簡易檢索 / 詳目顯示

研究生: 侯韋銘
Wei-Ming Hou
論文名稱: 以光纖及光電化學反應器進行光觸媒催化降解氣相異丙醇之研究
Optical Fiber and Photoelectrochemical Reactor for the Decomposition of Gaseous Isopropanol in Air Stream by UV/TiO2 Process
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
申永順
Yung-Shuen Shen
白曛綾
Hsun-Ling Bai
劉志成
Jhy-Chern Liu
曾堯宣
Yao-Hsuan Tseng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 168
中文關鍵詞: 光觸媒催化光纖週期照射光電觸媒催化氣相反應
外文關鍵詞: Phocatalysis, Optical fiber, Periodic illumination, Photoelectrocatalysis, Gas phase reaction
相關次數: 點閱:235下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究於光纖表面批覆TiO2光觸媒,並藉由光纖的光傳輸特性,可在有限的光反應器空間做有效的光強度分佈,提高光的利用率,減少能量損失。因此利用光纖運用於管狀連續反應器,以光觸媒程序來進行氣相異丙醇之氧化。藉由含浸法將TiO2均勻披覆於已撥離反射層之光纖上,在光觸媒反應部分,將利用光觸媒催化氧化異丙醇,分析光觸媒催化效率,探討有關紫外光強度、反應物濃度、反應物滯留時間、相對濕度等操作因素對反應物的轉化率之影響及反應動力行為。並藉由紫外光發光二極體(UV-LED)能夠提供週期性照射之特性,應用於光觸媒催化程序,分析週期性照射於處理污染物之影響。實驗結果發現:當提高空氣中之相對濕度,由於水分子與異丙醇對活性位置進行競爭吸附,因此光觸媒催化之活性因而降低,相較於連續照射,當操作於週期照射環境下能將光量子效率由0.78%提升至1.28%,另外,在相同之亮/暗週期比率下,提高頻率能夠同時提升去除效率以及光量子效率。
    本研究亦開發光電觸媒催化反應器,將外加電位施加於氣相光觸媒催化反應程序中,以減少光觸媒電極表面之電子–電洞再結合,研究中探討有關外加偏壓強度、相對濕度、初始濃度以及紫外光強度等操作因素對反應物的轉化率之影響,由實驗結果得知,相較於光觸媒催化程序,光電觸媒催化程序於具有濕度之環境下仍有一定量之去除率;光陽極之電流密度受到外加偏壓強度、相對濕度、紫外光強度的影響較大,卻不受異丙醇初始濃度之變化而受影響;其中濕度對於整個光電觸媒催化程序具有顯著的效應;此外,相較於以提升光強度方式增加反應效率,外加電位可進而提高光子的利用率並減少50 %之能耗。


    Photocatalytic decomposition of isopropanol presented in gas stream was investigated using a continuous, tubular photoreactor loaded with single TiO2-coated optical fiber under controlled UV periodic illumination. The effects of UV light intensity, initial concentration of target compound, retention time and humidity on the photocatalytic efficiency for the oxidation of isopropanol. The TiO2 particles were coated on optical fiber through dip-coating process. UV light emitting diodes (UV-LEDs) will be utilized as the light source to enhance the utilization of UV light by applying periodic illumination on the oxidation of isopropanol. The introduction of humidity retarded the decomposition of isopropanol because of the competition between water and isopropanol molecules for the active sites on TiO2 surface. Operated at retention time of less than one second, about 21% isopropanol was decomposed for experiments conducted with initial isopropanol concentration of 10 ppmv. The apparent quantum yield was increased from 0.78 to 1.28 for experiments conducted with UV-LED as the light source operated at duty cycle shifted from 1.0 to 0.1. At the operation of equivalent duty cycle, both removal efficiencies and quantum yield was also enhanced in the highly frequent periodic illumination by decreasing both light and dark periods.
    Electrochemical enhancement for photocatalytic decomposition of isopropanol in gas phase was carried out in a photoelectrocatalytic reactor. The effects of bias potential, relative humidity, initial isopropanol concentration and UV light intensities were investigated for the photoelectrocatalytic process. Photoelectrocatalytic decomposition of isopropanol was observed to be less sensitive to humidity for experiments applied with bias potential higher than 2.5V. Electrical current densities of photoanode were highly corresponded to the variation of bias potentials, relative humidity levels and UV light intensities, however independent of inlet isopropanol concentrations. Humidity presented a controversial effect for photocatalytic decomposition rate of isopropanol within the application of bias potential. Experimental results also exhibited that the energy consumption of photoelectrocatalytic process was much less than photocatalytic process to achieve similar isopropanol decomposition.

    Table of Content Chinese Abstract I English Abstract III Acknowledgment V Table of Content VI List of Figures IX List of Tables XIV List of Symbols XV Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and scope 3 2 Literature Review 4 2.1 Photocatalysis 5 2.1.1 Fundamental of photocatalysis 5 2.1.2 Mechanism and kinetics of photocatalysis 7 2.1.3 Operating factors affecting photocatalysis 13 2.2 Photoelectrocatalysis 24 2.2.1 Fundamental of photoelectrocatalysis 25 2.2.2 Solid electrolyte 30 2.3 Development of Photoreactor 35 2.3.1 Photoreactor applied for periodic irradiation 37 2.3.2 Optical fiber reactor 48 2.3.3 Photoelectrochemical reactor 58 3 Materials and Experiments 69 3.1 Materials and apparatus 69 3.2 Photocatalytic and photoelectrocatalytic activity 70 3.3 Experimental procedures 76 3.3.1 Experimental framework 76 3.3.2 Coating procedure of TiO¬2 78 3.3.3 Background experiments 78 3.3.4 Photocatalysis under periodic illumination 87 3.3.5 Gas phase photoelectrocatalysis 91 4 Results and Discussion 93 4.1 Photocatalytic decomposition of gaseous isopropanol in a tubular optical fiber reactor under periodic UV-LED illumination 94 4.1.1 Characterizations of TiO2-coated optical fiber 95 4.1.2 Effect of inlet relative humidity 97 4.1.3 Effect of inlet isopropanol concentration 99 4.1.4 Effect of UV light intensity 101 4.1.5 Effect of duty cycle 103 4.1.6 Effect of irradiation frequency 106 4.2 Photoelectrocatalytic decomposition of gaseous isopropanol in a polymer electrolyte cell 108 4.2.1 Characterizations of TiO2-coated photoanode 109 4.2.2 Effect of applied bias 112 4.2.3 Effect of inlet relative humidity 116 4.2.4 Effect of inlet isopropanol concentration 123 4.2.5 Effect of UV light intensity 126 4.2.6 Reaction kinetic of photoelectrocatalytic decomposition of gaseous isopropanol in a polymer electrolyte cell 129 4.2.7 Energy consumption of photoelectrocatalytic process 131 5 Conclusions and Recommendations 132 Reference 137 Appendix 150 Vita 151

    Reference
    Akpan, U.G. and B.H. Hameed, “The Advancements in Sol-Gel Method of Doped-TiO2 photocatalysts,” Appl. Catal., A, Vol. 375, pp. 1-11 (2010).
    Alber, K.S., J.A. Cox and P.J. Kulesza, “Solid-state Amperometric Sensors for Gas Phase Analytes: A Review of Recent Advances” Electroanalysis, Vol. 9, pp. 97-101 (1996).
    Al-ekabi, H. and N. Serpone, “Mechanistic Implications in Surface Photochemistry,” In: N. Serpone and E. Pelizzetti (Eds.) Photocatalysis Fundamentals and Applications, John Wiley & Sons, Inc, New York (1989).
    Amadelli, R. and A.De. Battisti, “Gas phase Electroreduction of O2 on Gold–Nafion and (Underpotential Deposition, Gold)–Nafion Electrode,” J. Electroanal. Chem., Vol. 339, pp. 85–100 (1992).
    Amama, P.B., K. Itoh and M. Murabayashi, “Photocatalytic Degradation of Trichloroethylene in Dry and Humid Atmospheres: Role of Gas-phase Reactions,” J. Mol. Catal. A: Chem., Vol. 217(1-2), pp. 109-115 (2004).
    Ampelli, C., G. Centi, R. Passalacqua and S. Perathoner, “Synthesis of Solar Fuels by A Novel Photoelectrocatalytic Approach,” Energy Environ. Sci., Vol. 3, pp. 292-301 (2010).
    An, T.C., X.H. Zhu and Y. Xiong, “Feasibility Study of Photoelectrochemical Degradation of Methylene Blue with Three-Dimensional Electrode-Photocatalytic Reactor,” Chemosphere, Vol. 46, pp. 897-903 (2002).
    Arana, J., A.P. Alonso, J.M.D. Rodriguez, G. Colon, J.A. Navio and J.P. Pena, “FTIR Study of Photocatalytic Degradation of 2-Propanol in Gas Phase with Different TiO2 Catalysts,” Appl. Catal., B, Vol. 89, pp. 204-213 (2009).
    Bhatkhande, D.S., V.G. Pangarkar and A.A.C.M. Beenackers, “Photocatalytic Degradation of Nitrobenzene Using Titanium Dioxide and Concentrated Solar Radiation: Chemical Effects and Scaleup,” Water Res., Vol. 37, pp. 1223-1230 (2003).
    Buechler, K.J., R.D. Noble C.A. Koval and W.A. Jacoby, “Investigation of the Effects of Controlled Periodic Illumination on the Oxidation of Gaseous Trichloroethylene Using a Thin Film of TiO2,” Ind. Eng. Chem. Res., Vol. 38, pp. 892-896 (1999).
    Centi, G., S. Perathoner, G. Wine and M. Gangeri, “Electrocatalytic Conversion of CO2 to Long Carbon-Chain Hydrocarbons,” Green Chem., Vol. 9, pp. 671-678 (2007).
    Chakrabarti, S. and B.K. Dutta, “Photocatalytic Degradation of Model Textile Dyes in Wastewater Using ZnO as Semiconductor Catalyst,” J. Hazard. Mater., Vol. B112, pp. 269-278 (2004).
    Chan, Y.C.., J.N. Chen and M.C. Lu, “Intermediate Inhibition in the Heterogeneous UV-catalysis using a TiO2 Suspension System,” Chemosphere, Vol. 45, pp. 29-35 (2001).
    Chaurasia, P.B.L., Y. Ando and T. Tanaka, “Regenerative fuel cell with chemical reactions,” Energy Convers. Manage., Vol. 44, pp. 611–628 (2003).
    Chen, H.W. and Y. Ku, “Photodecomposition of o-Cresol by UV-LED/TiO2 Process with Controlled Periodic Illumination,” Chemosphere, Vol. 69, pp. 184-190 (2007).
    Chen, H.W., Y. Ku and Y.L. Kuo, “Effect of Pt/TiO2 Characteristics on Temporal Behavior of o-Cresol Decomposition by Visible Light Induced Photocatalysis,” Water Res., Vol. 41, pp. 2069-2078 (2007).
    Cho, S.P., S.C. Hong and S.I. Hong, “Photocatalytic Degradation of the Landfill Leachate Containing Refractory Matters and Nitrogen Compounds,” Appl. Cata. B, Vol. 39, pp. 125-133 (2002).
    Choi, W., J.U. Ko, H. Park and J.S. Chung, “Investigation on TiO2-Coated Optical Fibers for Gas-Phase Photocatalytic Oxidation of Acetone,” Appl. Catal., B, Vol. 31, pp. 209-220 (2001).
    Chou, Y.C. and Y. Ku, “NO Reduction and N2 Selectivity under Various Operating Conditions for Photo-SCR of NO,” Chem. Eng. J., Vol. 162, pp. 696-701 (2010).
    Cornu, C.J.G., A.J. Colussi and M.R. Hoffmann, “Quantum Yields of The Photocatalytic Oxidation of Formate in Aqueous TiO2 suspensions under Continuous and Periodic Illumination,” J. Phys. Chem. B, Vol. 10, pp. 1351-1354 (2001).
    Cornu, C.J.G.., A.J. Colussi and M.R. Hoffmann, “Time Scales and pH Dependences of the Redox Processes Determining the Photocatalytic Efficiency of TiO2 Nanoparticles from Periodic Illumination Experiments in the Stochastic Regime,” J. Phys. Chem. B, Vol. 107, pp. 3156-3160 (2003).
    Cook, R.L. and A.F. Sammells, “Ambient Temperature Gas Phase Electrochemical Nitrogen Reduction to Ammonia at Ruthenium/solid Polymer Electrolyte Interface,” Catal. Lett., Vol. 1, pp. 345–350 (1988).
    Cook, R.L., R.C. MacDuff and A.F. Sammells, “Gas-phase CO2 Reduction to Hydrocarbons at Metal/solid Polymer Electrolyte Interface,” J. Electrochem. Soc., Vol. 137, pp. 187–189 (1990).
    Danion, A., Disdier, J., Guillard, C., Abdelmalek, F., and Jaffrezic-Renault, N., “Characterization and Study of a Single-TiO2-Coated Optical Fiber Reactor,” Appl. Catal., B, Vol. 51, pp. 213-223 (2004a).
    Danion, A., Bordes, C., Disdier, J., Gauvrit, J.Y., Guillard, C., Lanteri, P., and Jaffrezic-Renault, N., “Optimization of a Single TiO2-Coated Optical Fiber Reactor Using Experimental Design,” J. Photochem. Photobiol. A: Chem., Vol. 168, pp. 161-167 (2004b).
    Danion, A., Disdier, J., Guillard, C., Abdelmalek, F., and Jaffrezic-Renault, N., “Characterization and Study of a Single-TiO2-Coated Optical Fiber Reactor,” Int. J. Appl. Electromagnet. Mech., Vol. 23, pp. 187-201 (2006a).
    Danion, A., Disdier, J., Guillard, C., Paisse, O., and Jaffrezic-Renault, N., “Photocatalytic Degradation of Imidazolinone Fungicide in TiO2-Coated Optical Fiber Reactor,” Appl. Catal., B, Vol. 62, pp. 274-281 (2006b).
    Danion, A., J. Disdier, C. Guillard and N. Jaffrezic-Renault, “Malic Acid Photocatalytic Degradation Using A TiO2-Coated Optical Fiber Reactor,” J. Photochem. Photobiol., A, Vol. 190, pp. 135-140 (2007).
    Dholam, R., N. Patel, M. Adami and A. Miotello, “Hydrogen Production by Photocatalytic Water-Splitting Using Cr- or Fe-doped TiO2 Composite Thin Films Photocatalyst,” Int. J. Hydrogen Energy, Vol. 34, pp. 5337-5346 (2009).
    Doong, R.A., C.H. Chen, R.A. Maithreepala and S.M. Chang, “The Influence of pH and Cadmium Sulfide on the Photocatalytic Degradation of 2-Chlorophenol in Titanium Dioxide Suspensions,” Water Res., Vol. 35 (12), pp. 2873-2880 (2001).
    Du, P, Carneiro, J.T., Moulijn, J.A., and Mul, G, “A Novel Photocatalytic Monolith Reactor for Multiphase Heterogeneous Photocatalysis,” Appl. Catal., A, Vol. 334, pp. 119-128 (2008).
    Enea, O., “Effects of Alkyl on the Electrocatalytic Oxidation of the Alcohol Vapors at Au–Nafion Electrodes,” J. Electrochem. Soc., Vol. 135, pp. 1601–1602 (1988).
    Esquivel, K., L.G. Arriaga, F.J. Rodriguez, L. Martinez and L.A. Godinez, “Development of a TiO2 Modified Optical Fiber Electrode and Its Incorporation into A Photoelectrochemical Reactor for Wastewater treatment,” Water Res., Vol. 43, pp. 3593-3603 (2009).
    Foster, H.S., C.A. Koval, J.G. Sczechowski and R.D. Noble, “Investigation of Controlled Periodic Illumination Effects on Photo-oxidation Processes at Titanium Dioxide Films Using Rotating Ring Disk Photoelectrochemistry,” J. Electroanal. Chem., Vol. 406, pp. 213-217 (1996).
    Friedmann, D., C. Mendive and D. Bahnemann, “TiO2 for Water Treatment: Parameters Affecting the Kinetics and Mechanisms of Photocatalysis,” Appl. Catal. B-Environ., Vol. 99, pp. 398-406 (2010).
    Fujishima, A., Hashoimoto, K., and Watanabe, T., “TiO2 Photocatalysis Fundamentals and Application,” BKC, Inc., Tokyo (1999).
    Galindo, C., P. Jacques and A. Kalt, “Photooxidation of the Phenylazonaphthol AO20 on TIO2: Kinetic and Mechanistic Investigations,” Chemosphere, Vol. 45, pp. 997-1005 (2001).
    Galińska, A. and J. Walendziewski, “Photocatalytic Water Splitting over Pt-TiO2 in the Presence of Sacrificial Reagents,” Energy Fuels, Vol. 19, pp. 1143-1147 (2005).
    Gangeri, M., S. Perathoner, S. Caudo, G. Centi, J. Amadou, D. Begin, C. Pham-Huu, M.J. Ledoux, J.P. Tessonnier, D.S. Su and R. Schlogl, “Fe and Pt Carbon Nanotubes for the Electrocatalytic Conversion of Carbon Dioxide to Oxygenates,” Catal. Today, Vol. 143, pp. 57–63 (2009).
    Georgieva, J., S. Armyanov, I. Poulios and S. Sotiropoulos, “An All-Solid Photoelectrochemical Cell for the Photooxidation of Organic Vapours under Ultraviolet and Visible Light Illumination,” Electrochem. Commun., Vol. 11, pp. 1643-1646 (2009).
    Georgieva, J., E. Valova, S. Armyanov, N. Philippidis, I. Poulios and S. Sotiropoulos, “Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: A short review with emphasis to TiO2-WO3 photoanodes,” J. Hazard. Mater., Vol. 211-212, pp. 30– 46 (2012).
    Grela, M.A. and A.J. Colussi, “Kinetics of Stochastic Charge Transfer and Recombination Events in Semiconductor Colloid Relevance to Photocatalysis Efficiency,” J. Phys. Chem., Vol. 100, pp. 18214-18221 (1996).
    Guerrero-Lemus, R. and J.M. Martinez-Duart, “Renewable Energies and CO2,” Springer, London (2012).
    Herrmann, J.M., “Heterogeneous Photocatalysis: State of the Art and Present Applications,” Top. Catal., Vol. 34, pp. 49-65 (2005).
    Hoffman, A.J., E.R. Carraway and M.R. Hoffmann, “Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-sized Semiconductor Colloids,” Environ. Sci. Technol., Vol. 28, pp. 776-785 (1994).
    Hoffmann, M.R., S.T. Martin, W. Choi and D.W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol. 95, pp. 69-96 (1995).
    Hofstadler, K. and R. Bauer, “New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol,” Environ. Sci. Technol., Vol. 28, pp, 670-674 (1994).
    Hu, B., V. Stancovski, M. Morton and S.L. Suib, “Enhanced Electrocatalytic Reduction of CO2/H2O to Paraformaldehyde at Pt/metal Oxide Interfaces,” Appl. Catal., A, Vol. 382, pp. 277-283 (2010).
    Ichikawa, S. and R. Doi, “Hydrogen Production from Water and Conversion of Carbon Dioxide to Useful Chemicals by Room Temperature Photoelectrocatalysis,” Catal. Today, Vol. 27, pp. 271-277 (1996).
    Ichikawa, S., “Chemical Conversion of Carbon Dioxide by Catalytic Hydrogenation and Room Temperature Photoelectrocatalysis,” Energy Convers. Manage., Vol. 36, pp. 613–616 (1995).
    Ilisz, I., Z. Laszlo and A. Dombi, “Investigationof the Photochemical Decomposition of Phenol in near-UV Irradiated Aqueosu TiO2 Suspension. I: Effect on Charge Trapping Species on the Degradation Kinetics,” Appl. Catal. A: Gen., Vol. 180, pp. 25-33 (1999).
    Ito, H., T. Maeda, A. NaKano and H. Takenaka, “Properties of Nafion Membranes under PEM Water Electrolysis Conditions,” Int. J. Hydrogen Energy, Vol. 36, pp. 10527–10540 (2011).
    Itoh, N., W.C. Xu, S. Hara and K. Sakaki, “Electrochemical Coupling of Benzene Hydrogenation and Water Electrolysis,” Catal. Today, Vol. 56, pp. 307-314 (2000).
    Joo, H., H. Jeong, M. Jeon and I. Moon, “The Use of Plastic Optical Fibers in Photocatalysis of Trichloroethylene,” Sol. Energy Mater. Sol. Cells, Vol. 79, pp. 93–101(2003).
    Kesselman, J.M., G.A. Shreve, M.R. Hoffmann and N.S. Lewis, “Flux-matching Conditions at TiO2 Photoelectrodes: is Interfacial Electron Transfer to O2 Rate-limiting in the TiO2 Catalyzed Photochemical Degradation of Organics,” Chemosphere, Vol. 98, pp. 13385- 13395 (1994).
    Kim, S. B., H.T. Hwang and S.C. Hong, “Photocatalytic Degradation of Volatile Organic Compounds at the Gas-Solid Interface of a TiO2 Photocatalyst,” Chemosphere, Vol. 48 (4), pp. 437-444 (2002).
    Kim, S.B. and S.C. Hong, “Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air Using Thin Film TiO2 Photocatalyst,” Appl. Catal., B, Vol. 35, pp. 305-315 (2002).
    Ku, Y., C.M. Ma and Y.S. Shen, “Decomposition of Gaseous Trichloroethylene in a Photoreactor with TiO2-coated Nonwoven Fiber Textile,” Appl. Catal., B, Vol. 34, pp. 181-190 (2001).
    Ku, Y., K.Y. Tseng and W.Y. Wang, “Decomposition of Gaseous Acetone in an Annular Photoreactor Coated with TiO2 Thin Film,” Water Air Soil Pollut., Vol. 168, pp. 313-323 (2005).
    Ku, Y., Y.C. Lee and W.Y. Wang, “Photocatalytic Decomposition of 2-Chlorophenol in Aqueous Solution by UV/TiO2 process with Applied External Bias Voltage,” J. Hazard. Mater., Vol. 138, pp. 350-356 (2006).
    Kuo, Y.L., H.W. Chen and Y. Ku, “Analysis of Silver Particles Incorporated on TiO2 Coatings for the Photodecomposition of o-Cresol,” Thin Solid Films, Vol. 515, pp.3461-3468 (2007).
    Ku, Y., Z.R. Fan, Y.C. Chou and W.Y. Wang, “Characterization and Induced Photocurrent of TiO2 Nanotube Arrays Fabricated by Anodization,” J. Electrochem. Soc., Vol. 157, No. 6, pp. H671- H675 (2010a).
    Ku, Y., C.C. Chiu and Y.C. Chou, “Decomposition of Aniline in Aqueous Solution by UV/TiO2 Process with Applying Bias Potential,” J. Hazard. Mater., Vol. 183, pp. 16-21 (2010b).
    Ku, Y., Z.R. Fan, Y.C. Chou and W.Y. Wang, “Effects of TiO2 Nanotube Array Dimension and Annealing Temperature on the Acid Red 4 Degradation in Aqueous Solution by Photocatalytic Process,” Water Sci. Technol., Vol. 61, No. 11, pp. 2943-2949 (2010c).
    Ku, Y., C.N. Lin and W.M. Hou, “Characterization of Coupled NiO/TiO2 Photocatalyst for the Photocatalytic Reduction of Cr(VI) in Aqueous Solution,” J. Mol. Catal. A: Chem., Vol. 349, pp. 20-27 (2011a).
    Ku, Y., Y.H. Huang and Y.C. Chou, “Preparation and Characterization of ZnO/TiO2 for the Photocatalytic Reduction of Cr(VI) in Aqueous Solution,” J. Mol. Catal. A: Chem., Vol. 349, pp. 20-27 (2011b).
    Kumazawa, H., M. Inoue and T. Kasuya, “Photocatalytic Degradation of Volatile and Nonvolatile Organic Compounds on Titanium Dioxide Particles Using Fluidized Beds,” Ind. Eng. Chem. Res., Vol. 42, pp. 3237-3244 (2003).
    Kuo, Y.L., H.W. Chen and Y. Ku, “Analysis of Silver Particles incorporated on TiO2 Coatings for the Photodecomposition of o-Cresol,” Thin Solid Films, Vol. 515, pp. 3461-3468 (2007).
    Lee, H.I., C.H. Lee, T.Y. Oh, S.G. Choi, I.W. Park and K.K. Baek, “Development of 1 kW Class Polymer Electrolyte Membrane Fuel Cell Power Generation System,” J. Power Sources, Vol. 107, pp. 110-119 (2002).
    Li, J., L. Zheng, L. Li, Y. Xian and L. Jin, “Fabrication of TiO2/Ti Electrode by Laser-assisted Anodic Oxidation and Its Application on Photoelectrocatalytic Degradation of Methylene Blue,” J. Hazard. Mater., Vol. B139, pp. 72-78 (2007).
    Lin, H., and Valsaraj, K.T., “Development of an Optical Fiber Monolith Reactor for Photocatalytic Wastewater Treatment,” J. Appl. Electrochem., Vol. 35, pp. 699-708 (2005).
    Lin, H., and Valsaraj, K.T., “An Optical Fiber Monolith Reactor for Photocatalytic Wastewater Treatment,” AIChE J., Vol. 52, pp. 2271-2280 (2006).
    Liu, R. and P.S. Fedkiw, “Partial oxidation of methanol on a metallized Nafion polymer electrolyte membrane,” J. Electrochem. Soc., Vol. 139, pp. 3514-3523 (1992).
    Liu, Y., C. Xie, H. Li, H. Chen, Y. Liao and D. Zeng, “Low Bias Photoelectrocatalytic (PEC) Performance for Organic Vapour Degradation Using TiO2/WO3 Nanocomposite,” Appl. Catal., B, Vol. 102, pp. 157-162 (2011a).
    Liu, Y., C. Xie, H. Li, H. Chen, T. Zou and D. Zeng, “Improvement of Gaseous Pollutant Photocatalysis with WO3/TiO2 Heterojunctional–Electrical Layered System,” J. Hazard. Mater., Vol. 196, pp. 52-58 (2011b).
    Ma, C.M., W. Wang, Y. Ku and F.T. Jeng, “Photocatalytic Degradation of Benzene in Air Streams in an Optical Fiber Photoreactor,” Chem. Eng. Technol., Vol. 30, pp. 1083-1087 (2007).
    Ma, C.M., Y. Ku, Y.L. Kuo, Y.C. Chou and F.T. Jeng, “Effects of Silver on the Photocatalytic Degradation of Gaseous Isopropanol,” Water, Air, Soil Pollut., Vol. 197, pp.313-321 (2009).
    Macedo, L.C., D.A.M. Zaia, G.J. Moore and H. de Santana, “Degradation of Leather Dye on TiO2: a Study of Applied Experimental Parameters on Photoelectrocatalysis,” J. Photochem. Photobiol., A, Vol. 185, pp. 86-93 (2007).
    Marinangeli, R.E., and Ollis, D.F., “Photoassisted Heterogeneous Catalysis with Optical Fibers: I. Isolated Single Fiber,” AIChE J., Vol. 23, pp. 415-426 (1977).
    Marinangeli, R.E., and Ollis, D.F., “Photoassisted Heterogeneous Catalysis with Optical Fibers: II. Non-isothermal Single Fiber and Fiber Bundle,” AIChE J., Vol. 26, pp. 1000-1008 (1980).
    Marinangeli, R.E., and Ollis, D.F., “Photoassisted Heterogeneous Catalysis with Optical Fibers: III. Photoelectrodes,” AIChE J., Vol. 28, pp. 945-955 (1982).
    Martin, C.A., M.A. Baltanas and A.E. Cassano, “Photocatalytic Reactors II. Quantum Efficiencies Allowing for Scattering Effects. An Experimental Approximation,” J. Photochem. Photobiol., A, Vol. 94, pp. 173-189 (1996).
    McCullagh, C., N. Skillen, M. Adams and P.L.J. Robertson, “Photocatalytic Reactors for Environmental Remediation: A Review,” J. Chem. Technol. Biotechnol., Vol 86, pp. 1002-1017 (2011).
    Muruganandham, M. and M. Swaminathan, “Solar Photocatalytic Degradation of a Reactive Azo Dye in TiO2-suspension,” Sol. Energy Mater. Sol. Cells., Vol. 81, pp. 439-457 (2004).
    Nowotny, M.K., L.R. Sheppard, T. Bak and J. Nowotny, “Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts,” J. Phys. Chem. C, Vol. 112, pp. 5275-5230 (2008).
    Obee, T.N. and R.T. Brown, “Photolysis of Aromatic Chemical Compounds in Aqueous TiO2 Suspensions,” Water Sci. Technol., Vol. 30, pp. 39-46 (1994).
    Okamoto, K., Y. Yamamoto, H. Tanaka and A. Itaya, “Kinetics of Heterogeneous Photocatalytic Decomposition of Phenol over Anatase TiO2 Powder,” Bull. Chem. Soc. Jpn., Vol. 58, pp. 2023-2027 (1985).
    Otsuka, K. and I. Yamanaka, “One Step Synthesis of Hydrogen Peroxide through Fuel Cell Reaction,” Electrochim. Acta, Vol. 35, pp. 319–322 (1990).
    Pichat, P., “Some Views About Indoor Air Photocatalytic Treatment Using TiO2: Conceptualization of Humidity Effects, Active Oxygen Species, Problem of C1-C3 Carbonyl Pollutants,” Appl. Catal., B, Vol. 99, pp. 428-434 (2010).
    Rideh, L., A. Wehrer, D. Ronze and A. Zoulalian, “Photocatalytic Degradation of 2-Chlorophenol in TiO2 Aqueous Suspension: Modeling of Reaction Rate,” Ind. Eng. Chem. Res., Vol. 36, pp. 4712-4718 (1997).
    Ren, M. and K.T. Valsaraj, “Photocatalytic Oxidation of Gaseous 1,2-dichlorobenzene Using Photonic Titania (Inverse Opal) on Optical Fibers in A Monolith Configuration,” Sep. Purif. Technol., Vol. 62, pp. 523-528 (2008).
    Rosseler, O., A. Louvet, V. Keller and N. Keller, “Enhanced CO Photocatalytic Oxidation in the Presence of Humidity by Tuning Composition of Pd-Pt Bimetallic Nanoparticles Supported on TiO2,” Chem. Commun., Vol. 47, pp. 5331-5333 (2011).
    Roy, P., S. Berger and P. Schmuki, “TiO2 Nanotubes: Synthesis and Applications,” Angew. Chem. Int. Ed., Vol. 50, pp. 2904-2939 (2011).
    Sawada, S., T. Yamaki, T. Maeno, M. Asano, A. Suzuki, T. Terai and Y. Maekawa, “Solid Polymer Electrolyte Water Electrolysis Systems for Hydrogen Production Based on Our Newly Developed Membranes, Part I: Analysis of Voltage-Current Characteristics,” Prog. Nucl. Energy, Vol. 50, pp. 443-448 (2008).
    Sczechowski, J.G., C.A. Koval and R.D. Noble, “Evidence of Critical Illumination and Dark Recovery Times for Increasing the Photoefficiency of Aqueous Heterogeneous Photocatalysis,” J. Photochem. Photobiol., A, Vol. 74, pp. 273-278 (1993).
    Seger, B. and P.V. Kamat, “Fuel Cell Geared in Reverse: Photocatalytic Hydrogen Production Using a TiO2/Nafion/Pt Membrane Assembly with No Applied Bias,” J. Phys. Chem. C, Vol. 113, pp 18946-18952 (2009).
    Shang, J., S. Xie, T. Zhu and J. Li, “Solid-State, Planar Photoelectrocatalytic Devices Using a Nanosized TiO2 Layer,” Environ. Sci. Technol., Vol 41, pp. 7876-7880 (2007).
    Shang, J., Y. Zhang, T. Zhu, Q. Wang and H. Song, “The Promoted Photoelectrocatalytic Degradation of Rhodamine B over TiO2 Thin Film under the Half-wave Pulsed Direct Current,” Appl. Catal., B, Vol. 102, pp. 464-469 (2011).
    Stewart, G. and M.A. Fox, “The Effect of Dark Recovery Time on the Photoefficiency of Heterogeneous Photocatalysis by TiO2 Suspended in Nonaqueous Media,” Res. Chem. Intermed., Vol. 21, pp. 933-938 (1995).
    Sun, C.C. and T.C. Chou, “Electrochemically Promoted Photocatalytic Oxidation of Nitrite Ion by Using Rutile Form of TiO2/Ti Electrode,” J. Mol. Catal. A: Chem., Vol. 151, pp. 133-145 (2000).
    Sun, L. and J.R. Bolton, “Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2 Suspensions,” J. Phys. Chem., Vol. 100, pp. 4127-4134 (1996).
    Sun, R.D., Nakajima, A., Watanabe, I., Watanabe, T., and Hashimoto, K., “TiO2-Coated Optical Fiber Bundles Used as a Photocatalytic Filter for Decomposition of Gaseous Organic Compounds. J. Photochem. Photobiol. A: Chem., Vol. 136, pp. 111-116 (2000).
    Sauer, T., G.C. Neto, H.J. Jose, and R.F.P.M. Moreira, “Kinetics of Photocatalytic Degradation of Reactive Dyes in a TiO2 Slurry Reactor,” J. Photochem. Photobio. A., Vol. 149, pp. 147-154 (2002).
    Tong, H., S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, “Nano-photocatalytic Materials: Possibilities and Challenges,” Adv. Mater., Vol. 24, pp. 229-251 (2012).
    Vinodgopal, K., S. Hotchandani and P.V. Kamat, “Electrochemically Assisted Photocatalysis 1: TiO2 Particulate Film Electrodes for Photocatalytic Degradation of 4-Chlorophenol,” J. Phy. Chem., Vol. 97, pp. 9040-9044 (1993).
    Wang, C.C., C.K. Lee, M.D. Lyu and L.C. Juang, “Photocatalytic Degradation of C.I. Basic Violet 10 using TiO2 Catalysts Supported by Y zeolite: an Investigation of the Effects of Operational Parameters,” Dyes Pigm., Vol. 76, pp. 817-824 (2008).
    Wang, C.Y., R. Pagel, D.W. Bahnemann and J.K. Dohrmann, “Quantum Yield of Formaldehyde Formation in the Presence of Colloidal TiO2-Based Photocatalysts: Effect of Intermittent Illumination, Platinization, and Deoxygenation,” J. Phys. Chem. B, Vol. 108, pp. 14082-14092 (2004).
    Wang, W., L.W. Chiang and Y. Ku, “Decomposition of Benzene in Air Streams by UV/TiO2 Process,” J. Hazard. Mater., Vol. 101, pp. 133-146 (2003).
    Wang, W. and Y. Ku, “The Light Transmission and Distribution in An Optical Fiber Coated with TiO2 Particles,” Chemosphere, Vol. 50, pp. 999–1006 (2003a).
    Wang, W. and Y. Ku, “Photocatalytic Degradation of Gaseous Benzene in Air Streams by Using An Optical Fiber Photoreactor,” J. Photochem. Photobiol., A, Vol. 159, pp. 47-59 (2003b).
    Wang, W., Y. Ku, C.M. Ma and F.T. Jeng, “Modeling of the Photocatalytic Decomposition of Gaseous Benzene in A TiO2 Coated Optical Fiber Photoreactor,” J. Appl. Electrochem., Vol. 35, pp. 709-714 (2005).
    Weng, F.B., B.S. Jou, A. Su, S.H. Chan and P.H. Chi, “Design, Fabrication and Performance Analysis of a 200W PEM Fuel Cell Short Stack.” J. Power Sources, Vol. 171, pp. 179-185 (2007).
    Xin, Y., H. Liu, L. Han and Y. Zhou, “Comparative study of Photocatalytic and Photoelectrocatalytic Properties of Alachlor Using Different Morphology TiO2/Ti Photoelectrodes,” J. Hazard. Mater., Vol. 192, pp. 1812-1818 (2011).
    Xu, H., H.R. Kunz and J.M. Fenton, “Analysis of Proton Exchange Membrane Fuel Cell Polarization Losses at Elevated Temperature 120 ◦C and Reduced Relative Humidity,” Electrochim. Acta, Vol. 52, pp. 3525-3533 (2007).
    Zhang, J., Y. Tang, C. Song, Z. Xia, H. Li, H. Wang and J. Zhang, “PEM Fuel Cell Relative Humidity (RH) and Its Effect on Performance at High Temperatures,” Electrochim. Acta, Vol. 53, pp. 5315-5321 (2008).
    Zhang, T., T. Oyama, A. Aoshima, H. Hidaka, J. Zhao and N. Serpone, “Photooxidative N-demethylation of Methylene Blue in Aqueous TiO2 Dispersions under UV Irradiation,” J. Photochem. Photobio. A: Chem., Vol. 140, pp. 163-172 (2001).
    Zhao, J. and X. Yang, “Photocatalytic Oxidation for Indoor Air Purification: A Literature Review,” Build. Environ., Vol. 38, pp. 645-654 (2003).

    無法下載圖示 全文公開日期 2018/01/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE