簡易檢索 / 詳目顯示

研究生: 陳立軒
Li-Hsuan Chen
論文名稱: 人工智慧技術運用於岩石邊坡穩定性及可靠度評估
Application of artificial intelligence techniques to assess the rock slope stability & reliability
指導教授: 李安叡
An-Jui Li
口試委員: 盧之偉
Chih-Wei Lu
陳韋志
Wei-Chih Chen
黃富國
Fu-Kuo Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 109
中文關鍵詞: Hoek-Brown準則極限分析法遞歸神經網路決策樹演算法蒙地卡羅岩石邊坡穩定性岩石邊坡可靠度極限學習機
外文關鍵詞: Hoek-Brown failure criterion, Limit analysis, Recurrent neural network, Decision Tree, Monte Carlo, rock slope stability, rock slope reliability, Extreme Learning Machine
相關次數: 點閱:343下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於天氣變化劇烈,導致邊坡災害不斷發生,舉凡強降雨、地下水、地震皆會對邊坡造成一定影響,因此邊坡穩定的問題一直以來是土木工程師需要面對的;其中尤其以地震最具不確定性,現今技術仍無法精準預測地震的發生,所以我們必須從歷史發生的地震大小來預先分析邊坡之穩定性,藉此以當做邊坡災害防治的參考依據。在此研究中使用了Hoek-Brown 破壞準則做為岩石邊坡穩定性之評估標準,使用了AI人工智慧技術來代替重複性的工作,並且在預測方面可以達到一定的精準度。本篇研究的主要目的為提供不同AI人工智慧技術來預測大範圍岩石邊坡穩定性及可靠度分析,並且比較不同AI技術的優缺點以及適用性,在本研究中將根據三種不同的方法,極限分析法、三種不同的AI技術及蒙地卡羅法以分析理解岩石邊坡穩定在各種不同岩石種類以及不同地區之地震情況。


    In recent years, due to severe weather changes, slope disasters continue to occur. Heavy rainfall, underground water and earthquakes will affect the slope to a certain extent. Therefore, the problem of stability has always been faced by civil engineers. Among them, earthquakes are the most uncertain. Current technology is still unable to accurately predict the occurrence of earthquakes. Therefore, using the historical earthquake records would be a reliable reference for the prevention and control of slope disasters. This concept is employed in this study. Moreover, the Hook-Brown failure criterion was used as an evaluation criterion for rock slope stability. Artificial intelligence technology was used instead of repetitive work, and high accuracy was achieved in prediction. The main purpose of this study is to apply different artificial intelligence techniques to predict the stability and reliability of large-scale rock slopes. In addition, the advantages and disadvantages of different artificial intelligence technology and applicability are compared. In this study, different theories and techniques, limit analysis methods, three different AI techniques, and Monte Carlo method are adopted to analyze the rock slope stability and reliability.

    第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第二章 文獻回顧 4 2.1 邊坡破壞機制探討 4 2.1.1 Hoek-Brown 破壞準則 6 2.1.2 極限分析法(Limit Analysis-LA) 14 2.2 AI人工智慧 (Artificial Intelligence) 19 2.2.1 極限學習機 (Extreme Learning Machine - ELM) 20 2.2.2 遞歸神經網路(Recurrent Neural Networks - RNN) 24 2.2.3 決策樹演算法 (Decision tree) 25 2.3 蒙地卡羅法(Monte Carlo method) 27 第三章參數律定及模型建立 28 3.1 極限分析法 29 3.2 AI人工智慧預測數據 31 3.2.1 ELM 之分析模型及基本參數設定及驗證 32 3.2.2 RNN 之分析模型及基本參數設定及驗證 34 3.2.3 Decision Tree 之分析模型及基本參數設定及驗證 37 3.3 蒙地卡羅法 40 3.3.1 參數設定 40 第四章 參數分析及結果探討 46 4.1 AI人工智慧技術 46 4.1.1 基於極限分析法(limit analysis)之結果 46 4.1.2 極限學習機ELM之結果 47 4.1.3 遞歸神經網路RNN之結果 50 4.1.4 決策樹演算法 Decision Tree之結果 54 4.1.5 AI技術之結果比較 57 4.2 蒙地卡羅法 58 4.2.1 考慮臺灣六都水平地震力之破壞機率 58 4.2.2 不同種類岩石之單軸抗壓強度σci之破壞機率 66 4.2.3 AI人工智慧技術-基於蒙地卡羅法(Monte Carlo)之結果 70 4.3 案例分析 81 4.3.1 AI人工智慧技術之實際案例分析 81 4.3.2 改動參數之案例分析 83 4.3.3 蒙地卡羅法之案例分析 84 第五章 結論與建議 89 5.1 結論 89 5.2 建議 91 參考文獻 92

    1. 陳威翰(2019),「運用人工智慧評估岩石邊坡在地震影響下的穩定性及可靠度」,國立台灣科技大學營建工程系碩士班論文。
    2. 賴忠其(2020),「運用人工智慧評估受地下水位影響之岩石邊坡穩定性及可靠度」,國立台灣科技大學營建工程系碩士班論文。
    3. Drucker, D. C., Greenberg, W. & Prager, W. (1951). The safety factor of an elastic plastic body in plane strain. Trans. ASME J. Appl. Mech. 73, 371–378.
    4. Drucker, D. C., Prager, W. & Greenberg, H. J. (1952). Extended limit design theorems for continuous media. Q. J. Appl. Math. 9, No. 4, 381–389.
    5. Das BM, Sobhan K. Principles of geotechnical engineering. Cengage learning; 2013 Jul 16.
    6. Fengshan, Hao, and Wang Lei. "Application Study of FLAC in Analysis of Slope Stability." Physical and Numerical Simulation of Geotechnical Engineering 23 (2016): 17.
    7. Hoek, E., Reliability of Hoek-Brown estimates of rock mass properties and their impact on design,Int J Rock Mech Min Sci, 35 (1998), pp. 63-68
    8. Hoek, E., Carranza-Torres, C.T. and Corkum, B. (2002) Hoek-Brown Failure Criterion— 2002 Edition. Proceedings of the 5th North American Rock Mechanics Symposium, Toronto, 7-10 July 2002, 267-273.
    9. Hadjian, A., 2004. “Earthquake reliability of structures”. 13th World Conference on Earthquake Engineering
    10. Huang, Guang-Bin, Yan-Qiu Chen, and Haroon A. Babri. "Classification ability of single hidden layer feedforward neural networks." IEEE Transactions on Neural Networks 11.3 (2000): 799-801.
    11. Huang G.-B., Zhu Q.-Y., C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing, 70 (1–3) (2006), pp. 489-501
    12. Hammouri, Nezar Atalla, Abdallah I. Husein Malkawi, and Mohammad MA Yamin. "Stability analysis of slopes using the finite element method and limiting equilibrium approach." Bulletin of Engineering Geology and the Environment 67.4 (2008): 471.
    13. Hoek, Evert, and Jonathan D. Bray. Rock slope engineering. CRC Press, 2014.
    14. Ching, Jiaye,Phoon, K.K.,Ho, Y.H. and Weng, M.C. (2020), Quasi-site-specific prediction for deformation modulus of rock mass. Canadian Geotechnical Journal, in press.
    15. Leshno, Moshe, Lin, V.Y., Pinkus, Allan and Schocken, Shimon. "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function." Neural networks 6.6 (1993): 861-867.
    16. Li, A. J., Merifield R.S. , Lyamin A.V. ,Stability charts for rock slopes based on the Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 45 (2008), pp. 689-700
    17. Li, A. J., Lyamin A.V., Merifield R.S. , Seismic rock slope stability charts based on limit analysis methods, Comput Geotech, 36 (2009), pp. 135-148
    18. Li, A. J., Merifield R.S., Lyaminm A.V, Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion, Comput. Geotech., 38 (4) (2011), pp. 546-558
    19. Li, A.J., Cassidy M.J. , Wang Y. , Merifield R.S. , Lyamin A.V. , Parametric Monte-Carlo studies of rock slopes based on the Hoek-Brown failure criterion, Comput. Geotech., 45 (2012), pp. 11-18
    20. Li, A. J., Khoo S.Y, Lyamin A.V. , Wang Y. , . "Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm." Automation in Construction 65 (2016): 42-50.
    21. Lyamin, A. V., and S. W. Sloan. "Lower bound limit analysis using non‐linear programming." International Journal for Numerical Methods in Engineering 55.5 (2002): 573-611.
    22. Lyamin, Andrei Vadimovich, and S. W. Sloan. "Upper bound limit analysis using linear finite elements and non‐linear programming." International Journal for Numerical and Analytical Methods in Geomechanics 26.2 (2002): 181-216.
    23. Michalowski, Radoslaw L. "Limit analysis and stability charts for 3D slope failures." Journal of Geotechnical and Geoenvironmental Engineering 136.4 (2010): 583-593.
    24. Park, Jooyoung, and Irwin W. Sandberg. "Universal approximation using radial-basis-function networks." Neural computation 3.2 (1991): 246-257.
    25. Sloan, S. W. "Geotechnical stability analysis." Géotechnique63.7 (2013): 531.
    26. Shen, Jiayi, Murat Karakus, and Chaoshui Xu. "Chart-based slope stability assessment using the Generalized Hoek–Brown criterion." International Journal of Rock Mechanics and Mining Sciences 64 (2013): 210-219.
    27. Shen, Jiayi, and Murat Karakus. "Three-dimensional numerical analysis for rock slope stability using shear strength reduction method." Canadian Geotechnical Journal 51.2 (2013): 164-172.
    28. Shou K.J. , Wang C.F. ,Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan ,Eng Geol, 68 (3–4) (2003), pp. 237-250
    29. Sun, Chaowei, Chai, Junrui, Xu, Zengguang. "Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique." Engineering Geology 214 (2016): 94-106.
    30. Taylor, D.W. 1937. Stability of earth slopes. Boston Society of Civil Engineers, 24(3): 197–246
    31. Tschuchnigg, Franz, H. F. Schweiger, and Scott W. Sloan. "Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part I: Numerical studies considering non-associated plasticity." Computers and geotechnics 70 (2015): 169-177.
    32. Wang, Y. J., Chan, C. H., Lee, Y. T., Ma, K. F., Shyu, J. B. H., Rau, R-J., & Cheng, C. T. (2016). Probabilistic seismic hazard assessment for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), pp. 325-340.
    33. Wenqi Du, Effects of directionality and vertical component of ground motions on seismic slope displacements in Newmark sliding-block analysis, Engineering Geology, Volume 239,pp. 2018,13-21
    34. Yu, Yan, Ivan P. Damians, and Richard J. Bathurst. "Influence of choice of FLAC and PLAXIS interface models on reinforced soil-structure interactions." Computers and Geotechnics 65 (2015): 164-174.
    35. Xu, Jingshu, Pan, Qiujing, Yang, X. L., and Li, Wentao. "Stability charts for rock slopes subjected to water drawdown based on the modified nonlinear Hoek-Brown failure criterion." International Journal of Geomechanics 18.1 (2017): 04017133.

    無法下載圖示 全文公開日期 2024/07/22 (校內網路)
    全文公開日期 2026/07/22 (校外網路)
    全文公開日期 2026/07/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE