簡易檢索 / 詳目顯示

研究生: 巫金展
Chin-Chan Wu
論文名稱: 垂直排列的單斜晶系三氧化鎢作為高效光陽極應用於直接光電化學5-羥甲基糠醛氧化反應
Vertical array monoclinic WO3 nanoplate as an efficient photoanode toward directly photoelectrochemical oxidation of hydroxymethylfurfural
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 胡哲嘉
Che-Chia Hu
潘詠庭
Yung-Tin Pan
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 100
中文關鍵詞: 三氧化鎢晶系HMF氧化光電化學
外文關鍵詞: WO3, crystal phase, HMF oxidation, photoelectrochemical
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 調控光陽極的晶系(crystal phase)被視為能有效改善光電化學性能的策略之一,本研究成功透過水熱法製備出兩種不同晶系組成的WO3光陽極,分別為具備純單斜晶系(monoclinic phase)的m-WO3和混合六方晶系(hexagonal phase)與單斜晶系的mixed-WO3¬,透過一系列的實驗分析使全方位地深入了解WO3光陽極的晶系組成在光電化學5-羥甲基糠醛氧化反應 (photoelectrochemical hydroxymethylfurfural oxidation reaction,PEC-HMFOR) 的影響。在模擬太陽光的照射條件,m-WO3表現出更好的催化活性,m-WO3的光電流密度(0.80 mA/cm2)在施加電位1.1 V vs. RHE處約是mixed-WO3 (0.18 mA/cm2)的4.4倍;除此之外,m-WO3的高經濟價值氧化產物產量(1.79 μmol/cm2)約是mixed-WO3 (0.72 μmol/cm2)的2.5倍。本研究發現具備純單斜晶系的m-WO3有更好的吸光能力與較快的電荷轉移能力並且能更有效率地將入射光轉換成光電流,這些優點都導致m-WO3能大幅地提升光電化學性能表現使其擁有較佳的催化活性;本項研究也是首次將WO3晶系工程應用於PEC-HMFOR,不只提出一個光電觸媒設計,同時也透過實驗參數的探討以提供出改善PEC-HMFOR的有效方針。


    Modification of the crystal phase of photoanodes is regarded as one of effective strategies that can beneficially improve the photoelectrochemical performance. In this study, two WO3 photoanodes with different crystal phase compositions were successfully synthesized by the hydrothermal method, i.e. mixed-WO3 which is a mixture of hexagonal phase and monoclinic phase, and m-WO3 which is with pure monoclinic phase. A series of experiments were used to fully understand the effect of crystal phase engineering of WO3 on PEC-HMFOR. Under AM 1.5G irradiation, m-WO3 showed enhanced catalytic activity which recorded the higher photocurrent density (0.80 mA/cm2) at 1.1 V vs. RHE compared to mixed-WO3 (0.18 mA/cm2). In addition, the yield of highly value-added products of m-WO3 was about 2.5 times that of mixed-WO3. This study revealed that m-WO3 with pure monoclinic phase can more efficiently convert incident light into photocurrent and had better light harvesting, faster charge transfer kinetic, these advantages lead to m-WO3 can dramatically improve the photoelectrochemical performance. This is also the first study of crystal phase engineering of WO3 on PEC-HMFOR. It not only provides a new inspiration for photoanode design, but also provides an effective strategy to improve PEC-HMFOR by adjusting of experimental parameters.

    摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1研究動機 1 1.2 研究方向 2 第二章 文獻回顧 3 2.1 5-羥甲基糠醛(HMF) 3 2.2 HMF轉換成其他高經濟價值衍生物 3 2.3 HMF氧化反應 5 2.3.1 HMF氧化產物之應用 6 2.4 HMF氧化方法 10 2.4.1 電化學HMF氧化 10 2.4.2 光催化HMF氧化 11 2.4.3 光電化學HMF氧化 12 2.5三氧化鎢(WO3)材料之應用 13 2.5.1 WO3型態之影響 13 2.5.2 WO3晶面之影響 14 2.5.3 WO3晶系之影響 15 2.5.4 WO3於生物質氧化之應用 16 第三章 實驗設備與儀器原理 21 3.1 實驗藥品、設備與分析儀器 21 3.1.1 實驗藥品 21 3.1.2 實驗設備 22 3.1.3 實驗分析儀器 23 3.2 WO3光陽極材料製備方法 24 3.2.1 基材製備方法 24 3.2.2 m-WO3與mixed-WO3光陽極材料製備方法 24 3.3 儀器分析原理 26 3.3.1 X光繞射儀 (X-ray Diffraction,XRD) 26 3.3.2場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscopy,FE-SEM) 26 3.3.3 X光光電子能譜儀 (X-ray photoelectron spectroscopy,XPS) 27 3.3.4 紫外光/可見光光譜儀(UV-Vis spectroscopy) 27 3.3.5 螢光光譜儀 (Photoluminescence spectroscopy,PL) 28 3.3.6 高效能液相層析儀 (High-performance liquid chromatography,HPLC) 28 3.4 光電化學反應系統 30 3.5 WO3光陽極材料之光電化學性能分析方法 31 3.5.1 線性掃描伏安法(Linear sweep voltammetry,LSV) 31 3.5.2 計時電流法(Chronoamperometry) 31 3.5.3 Tauc Plot 32 3.5.4 入射光光電子轉換效率(Incident Photon-to-current Conversion Efficiency,IPCE) 33 3.5.5 電化學阻抗頻譜法 (Electrochemical Impedance Spectroscopy ,EIS) 33 3.5.6 莫特-肖特基電化學測定法(Mott-Schottky) 34 第四章 實驗結果與討論 35 4.1 WO3光陽極型態特徵分析 35 4.1.1 結構分析 35 4.1.2 型態特徵分析 38 4.2 光電化學HMF氧化性能分析 40 4.2.1 線性伏安法及計時電流法分析 40 4.2.2紫外光/可見光光譜與Tauc plot圖譜分析 44 4.2.3 不同晶系組成之電荷傳遞能力探討 45 4.3光陽極材料反應前後特徵分析 50 4.4 產物分析 53 4.4.1 液相產物分析 53 4.4.2 氣相產物分析 56 4.5 PEC-HMFOR實驗參數探討 59 4.5.1 施加電位 59 4.5.2 HMF濃度 64 4.5.3 pH值 67 4.6 PEC-HMFOR反應路徑分析 75 第五章 結論 81 參考文獻 82 附錄 95

    [1] S.J.Davis, N.S.Lewis, M.Shaner, S.Aggarwal, D.Arent, I.L.Azevedo, S.M.Benson, T.Bradley, J.Brouwer, Y.M.Chiang, C.T.M.Clack, A.Cohen, S.Doig, J.Edmonds, P.Fennell, C.B.Field, B.Hannegan, B.M.Hodge, M.I.Hoffert, E.Ingersoll, P.Jaramillo, K.S.Lackner, K.J.Mach, M.Mastrandrea, J.Ogden, P.F.Peterson, D.L.Sanchez, D.Sperling, J.Stagner, J.E.Trancik, C.J.Yang, K.Caldeira, Net-zero emissions energy systems, Science (80-. ). 360 (2018).
    [2] S.Li, K.Huang, Z.Tang, J.Wang, Photoelectrocatalytic Organic Synthesis: A Versatile Method for the Green Production of Building-Block Chemicals, J. Mater. Chem. A. (2023) 3281–3296.
    [3] L.Guo, X.Zhang, L.Gan, L.Pan, C.Shi, Z.F.Huang, X.Zhang, J.J.Zou, Advances in Selective Electrochemical Oxidation of 5-Hydroxymethylfurfural to Produce High-Value Chemicals, Adv. Sci. 2205540 (2022) 1–29.
    [4] E.Capuano, V.Fogliano, Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies, LWT - Food Sci. Technol. 44 (2011) 793–810.
    [5] P.M.DaSilva, C.Gauche, L.V.Gonzaga, A.C.O.Costa, R.Fett, Honey: Chemical composition, stability and authenticity, Food Chem. 196 (2016) 309–323.
    [6] Y.Wang, H.Rodolfo Juliani, J.E.Simon, C.T.Ho, Amino acid-dependent formation pathways of 2-acetylfuran and 2,5-dimethyl-4-hydroxy-3[2H]-furanone in the Maillard reaction, Food Chem. 115 (2009) 233–237.
    [7] F.Tornuk, S.Karaman, I.Ozturk, O.S.Toker, B.Tastemur, O.Sagdic, M.Dogan, A.Kayacier, Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile, Ind. Crops Prod. 46 (2013) 124–131.
    [8] M.G.Davidson, S.Elgie, S.Parsons, T.J.Young, Production of HMF, FDCA and their derived products: A review of life cycle assessment (LCA) and techno-economic analysis (TEA) studies, Green Chem. 23 (2021) 3154–3171.
    [9] S.Kang, J.Fu, G.Zhang, From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis, Renew. Sustain. Energy Rev. 94 (2018) 340–362.
    [10] J.Slak, B.Pomeroy, A.Kostyniuk, M.Grilc, B.Likozar, A review of bio-refining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural, Chem. Eng. J. 429 (2022) 132325.
    [11] T.Wang, M.W.Nolte, B.H.Shanks, Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical, Green Chem. 16 (2014) 548–572.
    [12] H.Wang, C.Zhu, D.Li, Q.Liu, J.Tan, C.Wang, C.Cai, L.Ma, Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran, Renew. Sustain. Energy Rev. 103 (2019) 227–247.
    [13] H.Xia, S.Xu, H.Hu, J.An, C.Li, Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis, RSC Adv. 8 (2018) 30875–30886.
    [14] E.S.Kang, D.W.Chae, B.Kim, Y.G.Kim, Efficient preparation of dhmf and hmfa from biomass-derived hmf via a cannizzaro reaction in ionic liquids, J. Ind. Eng. Chem. 18 (2012) 174–177.
    [15] A.A.Rosatella, S.P.Simeonov, R.F.M.Frade, C.A.M.Afonso, 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chem. 13 (2011) 754–793.
    [16] L.Hu, J.Xu, S.Zhou, A.He, X.Tang, L.Lin, J.Xu, Y.Zhao, Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran, ACS Catal. 8 (2018) 2959–2980.
    [17] Y.Yang, T.Mu, Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions, Green Chem. 23 (2021) 4228–4254.
    [18] S.R.Kubota, K.S.Choi, Electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (Fdca) in acidic media enabling spontaneous fdca separation, ChemSusChem. 11 (2018) 2138–2145.
    [19] T.H.H.Le, T.G.Vo, C.Y.Chiang, Highly efficient amorphous binary cobalt-cerium metal oxides for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, J. Catal. 404 (2021) 560–569.
    [20] D.J.Chadderdon, L.Xin, J.Qi, Y.Qiu, P.Krishna, K.L.More, W.Li, Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles, Green Chem. 16 (2014) 3778–3786.
    [21] K.T.Hopkins, W.D.Wilson, B.C.Bender, D.R.McCurdy, J.E.Hall, R.R.Tidwell, A.Kumar, M.Bajic, D.W.Boykin, Extended aromatic furan amidino derivatives as anti-Pneumocystis carinii agents, J. Med. Chem. 41 (1998) 3872–3878.
    [22] L.Hu, L.Lin, Z.Wu, S.Zhou, S.Liu, Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals, Renew. Sustain. Energy Rev. 74 (2017) 230–257.
    [23] M.DelPoeta, W.A.Schell, C.C.Dykstra, S.K.Jones, R.R.Tidwell, A.Kumar, D.W.Boykin, J.R.Perfect, In vitro antifungal activities of a series of dication-substituted carbazoles, furans, and benzimidazoles, Antimicrob. Agents Chemother. 42 (1998) 2503–2510.
    [24] R.J.VanPutten, J.C.Van DerWaal, E.DeJong, C.B.Rasrendra, H.J.Heeres, J.G.DeVries, Hydroxymethylfurfural, a versatile platform chemical made from renewable resources, Chem. Rev. 113 (2013) 1499–1597.
    [25] P.Pal, S.Saravanamurugan, Recent Advances in the Development of 5-Hydroxymethylfurfural Oxidation with Base (Nonprecious)-Metal-Containing Catalysts, ChemSusChem. 12 (2019) 145–163.
    [26] A.Todea, I.Bîtcan, D.Aparaschivei, I.Păuşescu, V.Badea, F.Péter, V.D.Gherman, G.Rusu, L.Nagy, S.Kéki, Biodegradable oligoesters of ε-caprolactone and 5-hydroxymethyl-2-furancarboxylic acid synthesized by immobilized lipases, Polymers (Basel). 11 (2019) 1–17.
    [27] A.C.Braisted, J.D.Oslob, W.L.Delano, J.Hyde, R.S.McDowell, N.Waal, C.Yu, M.R.Arkin, B.C.Raimundo, Discovery of a potent small molecule IL-2 inhibitor through fragment assembly, J. Am. Chem. Soc. 125 (2003) 3714–3715.
    [28] M.Munekata, G.Tamura, Antitumor Activity of 5-Hydroxymethyl-2-furoic Acid, Agric. Biol. Chem. 45 (1981) 2149–2150.
    [29] J.J.Pacheco, J.A.Labinger, A.L.Sessions, M.E.Davis, Route to Renewable PET: Reaction Pathways and Energetics of Diels-Alder and Dehydrative Aromatization Reactions between Ethylene and Biomass-Derived Furans Catalyzed by Lewis Acid Molecular Sieves, ACS Catal. 5 (2015) 5904–5913.
    [30] J.J.Pacheco, M.E.Davis, Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 8363–8367.
    [31] Y.P.Li, M.Head-Gordon, A.T.Bell, Theoretical Study of 4-(Hydroxymethyl)benzoic Acid Synthesis from Ethylene and 5-(Hydroxymethyl)furoic Acid Catalyzed by Sn-BEA, ACS Catal. 6 (2016) 5052–5061.
    [32] M.Serhan, M.Sprowls, D.Jackemeyer, M.Long, I.D.Perez, W.Maret, N.Tao, E.Forzani, Total iron measurement in human serum with a smartphone, AIChE Annu. Meet. Conf. Proc. 2019-Novem (2019).
    [33] M.Ventura, A.Dibenedetto, M.Aresta, Heterogeneous catalysts for the selective aerobic oxidation of 5-hydroxymethylfurfural to added value products in water, Inorganica Chim. Acta. 470 (2018) 11–21.
    [34] M.Ventura, M.Aresta, A.Dibenedetto, Selective Aerobic Oxidation of 5-(Hydroxymethyl)furfural to 5-Formyl-2-furancarboxylic Acid in Water, ChemSusChem. 9 (2016) 1096–1100.
    [35] K.Saikia, A.K.Rathankumar, P.S.Kumar, S.Varjani, M.Nizar, R.Lenin, J.George, V.K.Vaidyanathan, Recent advances in biotransformation of 5-Hydroxymethylfurfural: challenges and future aspects, J. Chem. Technol. Biotechnol. 97 (2022) 409–419.
    [36] A.Hommes, B.Disselhorst, H.M.M.Janssens, R.J.A.Stevelink, H.J.Heeres, J.Yue, Mass transfer and reaction characteristics of homogeneously catalyzed aerobic oxidation of 5-hydroxymethylfurfural in slug flow microreactors, Chem. Eng. J. 413 (2021) 127552.
    [37] C.Zhang, X.Chang, L.Zhu, Q.Xing, S.You, W.Qi, R.Su, Z.He, Highly efficient and selective production of FFCA from CotA-TJ102 laccase-catalyzed oxidation of 5-HMF, Int. J. Biol. Macromol. 128 (2019) 132–139.
    [38] D.Zhao, T.Su, Y.Wang, R.S.Varma, C.Len, Recent advances in catalytic oxidation of 5-hydroxymethylfurfural, Mol. Catal. 495 (2020) 111133.
    [39] K.R.Hwang, W.Jeon, S.Y.Lee, M.S.Kim, Y.K.Park, Sustainable bioplastics: Recent progress in the production of bio-building blocks for the bio-based next-generation polymer PEF, Chem. Eng. J. 390 (2020) 124636.
    [40] M.Sajid, X.Zhao, D.Liu, Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): Recent progress focusing on the chemical-catalytic routes, Green Chem. 20 (2018) 5427–5453.
    [41] J.J.Bozell, G.R.Petersen, Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited, Green Chem. 12 (2010) 539–55.
    [42] C.Moreau, M.N.Belgacem, A.Gandini, Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers, Top. Catal. 27 (2004) 11–30.
    [43] E.DeJong, M.A.Dam, L.Sipos, G.J.M.Gruter, Furandicarboxylic acid (FDCA), A versatile building block for a very interesting class of polyesters, ACS Symp. Ser. 1105 (2012) 1–13.
    [44] S.Zhang, G.Shen, Y.Deng, Y.Lei, J.W.Xue, Z.Chen, G.Yin, Efficient Synthesis of 2,5-Furandicarboxylic Acid from Furfural Based Platform through Aqueous-Phase Carbonylation, ACS Sustain. Chem. Eng. 6 (2018) 13192–13198.
    [45] J.Wang, X.Liu, J.Zhu, Y.Jiang, Copolyesters based on 2,5-furandicarboxylic acid (FDCA): Effect of 2,2,4,4-tetramethyl-1,3-cyclobutanediol units on their properties, Polymers (Basel). 9 (2017) 1–15.
    [46] A.Takagaki, M.Takahashi, S.Nishimura, K.Ebitani, One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts, ACS Catal. 1 (2011) 1562–1565.
    [47] S.E.Davis, B.N.Zope, R.J.Davis, On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts, Green Chem. 14 (2012) 143–147.
    [48] B.Donoeva, N.Masoud, P.E.DeJongh, Carbon Support Surface Effects in the Gold-Catalyzed Oxidation of 5-Hydroxymethylfurfural, ACS Catal. 7 (2017) 4581–4591.
    [49] Z.Zhang, K.Deng, Recent Advances in the Catalytic Synthesis of 2,5-Furandicarboxylic Acid and Its Derivatives, ACS Catal. 5 (2015) 6529–6544.
    [50] W.J.Liu, L.Dang, Z.Xu, H.Q.Yu, S.Jin, G.W.Huber, Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts, ACS Catal. 8 (2018) 5533–5541.
    [51] Y.Kwon, K.J.P.Schouten, J.C.Van DerWaal, E.DeJong, M.T.M.Koper, Electrocatalytic Conversion of Furanic Compounds, ACS Catal. 6 (2016) 6704–6717.
    [52] B.You, Y.Sun, Innovative Strategies for Electrocatalytic Water Splitting, Acc. Chem. Res. 51 (2018) 1571–1580.
    [53] X.Bao, M.Liu, Z.Wang, D.Dai, P.Wang, H.Cheng, Y.Liu, Z.Zheng, Y.Dai, B.Huang, Photocatalytic Selective Oxidation of HMF Coupled with H2Evolution on Flexible Ultrathin g-C3N4Nanosheets with Enhanced N-H Interaction, ACS Catal. 12 (2022) 1919–1929.
    [54] G.Han, Y.H.Jin, R.A.Burgess, N.E.Dickenson, X.M.Cao, Y.Sun, Visible-Light-Driven Valorization of Biomass Intermediates Integrated with H2 Production Catalyzed by Ultrathin Ni/CdS Nanosheets, J. Am. Chem. Soc. 139 (2017) 15584–15587.
    [55] C.Shi, F.Kang, Y.Zhu, M.Teng, J.Shi, H.Qi, Z.Huang, C.Si, F.Jiang, J.Hu, Photoreforming lignocellulosic biomass for hydrogen production: Optimized design of photocatalyst and photocatalytic system, Chem. Eng. J. 452 (2023) 138980.
    [56] Q.Wu, Y.He, H.Zhang, Z.Feng, Y.Wu, T.Wu, Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on metal-free g-C3N4 under visible light irradiation, Mol. Catal. 436 (2017) 10–18.
    [57] S.Dhingra, T.Chhabra, V.Krishnan, C.M.Nagaraja, Visible-Light-Driven Selective Oxidation of Biomass-Derived HMF to DFF Coupled with H2Generation by Noble Metal-Free Zn0.5Cd0.5S/MnO2Heterostructures, ACS Appl. Energy Mater. 3 (2020) 7138–7148.
    [58] C.R.Lhermitte, N.Plainpan, P.Canjura, F.Boudoire, K.Sivula, Direct photoelectrochemical oxidation of hydroxymethylfurfural on tungsten trioxide photoanodes, RSC Adv. 11 (2020) 198–202.
    [59] H.G.Cha, K.S.Choi, Combined biomass valorization and hydrogen production in a photoelectrochemical cell, Nat. Chem. 7 (2015) 328–333.
    [60] A.Kawde, M.Sayed, Q.Shi, J.Uhlig, T.Pullerits, R.Hatti-Kaul, Photoelectrochemical oxidation in ambient conditions using earth-abundant hematite anode: A green route for the synthesis of biobased polymer building blocks, Catalysts. 11 (2021).
    [61] C.Li, Y.Na, Recent Advances in Photocatalytic Oxidation of 5-Hydroxymethylfurfural, ChemPhotoChem. 5 (2021) 502–511.
    [62] G.Zheng, J.Wang, H.Liu, V.Murugadoss, G.Zu, H.Che, C.Lai, H.Li, T.Ding, Q.Gao, Z.Guo, Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting, Nanoscale. 11 (2019) 18968–18994.
    [63] D.D.Qin, C.L.Tao, S.A.Friesen, T.H.Wang, O.K.Varghese, N.Z.Bao, Z.Y.Yang, T.E.Mallouk, C.A.Grimes, Dense layers of vertically oriented WO3 crystals as anodes for photoelectrochemical water oxidation, Chem. Commun. 48 (2012) 729–731.
    [64] X.Liu, F.Wang, Q.Wang, Nanostructure-based WO 3 photoanodes for photoelectrochemical water splitting, Phys. Chem. Chem. Phys. 14 (2012) 7894–7911.
    [65] Y.Wang, W.Tian, C.Chen, W.Xu, L.Li, Tungsten Trioxide Nanostructures for Photoelectrochemical Water Splitting: Material Engineering and Charge Carrier Dynamic Manipulation, Adv. Funct. Mater. 29 (2019) 1–25.
    [66] Q.Mi, A.Zhanaidarova, B.S.Brunschwig, H.B.Gray, N.S.Lewis, A quantitative assessment of the competition between water and anion oxidation at WO 3 photoanodes in acidic aqueous electrolytes, Energy Environ. Sci. 5 (2012) 5694–5700.
    [67] C.Santato, M.Ulmann, J.Àugustynski, Photoelectrochemical properties of nanostructured tungsten trioxide films, J. Phys. Chem. B. 105 (2001) 936–940.
    [68] J.Li, C.Guo, L.Li, Y.Gu, B.K.H.Kim, J.Huang, Synthesis of vertical WO3nanoarrays with different morphologies using the same protocol for enhanced photocatalytic and photoelectrocatalytic performances, RSC Adv. 11 (2021) 23700–23706.
    [69] J.Zhou, S.Lin, Y.Chen, A.M.Gaskov, Facile morphology control of WO 3 nanostructure arrays with enhanced photoelectrochemical performance, Appl. Surf. Sci. 403 (2017) 274–281.
    [70] J.Y.Zheng, G.Song, J.Hong, T.K.Van, A.U.Pawar, D.Y.Kim, C.W.Kim, Z.Haider, Y.S.Kang, Facile fabrication of WO3 nanoplates thin films with dominant crystal facet of (002) for water splitting, Cryst. Growth Des. 14 (2014) 6057–6066.
    [71] J.Zhang, P.Zhang, T.Wang, J.Gong, Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting, Nano Energy. 11 (2015) 189–195.
    [72] D.Chandra, T.Katsuki, Y.Tanahashi, T.Togashi, Y.Tsubonouchi, N.Hoshino, Z.N.Zahran, M.Yagi, Temperature-Controlled Transformation of WO3 Nanowires into Active Facets-Exposed Hexagonal Prisms toward Efficient Visible-Light-Driven Water Oxidation, ACS Appl. Mater. Interfaces. (2022).
    [73] J.Su, X.Feng, J.D.Sloppy, L.Guo, C.A.Grimes, Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties, Nano Lett. 11 (2011) 203–208.
    [74] X.Feng, Y.Chen, Z.Qin, M.Wang, L.Guo, Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces. 8 (2016) 18089–18096.
    [75] S.S.Kalanur, Y.J.Hwang, S.Y.Chae, O.S.Joo, Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity, J. Mater. Chem. A. 1 (2013) 3479–3488.
    [76] Z.Wang, C.Zhu, Z.Ni, H.Hojo, H.Einaga, Enhanced Photocatalytic Benzene Oxidation to Phenol over Monoclinic WO3Nanorods under Visible Light, ACS Catal. 12 (2022) 14976–14989.
    [77] J.Yang, X.Chen, X.Liu, Y.Cao, J.Huang, Y.Li, F.Liu, From Hexagonal to Monoclinic: Engineering Crystalline Phase to Boost the Intrinsic Catalytic Activity of Tungsten Oxides for the Hydrogen Evolution Reaction, ACS Sustain. Chem. Eng. 9 (2021) 5642–5650.
    [78] L.W.Huang, T.G.Vo, C.Y.Chiang, Converting glycerol aqueous solution to hydrogen energy and dihydroxyacetone by the BiVO4 photoelectrochemical cell, Electrochim. Acta. 322 (2019) 134725.
    [79] J.Ouyang, X.Liu, B.H.Wang, J.B.Pan, S.Shen, L.Chen, C.T.Au, S.F.Yin, WO3Photoanode with Predominant Exposure of {202} Facets for Enhanced Selective Oxidation of Glycerol to Glyceraldehyde, ACS Appl. Mater. Interfaces. 14 (2022) 23536–23545.
    [80] J.Yu, J.González-Cobos, F.Dappozze, F.J.López-Tenllado, J.Hidalgo-Carrillo, A.Marinas, P.Vernoux, A.Caravaca, C.Guillard, WO3-based materials for photoelectrocatalytic glycerol upgrading into glyceraldehyde: Unravelling the synergistic photo- and electro-catalytic effects, Appl. Catal. B Environ. 318 (2022).
    [81] Z.Gu, X.An, R.Liu, L.Xiong, J.Tang, C.Hu, H.Liu, J.Qu, Interface-modulated nanojunction and microfluidic platform for photoelectrocatalytic chemicals upgrading, Appl. Catal. B Environ. 282 (2021) 119541.
    [82] H.Zhang, Z.Feng, Y.Zhu, Y.Wu, T.Wu, Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on WO3/g-C3N4 composite under irradiation of visible light, J. Photochem. Photobiol. A Chem. 371 (2019) 1–9.
    [83] K.Hu, M.Zhang, B.Liu, Z.Yang, R.Li, K.Yan, Efficient electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using the facilely synthesized 3D porous WO3/Ni electrode, Mol. Catal. 504 (2021) 111459.
    [84] Y.Cui, L.Pan, Y.Chen, N.Afzal, S.Ullah, D.Liu, L.Wang, X.Zhang, J.J.Zou, Defected ZnWO 4 -decorated WO 3 nanorod arrays for efficient photoelectrochemical water splitting, RSC Adv. 9 (2019) 5492–5500.
    [85] P.Makuła, M.Pacia, W.Macyk, How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra, J. Phys. Chem. Lett. 9 (2018) 6814–6817.
    [86] Y.Liu, Q.Li, S.Gao, J.K.Shang, Template-free solvothermal synthesis of WO3/WO 3·H2O hollow spheres and their enhanced photocatalytic activity from the mixture phase effect, CrystEngComm. 16 (2014) 7493–7501.
    [87] Y.Du, Q.Hao, D.Chen, T.Chen, S.Hao, J.Yang, H.Ding, W.Yao, J.Song, Facile fabrication of heterostructured bismuth titanate nanocomposites: The effects of composition and band gap structure on the photocatalytic activity performance, Catal. Today. 297 (2017) 255–263.
    [88] M.Kang, J.Liang, F.Wang, X.Chen, Y.Lu, J.Zhang, Structural design of hexagonal/monoclinic WO3 phase junction for photocatalytic degradation, Mater. Res. Bull. 121 (2020) 110614.
    [89] G.Mineo, M.Scuderi, E.Bruno, S.Mirabella, Engineering Hexagonal/Monoclinic WO3Phase Junctions for Improved Electrochemical Hydrogen Evolution Reaction, ACS Appl. Energy Mater. 5 (2022) 9702–9710.
    [90] T.Jin, D.Xu, P.Diao, W.P.He, H.W.Wang, S.Z.Liao, Tailored preparation of WO3 nano-grassblades on FTO substrate for photoelectrochemical water splitting, CrystEngComm. 18 (2016) 6798–6808.
    [91] J.A.Seabold, K.S.Choi, Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode, Chem. Mater. 23 (2011) 1105–1112.
    [92] S.S.Kalanur, I.H.Yoo, I.S.Cho, H.Seo, Niobium incorporated WO 3 nanotriangles: Band edge insights and improved photoelectrochemical water splitting activity, Ceram. Int. 45 (2019) 8157–8165.
    [93] S.Adhikari, D.Sarkar, Hydrothermal synthesis and electrochromism of WO3 nanocuboids, RSC Adv. 4 (2014) 20145–20153.
    [94] T.Jin, P.Diao, D.Xu, Q.Wu, High-aspect-ratio WO3 nanoneedles modified with nickel-borate for efficient photoelectrochemical water oxidation, Electrochim. Acta. 114 (2013) 271–277.
    [95] W.Li, P.Da, Y.Zhang, Y.Wang, X.Lin, X.Gong, ARTICLE WO 3 Nano fl akes for Enhanced Photoelectrochemical Conversion, ACS Nano. 8 (2014) 11770–11777.
    [96] T.G.Vo, C.C.Kao, J.L.Kuo, C. chauChiu, C.Y.Chiang, Unveiling the crystallographic facet dependence of the photoelectrochemical glycerol oxidation on bismuth vanadate, Appl. Catal. B Environ. 278 (2020) 119303.
    [97] D.Jiang, W.Wang, Fundamental Studies on Photocatalytic Structures with Well-Defined Crystal Facets, 1st ed., Elsevier B.V., 2017.
    [98] S.Q.Yu, Y.H.Ling, J.Zhang, F.Qin, Z.J.Zhang, Efficient photoelectrochemical water splitting and impedance analysis of WO3−x nanoflake electrodes, Int. J. Hydrogen Energy. 42 (2017) 20879–20887.
    [99] H.Liu, W.Li, M.Zuo, X.Tang, X.Zeng, Y.Sun, T.Lei, H.Fang, T.Li, L.Lin, Facile and Efficient Two-Step Formation of a Renewable Monomer 2,5-Furandicarboxylic Acid from Carbohydrates over the NiOx Catalyst, Ind. Eng. Chem. Res. 59 (2020) 4895–4904.
    [100] A.Marshall, B.Jiang, R.M.Gauvin, C.M.Thomas, 2,5-Furandicarboxylic Acid: An Intriguing Precursor for Monomer and Polymer Synthesis, Molecules. 27 (2022).
    [101] M.Jadwiszczak, K.Jakubow-Piotrowska, P.Kedzierzawski, K.Bienkowski, J.Augustynski, Highly Efficient Sunlight-Driven Seawater Splitting in a Photoelectrochemical Cell with Chlorine Evolved at Nanostructured WO3 Photoanode and Hydrogen Stored as Hydride within Metallic Cathode, Adv. Energy Mater. 10 (2020) 1–8.
    [102] C.X.M.Ta, Y.Furusho, F.Amano, Photoelectrochemical stability of WO3/Mo-doped BiVO4 heterojunctions on different conductive substrates in acidic and neutral media, Appl. Surf. Sci. 548 (2021) 149251.
    [103] T.Jin, P.Diao, Q.Wu, D.Xu, D.Hu, Y.Xie, M.Zhang, WO3 nanoneedles/α-Fe2O3/cobalt phosphate composite photoanode for efficient photoelectrochemical water splitting, Appl. Catal. B Environ. 148–149 (2014) 304–310.
    [104] R.Latsuzbaia, R.Bisselink, A.Anastasopol, H.van derMeer, R.vanHeck, M.S.Yagüe, M.Zijlstra, M.Roelands, M.Crockatt, E.Goetheer, E.Giling, Continuous electrochemical oxidation of biomass derived 5-(hydroxymethyl)furfural into 2,5-furandicarboxylic acid, J. Appl. Electrochem. 48 (2018) 611–626.

    無法下載圖示 全文公開日期 2028/08/28 (校內網路)
    全文公開日期 2028/08/28 (校外網路)
    全文公開日期 2028/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE