試板之Layout圖……………………………………133 圖3-14 有鉛測試板之迴焊曲線圖…………………………………134 圖3-15 無鉛測試板之迴焊曲線圖…………………………………134 圖4-1 未經thermal cycle 測試前,SOJ/Sn-Pb 焊點於不同PCB 鍍層之OM圖………………………………………………….138 圖4-2 SOJ/ Sn-Pb 焊點於OSP PCB鍍層經過不同熱處理(a) 剛焊接完(b) 250 (c) 500 (d) 750 (e) 1000 TMF cycles之切片圖。..........................................................................................139 圖4-3 SOJ/ Sn-Pb 焊點於Ni/Au PCB鍍層經過不同熱處理(a) 剛焊接完(b) 250 (c) 500 (d) 750 (e) 1000 TMF cycles之切片圖。……………………………………………………........140 圖4-4 SOJ/Sn-Pb 焊點於(a) OSP鍍層(b) Ni/Au鍍層經過1000 Thermal cycles熱處理後之electron probe microanalyzer (EPMA)分析圖。…………………………………………….141 圖4-5 總介面厚度對(TMF cycle)1/2圖。……………………………142 圖4-6 240℃時Sn-Cu-Ni之三相圖。………………………………..143 圖4-7 CSP焊點之OM圖…………………………………………...147 圖4-8 表面處理為(Au/Ni)/OSP且以Sn-Ag-Cu/Sn-Pb為焊點之CSP的拉力強度圖……………………………………………….148 圖4-9 剛焊接完之CSP經拉力試驗後的故障模式………………149 圖4-10 以Sn-Ag-Cu/(Au/Ni)為焊點之CSP經拉力試驗後的故障模式…………………………………………………………….150 圖4-11 以Sn-Ag-Cu/OSP為焊點之CSP經拉力試驗後的故障模式…………………………………………………………….151 圖4-12 表面處理為(Au/Ni)/OSP且以Sn-Ag-Cu/Sn-Pb為焊點之CSP的Weibull圖………………………………………………...152 圖4-13 經4000次熱疲勞處理後,以Sn-Ag-Cu/(Au/Ni)為焊點之CSP的裂縫OM圖………………………………………….........153 圖4-14 經4000次熱疲勞處理後,以Sn-Ag-Cu/(Au/Ni)為焊點之CSP的孔洞OM圖………………………………………….........153 圖4-15 CSP由測試板剝落後焊點在基材之OM圖……………….154 圖4-16 (a)BGA/SnAgCu/(Au/Ni)焊點與BGA/SnAgCu/OSP焊點故障率之Weibull圖;(b) BGA/SnAgCu/(Au/Ni)焊點與BGA/SnPb/(Au/Ni)焊點故障率之Weibull圖。…………….160 圖4-17 (a)CSP/SnAgCu/(Au/Ni)焊點與CSP/SnAgCu/OSP焊點故障率之Weibull圖;(b) CSP/SnAgCu/(Au/Ni)焊點與CSP/SnPb/(Au/Ni)焊點故障率之Weibull圖。……………...161 圖4-18 (a)QFP/SnBi/(Au/Ni)焊點與QFP/SnBi/OSP焊點故障率之Weibull圖;(b) QFP/SnBi/(Au/Ni)焊點與QFP/SnPb/(Au/Ni)焊點故障率之Weibull圖。………………………………….162 圖4-19 (a)TSOP/SnBi/(Au/Ni)焊點與TSOP/SnBi/OSP焊點故障率之Weibull圖;(b)TSOP/SnBi/(Au/Ni)焊點與TSOP/SnPb/(Au/Ni)焊點故障率之Weibull圖。………………………………….163 圖4-20 (a)無鉛焊球/無鉛引腳鍍層且PCB之表面處理為Au/Ni之四種封裝的Weibull圖;(b) 無鉛焊球/無鉛引腳鍍層且PCB之表面處理為OSP之四種封裝的Weibull圖;(c)Sn-Pb焊球/Sn-Pb引腳鍍層且PCB之表面處理為Au/Ni之四種封裝的Weibull圖。………………….……………………………….164 圖4-21 TSOP焊點之微結構圖……………………………………..166 圖4-22 TSOP焊點微結構之截面圖………………………………..167 表索引 表1-1 封裝峰值迴焊溫度……………………………………………..7 表1-2 迴焊程序之分類………………………………………………..7 表1-3 錫鉛與SnAgCu焊錫間的潛變材料常數比較………………..16 表2-1 各種典型無鉛焊料之用途與問題……………………………55 表2-2 環境應力篩選的種類…………………………………………92 表2-3 威布爾分佈可靠性參數分析公式……………………………97 表2-4 中位秩數表…………………………………………………..106 表2-5 排序數據和 值…………………………………………..107 表4-1 焊點可靠度測試之結果……………………………………..154 表4-2 板層次可靠度中四種封裝之尺度參數與形狀參數………..168

1. Lau, John H., Liu, Katrina, “Global Trends in Lead-free Soldering part I of a II-part series on lead-free”, Advanced Packaging, Vol.13, n1, January, 2004, pp. 27-30.
2. Lau, John H., Liu, Katrina, “Global Trends in Lead-free Soldering part II of a II-part series on lead-free”, Advanced Packaging, Vol.13, n2, February, 2004, pp. 25-28.
3. Levis, K. and Mawer, A.(2000), “Assembly and Solder Joint Reliability of Plastic Ball Grid Array with lead-Free versus Lead-Tin Interconnect”, Proceedings, 50th IEEE Electronic Components and Technology Conference, May 21-24, Las Vegas, pp. 1198-204.
4. Z. S. Karim, and R. Schetty: Lead-Free Bump Interconnections for Flip-Chip Applications. in Proceedings, 26th IEEE/CPMT International Electronics Manufacturing Technology Symposium, Santa Clara, Oct 2000 (IEEE, Piscataway, NY), pp. 274-278.
5. K. Tsunoi, and K. Iketaki: Environment Friendly Technology for Mobile Phones, in Proceedings, 33rd International Symposium on Microelectronics- IMAPS Boston, September 2000, pp. 275-280.
6. X.W. Lin, W.J. Plumbridge, J. Electron. Master. 32(2003) 278.
7. J. Zhao, Y. Mutoh, Y.Miyashita, T. Ogawa, A.J. McEvily, J. Electron. Mater.30(2001) 415.
8. K.L. Erickson, P.L. Hopkins, P.T. Vianco, J Electron. Mater.27 (1998) 1177.
9. G. Ghosh, J Electron. Mater. 28 (1999) 1238.
10. M. Schaefer, R.A. Fournelle, J. Liang, J Electron. Master. 27 (1998) 1167.
11. C.J. Chen, K.-L. Lin, J Electron. Master. 29 (2000) 1007.
12. P.L. Hacke, A.F. Sprecher, H. Conrad, J Electron. Master. 26 (1997) 774.
13. P.L. Hacke, Y. Fahmy, H. Conrad, J. Electron. Mater. 27 (1998) 941.
14. J.W. Mayer, J.M. Poate and K.N. Tu, Science 190, 228 (1975).
15. A. Zribi, A. Clark L. Zavalij, P. Borgresen, and E.J. Cotts, J. Electron. Mater. 30, 1157(2001).
16. Y. Kariya, T. Morihata, E. Hazawa, and M. Otsuka, J. Electron. Mater. 30, 1050(2001).
17. A. Zribi, R.R. Chromic, R. Presthus, K. Teed, L. Zavalij, J. Devita, J. Tova, E.J. Cotts, J.A Clum, R. Erich, A. Primavera, G. Westby, R.J. Coyle, and G.M. Wenger, IEEE Trans. On components and Packaging Tech. 23, 383(2000).
18. Collier, P., Sunappan, V. and Periannan A. (2002), “Lead-free solder process implementation for PCB assembly”, Soldering and Surface Mount Technology, Vol. 14/3, pp. 12-18.
19. Mei, Z. et al. (1999), “ Effects of Electroless Ni / Immersion Au Plating Parameters on PBGA Solder Joint Attachment Reliability”, Proceedings, 49th IEEE Electronic Components and Technology Conference, June 1-4, pp. 125-134.
20. Lee, S.R., Yan, C.C., Karim Z. and Huang, X. (2000), “Assessment on the Effects of Electroless Nickel Plating on the Reliability of Solder Ball Attachment to the Bond Pads of PBGA Substrate”, Proceedings, 50th IEEE Electronic Components and Technology Conference, May 21-24, Las Vegas, pp. 868-73.
21. Xie, D. et al. (2002), “ Reliability of CSP/Lead Free Solder Joints with Different Surface Finishes and Reflow Profiles”, SEMI / IEEE International Electronics Manufacturing Technology (IEMT) Symposium.
22. Ludwig, R., Lee, N.C., Fan, C., and Zhang, Y. (2002), “Evaluation of two novel lead-free surface finishes”, Soldering and Surface Mount Technology, Vol. 14/3, pp.19-24.
23. Vianco, P. and Rejent, J. (2000), “ Compatibility of Lead-Free Solders with Lead Containing Surface Finishes as a Reliability Issue in Electronic Assemblies”, Proceedings, 50th IEEE Electronic Components and Technology Conference, May 21-24, Las Vegas, pp. 1172-83.
24. Y. Kariya, Y. Hirata. and M. Otsuka J. Electron. Mater. 28, 1263(1999).
25. S. Choi, J.G. Lee, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Electron. Mater. 31, 292 (2002).
26. S. Ahat, M. Sheng, and L. Luo, J. Electron. Mater. 30, 1317 (2001).
27. S. Choi, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Electron. Mater. 29, 1249 (2000).
28. J. S. Hwang and R.M. Vargas, Soldering and Surface Mount Tech. 5, 38 (1990).
29. F. Hua and J. Glazer, Design & Reliability of Solders and Solder Interconnections, TMS Annual Meeting, 65 (1997).
30. J. Glazer, International Mater. Rev. 40, 65 (1995).
31. 須賀維知,錫焊接技術,日刊工業新聞社, 83 (1999).
32. G. Ghosh, J. Electron. Mater. 29, 1182 (2000).
33. W. G. Frank, J. Electron. Mater. 28, 17 (2001).
34. W. J. Tompson and I. Collier, J.Mater. Sci.22, 1835 (1987).
35. L.E. Felton, C.H. Raeder and D.B. Knorr, Journal of Materials, 28 (1993).
36. C.H. Raeder, L.E. Felton, V.A. Tanzi and D.B. Knorr, J. Electron. Mater. 23, 611 (1994).
37. S. Jin, JOM 07, 13(1993).
38. D. Lewis, S. Allen, M. Notis, and A. Scotch, J. Electron. Mater. 31,161(2002).
39. C. Kanchanomai, Y. Miyashita, and Y. Mutoh, J. Electron. Mater. 31.456(2002).
40. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31.584(2002).
41. Kariya, Y., Hirata, Y. and Otsuka, M. (1999), “Effect of Thermal Cycles on the Mechanical Strength of Quad Flat Pack Leads/Sn-3.5Ag-X (X=Bi and Cu) Solder Joints”, Journal of Electronic Materials, Vol. 28, pp. 1263-69.
42. Y. Kariya, Y. Hirata, and M.Otusuka J. Electron. Mater. 27, 1229 (1998).
43. Sami Tapani Nurmi and Eero Olavi Ristolainen: Reliability of tin-lead balled BGAs soldered with lead-free solder paste. Soldering & Surface Mount Technology, 14, 35(2002).
44. Strauss, R. (1998), SMT Soldering Handbook, Newnes, Oxford.
45. B.-Z. Lee, and D. N. Lee, “Spontaneous Growth Mechanism of Tin Whiskers ”, Acta. Mater., Vol. 46, No.10, pp.3701-3714 (1998).
46. Lau, J.H. and Pao, Y. (1997), Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York.
47. 戴樹森,費鶴良等。可靠性試驗及其統計分析。北京:國防工業出版社, 1983.521~548.
48. 第四機械工業部標準化所。可靠性試驗用表。北京:國防工業出版社, 1979.21~239.
49. Mann NR, Schafer RE and Songpuwalla ND. Methods for Statistical Analysis of Reliability and Data. New York: John Wiley, 1974.
50. Mann NR, Fertig KW. Table for Obtaining Confidence Bounds and Tolerance Bounds on Best Linear Invariant Estimation of the Parameters of Extreme Value Distribution. Techmetrics. Vol 15, 1973(1):87~101.
51. Mann NR, Fertig KW and Scheuer EM. Tolerance Bounds and a New Goodness of Fittest for Two-parameter Weibull or Extreme Value Distribution. Aerospace Research Laboratories. Wright Patterson Air Force Base. Ohio: ARL 71-0077,1971.
52. 費鶴良,陸向微。兩參數威布爾分布可靠度和可靠壽命的精確置信限。航天部一院十四所。系統可靠性評定方法論文集,1987.37~53
53. 陸向微, 費鶴良。定數截尾試驗下威布爾分布可靠度的單側置信下限用表。上海師大數學系,1985
54. 費鶴良,王玲玲。產品壽命分析方法。北京:國防工業出版社,1988
55. A. Syed, Reliability of Au Embrittlement of Lead-free Solders for BGA Applications, International Symposium on Advanced Packaging Materials, 2001, pp. 143-147.
56. Yoon Seung Wook, Hong Jun Ki, Kim Hwa Jung, and Bynn Kwang Yoo, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28, No. 2, pp. 168-175 (2005).
57. P.L. Tu, Y.C. Chan, J.K.L. Lai, IEEE Trans. Comp. Packag. Manufact. Technol, Part B 20 (1997) 87.
58. C.H. Lin, S.W. Chen, C.H. Wang, J. Electron. Mater.31 (2002) 907.
59. D. Tayor, Fatigue Threshold, 71(1989)
60. S. Suresh, Fatigue of Materials, 292(1991)
61. Sumikawa, M. et al. (2001), “Reliability of Soldered Joints in CSPs of Various Designs and Mounting Conditions”, IEEE Transactions on Components and Packaging Technologies, Vol. 24, pp. 293-299.
62. Syed, A. (2001), “Reliability of Lead-Free Solder Connections for Area Array Packages”, APEX, San Diego, LF2-7.
63. Lee, S.R., Yan, C.C., Karim, Z. and Huang, X. (2000), “Assessment on the Effects of Electroless Nickel Plating on the Reliability of Solder Ball Attachment to the Bond Pads of PBGA Substrate”, Proceedings, 50th IEEE Electronic Components and Technology Conference, May 21-24, Las Vegas, pp. 868-73.
64. Prasad, S., Carson, F., Kim, G.S., Lee, J. S., Roubaud, P., Henshall, G., Kamath, S., Garcia, A., Herber, R., and Bullwith, R. (2000), “Board Level Reliability of Lead-Free Packages”, SMTA, Chicago, pp 272-276.
65. R. Lee, B. Lui, Y. Kong, B. Bayton, T. Leung, P. Umali, and H. Agtarap: Assessment of board level solder joint reliability for PBGA assemblies with lead-free solders. Soldering & Surface Mount Technology, 14, 46 (2002).
66. J. Lau, W. Dauksher, J. Smetana, R. Horsley, D. Shangguan, T. Castello, I. Menis, D. Love, and B. Sullivan: Design for Lead-Free Solder Joints Reliability of High-Density Packages. Soldering & Surface Mount Technology 16, 12 (2004).
67. J. Lau, D. Shangguan, T. Castello, R. Horsley, J. Smetana, W. Dauksher, D. Love, I. Menis, and B. Sullivan: Failure Analysis of Lead-Free Solder Joints for High-Density Packages. Soldering & Surface Mount Technology 16, 69 (2004).
68. J. Smetana, R. Horsley, J. Lau, K. Snowdon, D. Shangguan, J.Gleason, I. Menis, D. Love, W. Dauksher, and B. Sullivan: Design, Materials and Process for Lead-Free Assembly of High-Density Packages. Soldering & Surface Mount Technology 16, 53 (2004).

QR CODE