簡易檢索 / 詳目顯示

研究生: 童志鵬
ZHIPENG-TONG
論文名稱: Mach-Zehnder干涉儀耦合微環形諧振腔之 生物感測器
Mach-Zehnder Interferometer Interrogated with Microring Resonator for Biosensing
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 廖顯奎
Shien-Kuei Liaw
葉秉慧
Pinghui Sophia Yeh
周錫熙
H-H Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 54
中文關鍵詞: 微環形諧振腔諧振腔耦合Mach-Zehnder干涉儀生物感測器
外文關鍵詞: Microring Resonator, MZI-coupled Microring Resonator, Biosensors
相關次數: 點閱:156下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於半導體製造技術和晶片上元件微小型化的進步,矽光學生物感測器在醫療診斷方面取得了重大進展。使用SOI (Silicon-on-insulator)為基板的微環形諧振腔(Microring Resonator; MRR),其矽核心層與二氧化矽覆蓋層之間具有高折射率差,元件尺度可以微小化,同時可與CMOS製程相容,被廣泛應用於生物感測方面。
本論文結合Mach-Zehnder干涉儀和微環形諧振腔的特性,提出了增加光學生物感測器的靈敏度。不同於傳統微環形諧振腔以波長感測的方式,此篇論文採用空間相位量測的方式,以光纖通訊波段之寬頻低同調干涉光源,結合Mach-Zehnder干涉儀作為實驗架構主體。並可以高階干涉波包來分析待測物不同濃度的變化,其靈敏度為0.247μm/(μg/mL)


Due to the advance in semiconductor manufacturing technology and micro-miniature components on wafers, silicon based optical biosensors have made significant advances in medical diagnostics. The SOI (Silicon-on-insulator) based as microring resonator (MRR) substrates owns a high refractive index difference between the silicon core layer and silicon dioxide cladding layer, and makes the small foot print possible. Moreover, its fabrication is CMOS compatible and is widely utilized in biosensing.
We propose to combine the characteristics of Mach-Zehnder interferometer and MRR for optical biosensor sensitivity enhancement. Different from the traditional MRR sensing wavelength, the spatial phase measurement is proposed to utilize the higher order interferograms for biosensing from the Mach-Zehnder interferometer through the low-coherence source in the optical fiber communication wavelength range. The glucose sensitivity at various analytes concentrations demonstrates 0.247 μm/(μg / mL).

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究之重要性 3 1.4 論文架構 4 第二章 文獻探討 5 2.1 波導理論 5 2.2 SOI 波導 5 2.3 雙折射效應 7 2.4 微環形諧振腔原理 7 全通型單環諧振腔 7 2.5 MMI多模干涉器原理 11 2.6 MMI多模干涉波導耦合諧振腔 14 2.7 Mazh-Zehnder干涉儀 15 2.8 微環形諧振腔做為生物感測器性能指標 21 2.9 微環形諧振腔性能指標 21 2.10 微環形諧振腔之生物感測器研究進展 24 第三章 研究與模擬方法 29 3.1 光纖低同調干涉波包模擬 29 3.2 微環形諧振腔模擬及設計 29 微環形諧振腔maltab模擬 29 直波導與環耦腔耦合係數的模擬及參數設定 31 3.3 MZI結合微環形諧振腔 36 3.4 Mazh-Zehnder干涉儀結合微環形諧振腔公式的推導以及設計 40 第四章 實驗 43 4.1 實驗架構 43 4.2 準備待測物 43 4.3 OFLCI系統架設 43 輸出訊號訊認 43 波導量測系統建立 45 高斯曲線擬合(Gaussian Curve Fitting) 47 4.4 量測結果與討論 49 葡萄糖量測結果 49 重複性驗證 49 第五章 結論 51 5.1 結論 51 5.2 未來展望 52 參考文獻 53

[1] J. Senior, Optical Fiber communications. Englewood Cliffs, N.J.: Prentice-Hall International, 1985.
[2] D. Bruen, C. Delaney, L. Florea and D. Diamond, "Glucose Sensing for Diabetes Monitoring: Recent Developments", Sensors, vol. 17, no. 8, p. 1866, 2017.
[3] A. Doke and A. Sadana, "Detection of glucose and Related Analytes by Biosensors: A Fractal Analysis", Biotechnology Progress, vol. 22, no. 1, p. 14-23, 2006.
[4] 王成宇,矽光波導微環腔之共振元件設計與分析,國立中山大學,高雄2014.A.
[5] D. Thomson, Y. Hu, G. Reed and J. Fedeli, "Low Loss MMI Couplers for High Performance MZI Modulators", IEEE Photonics Technology Letters, vol. 22, no. 20, pp. 1485-1487, 2010.
[6] J. Leuthold and C. Joyner, "Multimode interference couplers with tunable power splitting ratios", Journal of Lightwave Technology, vol. 19, no. 5, pp. 700-707, 2001.
[7] L. Soldano and E. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications", Journal of Lightwave Technology, vol. 13, no. 4, pp. 615-627, 1995.
[8] L. Tobing, L. Tjahjana, S. Darmawan and D. Zhang, "Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices", Optics Express, vol. 20, no. 5, p. 5789, 2012.
[9] D. Xu, S. Janz and P. Cheben, " Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering ", IEEE Photonics Technology Letters, vol. 18, no. 2, pp. 343-345, 2006.
[10] D. Xu et al., "High bandwidth SOI photonic wire ring resonators using MMI couplers", Optics Express, vol. 15, no. 6, p. 3149, 2007.
[11] L. Jin, M. Li and J. He, "Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect", Optics Communications, vol. 284, no. 1, pp. 156-159, 2011.
[12] X. Jiang, J. Ye, J. Zou, M. Li and J. He, "Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode", Optics Letters, vol. 38, no. 8, p. 1349, 2013.
[13] Y. Liu, Y. Li, M. Li and J. He, "High-sensitivity and wide-range optical sensor based on three cascaded ring resonators", Optics Express, vol. 25, no. 2, p. 972, 2017.
[14] H. Zhu et al., "High-sensitivity optical sensors based on cascaded reflective MZIs and microring resonators", Optics Express, vol. 25, no. 23, p. 28612, 2017.
[15] J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell and D. Moss, "Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity", APL Photonics, vol. 2, no. 5, p. 056103, 2017.
[16] Y. Lu, J. Yao, X. Li and P. Wang, " Tunable asymmetrical Fano resonance andbistability in a microcavity-resonator-coupled MZI ", Optics Letters, vol. 30, no. 22, p. 3069, 2005.
[17] M. Terrel, M. Digonnet and S. Fan, "Ring-coupled Mach-Zehnder interferometer optimized for sensing", Applied Optics, vol. 48, no. 26, p. 4874, 2009.
[18] Baoqing Su, Chunxia Wang, Qiang Kan and Hongda Chen, "Compact Silicon-on-Insulator Dual-Microring Resonator Optimized for Sensing", Journal of Lightwave Technology, vol. 29, no. 10, pp.1535-1541, 2011.

無法下載圖示 全文公開日期 2024/08/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE