簡易檢索 / 詳目顯示

研究生: 王祥
Hsiang Wang
論文名稱: 線型架構之摻鉺光纖光源研發與應用
Study and Application of Linear Structures Erbium-Doped Fiber Light Sources
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 呂海涵
Hai-Han Lu
李明昌
Ming-Chang Lee
吳文方
Wen-Fang Wu
單秋成
Chow-Shing Shin
陳南光
Nan-Kuang Chen
黃振發
Jen-Fa Huang
徐世祥
Shih-Hsiang Hsu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 157
中文關鍵詞: 摻鉺光纖布拉格光纖光柵單縱模光纖雷射子環形共振腔吸收體超螢光光纖光源平均波長光退火效應光纖陀螺儀
外文關鍵詞: Erbium-doped fiber, Fiber Bragg grating, Single-longitudinal-mode fiber laser, Subring cavity, Absorber, Superfluorescent fiber source, Mean wavelength, Photo-annealing effect, Fiber optic gyroscope
相關次數: 點閱:187下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要基於線型架構基礎下,藉由摻鉺光纖結合光纖光柵等元件所產生光纖雷射與自發性放大等特性,研發出單縱模光纖雷射與摻鉺超螢光光源等應用。在內容部份可分為兩大部分來討論。
      第一部份為研製單縱模光纖雷射,以摻鉺光纖雷射為基礎,經由初步架構設計與測量,得到以3米摻鉺光纖架構於線性型後向泵激式光纖雷射,可以得到最佳的雷射輸出現象,接下來我們將提出兩種方式來將光纖雷射以單縱模形式輸出。第三章中,我們運用一種特殊的元件,稱做子環形共振腔,藉由這些長度不一的子環型共振腔加入光纖雷射主體中,會因為各共振腔長度的不同使雷射頻譜範圍改變,在相互影響下,達到抑制雷射旁模的現象,產生單縱模光纖雷射,雷射線寬小於1 MHz。
      在第四章中,我們利用摻鉺光纖中鉺離子吸收與放射特性,藉由光纖光路設計,將一段未經泵激光源的摻鉺光纖置入光路當中,稱做摻鉺光纖吸收體,使光波在摻鉺光纖吸收體中產生干涉現象,形成空間燒孔效應,達到旁模抑制的效果,雖然在研究中我們成功運用7 m的吸收體能夠將雷射旁模完全消除,但是光纖雷射功率將同時被影響,在本章末將結合前述子環形共振腔與摻鉺光纖吸收體兩者的優勢,生成混合式線型架構單縱模光纖雷射,達到雷射線寬將小於1 MHz,近乎單一縱模的光纖雷射裝置。
      第二部份主軸在於設計超螢光光源裝置,同樣的基於線型架構與摻鉺光纖的特性,並且能夠適應太空環境中高溫差與輻射現象,應用於光纖陀螺儀當中。第五章從環境溫度之平均波長穩定性參數為基礎,分析各元件受溫度的影響性,其中泵激光源、摻鉺光纖與光纖光柵影響甚鉅,所以一開始我們將個別探討其影響。首先泵激光源我們將使用有別於一般的無溫控泵激雷射,實驗測試將比一般溫控型泵激雷射的平均波長穩定性高出四倍,第二在摻鉺光纖的測試中,經實驗與測量找出一種具有較佳輸出特性的做為架構中的增益媒介,而光纖光柵在本架構中為核心元件,為了能夠運用於光纖陀螺儀中,我們採用一頻寬大於15 nm以上的寬頻譜光纖光柵做為光源範圍選取元件,此外光纖光柵也是超螢光光纖光源架構中溫度補償主要元件,將寬頻譜光纖光柵黏貼於碳纖維複合材料上,利用兩者材料特性正負溫度係數,使平均波長穩定性能夠降低。接著探討其線型架構的影響,其架構分為雙通前向與雙通後向泵激光源型式,就實驗結果雙通後向泵激光源具有較佳的輸出特性與平均波長穩定性較低的優勢,在本章各參數與架構設計下,得到一運用於高溫差環境中的摻鉺超螢光光纖光源,其-26度至65度間,平均波長穩定性可達2.19 ppm/oC。
      第六章近一步優化前述研製之摻鉺超螢光光纖光源,並且除了具有低的溫度係數外,還具有抗輻射的能力。改善方式將運用前述研究的摻鉺光纖吸收體,降地光源頻段外的波長影響,最顯著的在於大幅降低1530 nm波段的影響性,達環境溫度-10至65度C,平均波長穩定性0.67 ppm/oC,長時間平均波長穩定性1.3 ppm/oC,輸出功率最高可達9.52 dB,3 dB頻寬為16.44 nm。輻射穩定性方面,即時輻射穩定性量測,將5 m的HG980B1摻鉺光纖照射總劑量30 krad的60Co輻射,並在光源架構中以寬頻光纖光柵作為被動光退火進行即時輻射損耗修復。在6 小時、30 krad照射下,輸出功率變動小於0.22 dB,平均波長變化量為110 ppm,3 dB頻寬變動為0.7 %。


    This dissertation is mainly based on the linear structure, we research and develop the applications like single-longitudinal-mode (SLM) fiber laser and Erbium-doped superfluorescent fiber source (SFS). These are made by combining Erbium-doped fiber (EDF) with fiber Bragg grating (FBG) and other components to produce fiber laser, spontaneous amplification, and other characteristics. The contents can be divided into two parts as follows.
    The first part is to introduce the theorem of Erbium-doped fiber laser (EDFL) and FBG with characteristics and measurements of the former fiber laser. We conclude that the backward pump EDFL in the threshold power and lasing output power has better characteristics than those of the forward pump EDFL. The following shows the experimental study in the SLM fiber laser which includes three methods. The first one is the SLM fiber laser adding three sub-ring cavities in the main cavity. The lengths of the three sub-ring cavities are 2 m, 2.2 m, 3.5 m, and the different free spectral range are about 100 MHz, 92 MHz, and 57 MHz, respectively. The mutual influence of the three sub-ring cavities makes the laser free spectral range exceed the laser gain range in the SLM fiber laser. The second one is the absorber type of the SLM fiber laser adding the un-pumped EDF in the main cavity. Owing to the characteristics of absorption and emission, there are interference and spatial hole burning effect occurring in the EDF absorber; thus, the effect of mode suppression arises. The third one includes the advantages of the former two methods, which is the hybrid type SLM fiber laser using the 2 m EDF absorber and the 2 m sub-ring cavity. Due to the characteristics of laser mode suppression, we can achieve the effect of the SLM fiber laser. Moreover, through the investigation of SLM fiber lasers, we can get the result of laser linewidth below 1 MHz, which is a narrow linewidth obtained from the linear cavity fiber laser.
    The second part shows the characteristics of super-fluorescent fiber source (SFS), the recovery of photo-annealing effect and the application of fiber optic gyroscope (FOG) to discuss. Based on a broadband fiber Bragg grating (BFBG), the main scheme here is a double-pass backward SFS (DPB-SFS) which is temperature-compensated by carbon fiber composites (CFC). First, several kinds of EDF in different lengths were used in the DPB-SFS. The properties of DPB-SFS using EDFs were studied in the measurement of their output power, mean-wavelength, and 3 dB bandwidth. The best output power, mean-wavelength, and 3 dB bandwidth were 10.65 dBm, 1549.3 nm, and 16.92 nm, respectively by using 5 m EDF (HG980 B1). The result in a high temperature makes difference in the environment of Erbium-doped SFS. The temperature range was from -26oC to 65oC; while the mean wavelength stability was as small as 2.19 ppm/oC.
    After that, we discuss the thermal and real-time radiation stabilities of DPB-SFS by using 5 m EDF (HG980 B1) while the temperature ranges from 0oC to 70oC. The variation we measured of the output power, mean-wavelength, and 3 dB bandwidth were 0.12 dB, 2 ppm/oC and 2.2 %, respectively. To verify the real-time radiation stability, we set a 5 m HG980B1 EDF in the radiation chamber for 6-hour with 60Co gamma-radiation on exposure to a total dose of 30 krad. We also use a broadband fiber Bragg grating in the DPB-SFS for in-time recovery of radiation-induced loss. The variation we measured of the output power, mean-wavelength and 3 dB bandwidth were 0.22 dB, 110 ppm and 0.7 %, respectively.

    Chinese Abstract I Englist Abstract III Acknowledgement V Contents VII Abbreviation XI List of Figures XIII List of Tables XIX Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motivation 3 1.3 Organization of the dissertation 4 Chapter 2 Fiber Source Overviews 7 2.1 Introduction 7 2.2 Erbium doped fiber 7 2.3 Fiber Bragg Grating Fabrication 9 2.4 Tunable Fiber Bragg Grating 14 2.5 Linear Cavity Structures 17 2.5.1 Single-pass forward-pumped 17 2.5.2 Single-pass backward-pumped 18 2.5.3 Double-pass forward-pumped 19 2.5.4 Double-pass backward-pumped 19 2.6 Summary 20 Chapter 3 SLM Linear Cavity Fiber Laser Using Subing Cavity 21 3.1 Introduction 21 3.2 Theory 22 3.2.1 Erbium doped fiber laser 22 3.2.2 Free spectral range 24 3.2.3 Single-longitudinal-mode fiber laser 25 3.3 Types of pumping schemes 27 3.4 Types of cavities 30 3.4.1 Broadband fiber mirror 30 3.4.2 Optical Circulator 31 3.4.3 Fiber loop mirror 32 3.4.4 Comparison 34 3.5 Single-longitudinal-mode operation 36 3.5.1 Laser mode range 36 3.5.2 Subring cavity 37 3.5.3 Self-homodyne measurement 38 3.6 Linear cavity fiber laser 42 3.6.1 Experimental Setup 42 3.6.2 Results and discussion 42 3.7 Single-longitudinal-mode linear cavity fiber laser using subring cavity 46 3.7.1 Experimental Setup 46 3.7.2 Results and discussion 48 3.7.3 Tunable fiber laser 49 3.8 Summary 51 Chapter 4 Hybrid Single-longitudinal-mode Fiber Laser 52 4.1 Saturable absorber Theory 52 4.1.1 Absorption based two-level Erbium ion rate equation 52 4.1.2 Spatial hole burningphenomenon in EDF absorber 54 4.2 Faraday rotate mirror 56 4.3 Single longitudinal mode fiber laser using absorber 59 4.3.1 Experimental Setup 59 4.3.2 Results and discussion 62 4.3.3 Tunable fiber laser 64 4.4 Hybrid single longitudinal mode fiber laser 66 4.4.1 Experimental Setup 66 4.4.2 Results and discussion 67 4.4.3 Tunable fiber laser 70 4.5 Summary 73 Chapter 5 Design of Uncooled Superfluorescent Fiber Source 74 5.1 Introduction 74 5.2 Mean wavelength 75 5.3 Parameter design for Superfluorescent Fiber Sources 76 5.3.1 Uncooled pump laser diode 76 5.3.2 Erbium doped fiber 78 5.3.3 Fiber Bragg Grating 80 5.4 Temperature compensation 81 5.4.1 Carbon fiber Orientation 84 5.4.2 Glue selection 86 5.4.3 Results and discussion 87 5.5 Component temperature impact 91 5.5.1 Pump laser diode 91 5.5.2 Erbium doped fiber 92 5.5.3 Pump Fiber Bragg Grating 97 5.6 Uncooled superfluorescent fiber source 101 5.6.1 Experimental Setup 101 5.6.2 Results and discussion 103 5.7 Summary 105 Chapter 6 Anti-radiation SFS with Low Thermal Coefficient 106 6.1 Introduction 106 6.2 Uncooled superfluorescent fiber source using absorber 107 6.2.1 1530 nm impact to explore 107 6.2.2 Experimental Setup 107 6.2.3 Results and discussion 110 6.3 Uncooled superfluorescent light source optimization 112 6.3.1 Experimental Setup 112 6.3.2 Results and discussion 115 6.4 Temperature Environmental Stability 118 6.4.1 Experimental Setup 118 6.4.2 Unused Absorbent SFS Stability Measurement 119 6.4.3 Results and discussion 122 6.5 Radiation Environmental Stability 127 6.5.1 Experimental Setup 127 6.5.2 Results and discussion 130 6.6 Summary 134 Chapter 7 Conclusion 136 7.1 Achievements and works summary 136 7.2 Future research andSuggestions 138 Reference 142 Publication List 153

    [1] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of IEEE, vol. 133, no. 3, pp. 1551-1558, 1966.
    [2] 廖顯奎譯,“光纖通訊,”高立圖書有限公司,2005。
    [3] M. A. Haidekker, W. J. Akers, D. Fischer and E. A. Theodorakis, “Optical fiber-based fluorescent viscosity sensor,” Optics Letters, vol. 31, no. 17, pp. 2529-2531, 2006.
    [4] C. C. Lee, Y. K. Chen and S. K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Optics Letters, vol. 23, no. 5, pp. 358-360, 1998.
    [5] 許凱翔,“C頻帶波長可調線性型單縱模光纖雷射的研製,”國立臺灣科技大學碩士論文,2011。
    [6] Y. Wang, M. Han and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of inteferometric fiber-optic sensors,” Optics Letters, vol. 31, no. 16, pp. 2408-2410, 2006.
    [7] C. H. Yeh, M. C. Lin and S. Chi, “Stabilized and wavelength-tunable S-band erbium-doped fiber ring laser with single-longitudinal-mode operation,” Optics Express, vol. 13, no. 18, pp. 6828-6832, 2005.
    [8] J. Sun, X. Yuan, X. Zhang and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry–Perot filters and variable saturable absorbers,” Optics Communications, vol. 267, no. 1, pp. 177-181, 2006.
    [9] S. Pan, X. Zhao and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Optics Letters, vol. 33, no. 8, pp. 764-766, 2008.
    [10] J. Liu, J. Yao, J. Yao and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 1020-1022, 2004.
    [11] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol.3, no. 4, pp. 991-1007, 1997.
    [12] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” IEEE/OSA Journal of Lightwave Technology, vol. 9, no. 2, pp. 271-283, 1991.
    [13] G. Keiser, “Optical fiber communications,” New York, USA : Mcgraw-Hill, 2010.
    [14] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol. 62, no. 10, pp. 1035-1037, 1993.
    [15] R. Hui and M. O’Sullivan, “Fiber optic measurement techniques,” London, UK : Elsevier/Academic Press, 2009.
    [16] Y. Zhao, C. Yu and Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Optics and Laser Technology, vol. 36, no. 1, pp. 39-42, 2004.
    [17] H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang and Su. W. Harun, “Temperature sensing using frequency beating technique from single-longitudinal mode fiber laser,” IEEE Sensors Journal, vol. 12 , no. 7, pp. 2496-2500, 2012.
    [18] L. H. Liu, H. Zhang, Q. D. Zhao, Y. Liu and F. Li, “Temperature-independent FBG pressure sensor with high sensitivity,” Optical Fiber Technology, vol.13, no. 1, pp. 78-80, 2007.
    [19] R. Kashyap, “Fiber Bragg Gratings,” San Diego, USA:Academic Press, 1999.
    [20] 王祥,“線性型單縱模光纖雷射的研製,”國立臺灣科技大學碩士論文,2010。
    [21] S. Yamashita, K. Hotate and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a faraday rotator mirror,” IEEE/OSA Journal of Lightwave Technology, vol. 14, no. 3, pp. 385-390, 1996.
    [22] Y. Takushima, S. Yamashita, K. Kikuchi and K. Hotate, “Polarization-stable and single-frequency fiber lasers,” IEEE/OSA Journal of Lightwave Technology, vol. 16, no. 5, pp. 661-669, 1998.
    [23] J. C. Libatique, L. Wang and R. K. Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Optics Express, vol. 10, no. 2, pp. 1503-1507, 2002.
    [24] R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper and D. C. Hanna, ”Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning,” Optics Letters, vol. 22, no. 3, pp. 40-42, 1997.
    [25] S. Yang, K. K. Y. Cheung, Y. Zhou and K. K. Y. Wong, “Tunable single-longitudinal-mode fiber optical parametric oscillator,” Optics Letters, vol. 35, no. 4, pp. 481-483, 2010.
    [26] K. K. Y. Cheung, S. Yang, Y. Zhou and K. K. Y. Wong, “Frequency swept fiber ring laser based on optical parametric process with single-longitudinal-mode Operation,” IEEE Photonics Technology Letters, vol.23, no. 8, pp. 203-205, 2011.
    [27] S. O. Kasap, “Optoelectronics and photonics,” New Jersey, USA: Prentice Hall, 2001.
    [28] Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber,” IEEE/OSA Journal of Lightwave Technology, vol. 24, no. 2, pp. 2179-2183, 2006.
    [29] N. Kishi and T. Yazaki, “Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning,” IEEE Photonics Technology Letters, vol. 11, no. 2, pp. 182-184, 1999.
    [30] Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming and D. N. Payne, “ Stable single-frequency traveling-wave fiber loop laser with integral sturable-absorber-based tracking narrow-band filter,” Optics Letters, vol. 20, no. 6, pp. 875-877, 1995.
    [31] F. Lie´geois, Y. Hernandez, G. Peigne´, F. Roy and D. Hamoir, “High-efficiency, single-longitudinal-mode ring fibre laser,” Electronics Letters, vol. 41, no. 3, pp. 729-730, 2005.
    [32] Z. G. Lu and C. P. Grover, “A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser,” IEEE Photonics Technology Letters, vol. 17, no. 3, pp. 22-24, 2005.
    [33] D. Derickson, “Fiber optic test and measurement,” New Jersey, USA: Prentice Hall, 1998.
    [34] S. K. Liaw, W. Y. Jang, C. J. Wang and K. L. Hung, “Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings,” Applied Optics, vol. 46, no. 11, pp. 2280-2282, 2007.
    [35] W. Liu, M. Jiang, D. Chen and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” IEEE/OSA Journal of Lightwave Technology, vol. 27, no. 5, pp. 4455-4459, 2009.
    [36] O. Deparis, R. Kiyan, S. A. Vasiliev, O. I. Medvedkov, E. M. Dianov, O. Pottiez, P. Mégret and M. Blondel, “Polarization-maintaining fiber Bragg gratings for wavelength selection in actively mode-locked Er-doped fiber lasers,” IEEE Photonics Technology Letters, vol. 13, no. 7, pp. 284-286, 2001.
    [37] J. R. Qian, J. Su and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Optics Communications, vol. 281, no. 2, pp. 4432-4434, 2008.
    [38] S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intra-cavity etalon and cooled by liquid nitrogen,” Electronics Letters, vol. 32, no. 3, pp. 1298-1299, 1996.
    [39] T. Zhu, X. Bao, and L. Chen, “A Single Longitudinal-Mode Tunable Fiber Ring Laser Based on Stimulated Rayleigh Scattering in a Nonuniform Optical Fiber,” Journal of Lightwave Technology, vol. 29, no. 12, pp. 1802-1807, 2011.
    [40] C. Wu, F. Chen, Y. Ju, and Y. Wang, “High-power single-longitudinal-mode operation of Tm:YAG laser using Fabry-Perot etalons and volume Bragg grating,” Optics Communications, vol. 285, pp. 2693-2696, 2012.
    [41] S. K. Liaw, and G. S. Jhong, “Tunable Fiber Laser Using a Broad-Band Fiber Mirror and a Tunable FBG as Laser-Cavity Ends,” IEEE Journal of Quantum Electronics, vol. 44, no. 6, pp. 520-527, 2008.
    [42] M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville, “Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature,” Optics Express, vol. 20, no. 21, pp. 23367-23373, 2012.
    [43] K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Optics Express, vol. 20, no. 13, pp. 13958-13965, 2012.
    [44] N. Kishi, and T. Yazaki, “Frequency Control of a Single-Frequency Fiber Laser by Cooperatively Induced Spatial-Hole Burning,” IEEE Photonics Technology Letter, vol. 11, no. 2, pp. 182-184, 1999.
    [45] Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Optics Letters, vol. 20, no. 8, pp. 875-877, 1995.
    [46] P. Xu, Z. Hua, M. Ma, N. Jiang, and Y. Hu, “Mapping the optical frequency stability of the single-longitudinal-mode erbium-doped fiber ring lasers with saturable absorber,” Optics and Laser Technology, vol. 49, no.13, pp. 337-342, 2013.
    [47] X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Optics Express, vol. 17, no. 24, pp. 21773-21781, 2009.
    [48] S. K. Liaw, S. Wang, C. S. Shin, N. K. Chen, K. C. Hsu, A. Manshina, Y. Tver’yanovich, C. F. Su, and L. K. Wang, “Single-longitudinal-mode Linear-cavity Fiber Laser Using Multiple Subring Cavities,” Laser Physics, vol. 20, no. 7, pp. 1608-1611, 2010.
    [49] S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Optics and Laser Technology, vol. 47, no. 2, pp. 102-106, 2013.
    [50] S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely Tunable Single Longitudinal Mode Fiber Laser With Cascaded Fiber-Ring Secondary Cavity,” IEEE Photonics Technology Letters, vol. 25, no. 4, pp. 323-326, 2013.
    [51] F. D. Muhammad, M. Z. Zulkifli, A. A. Latif, S. W. Harun, and H. Ahmad, “Graphene-based saturable absorber for single-longitudinal-mode operation of highly doped erbium-doped fiber laser,” IEEE Photonics Journal, vol. 4, no. 2, pp. 467-475, 2012.
    [52] M. Ma, Z. Hu, P. Xu, W. Wang, and Y. Hu, “Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer,” Applied optics, vol. 51, no. 30, pp. 7420-7425, 2012.
    [53] W. J. Hesse, N. V. S. Mumford Jr., “Jet propulsion for application,” 大學圖書出版社, 1982.
    [54] E. H. J. Pallett, and V. Brown, “Aircraft instruments principles and applications,” 滄海書局, 1972.
    [55] 范錦程,“具寬頻帶波長可調光纖光柵之 C+L band 光纖雷射之研製”,國立臺灣科技大學碩士論文,2014。
    [56] 鄧正隆著,“慣性技術,”崧博出版,2012。
    [57] P. Z. Zatta, and D. C. Hall, “Ultra-high-stability two-stage superfluorescent fiber sources for fiber optic gyroscopes,” Electronics Letters, vol. 38, no.9, pp. 406-408, 2002.
    [58] H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilisation,”Electronics Letters, vol. 33, no. 24, pp. 2061-2063, 1997.
    [59] T. P. Gaiffe, P. Simonpietri, J. Morisse, N. Cerre, E. M. Taufflieb, and H. C. Lefevre, “Wavelength stabilization of an Erbium-doped fiber source with a fiber Bragg grating for high-accuracy FOG,” SPIE Fiber Optic Gyros: 20th Anniversary Conference, pp. 375-380, 1996.
    [60] W. Huang, X. Wang, B. Zheng, H. Xu, C. Ye, and Z. Cai, “Stable and wideband L-band Erbium superfluorescent fiber source using improved bi-directional pumping configuration,”Optics Express, vol. 15, no. 15, pp. 9778-9783, 2007.
    [61] K. A. Fesler, M. J. F. Digoneet, B. Y. Kim, and H. J. Shaw, “Stable fiber-source gyroscope,” Optics Letters, vol. 15, no. 22, pp. 1321-1323, 1990.
    [62] P. R. Morkel, E. M. Taylor, J. E. Townsend, and D. H. Payne, “Wavelength stability of Nd3+-doped fibre fluorescent sources,” Electronics Letters, vol. 26, no. 13, pp. 873-875, 1990.
    [63] P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of Erbium-doped superfluorescent fiber sources for interferometric sensor application,” IEEE Journal of Lightwave Technology, vol. 12, no. 3, pp. 550-567, 1994.
    [64] Y. Li, M. Jiang, C.X. Zhang and H. J. Wu, “High stability Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a faraday rotator mirror,” IEEE Photonics Technology Letters, vol.25, no.8, pp. 731-733, 2013.
    [65] J.L. Chang and M.Q. Tan, “Experimental optimization of an erbium-doped super-fluorescent fiber source for fiber optic gyroscopes,” Journal of Semiconductors, vol.32, no. 10, pp. 104007-1-5, 2011.
    [66] A. Wang, “High stability Er-doped superfluorescent fiber Source improved by incorporating bandpass filter,” IEEE Photonics Technology Letters, vol. 23, no.4, pp. 227-229, 2011.
    [67] X. Wu, L. Zhang, C. X. Liu and S. C. Ruan, “High-stable, double-pass forward superfluorescent fiber source based on erbium-doped photonic crystal fiber,” Applied Physics B, vol. 114, no. 3, pp. 433-438, 2014.
    [68] W. T. Guo, F. Du, M. Q. Tan, J. Jiao and X.F. Guo, “Theoretical study on erbium ytterbium co-doped super-fluorescent fiber source,” Journal of Semiconductors, vol. 37, no.1, pp. 014010, 2016.
    [69] K. E. Riumkin, M. A. Mel'kumov, A. V. Shubin, S. V. Firstov, I. A. Bufetov, V. F. Khopin, A. N. Gur'yanov and E. M. Dianov, “Superfluorescent 1.34 μm bismuth-doped fibre source,” Quantum Eletronics, vol. 44, no.7, pp. 700-702, 2014.
    [70] T. Komljenovic and J. E. Bowers, “High temperature stability, low coherence and low relative intensity noise semiconductor sources for interferometric sensors,” Optics Express, vol. 24, no.20, pp. 22777-22787, 2016.
    [71] K.A. Fesler, M.J.F. Digoneet, B.Y. Kim and H.J. Shaw, “Stable fiber-source gyroscope,” Optics Letters, vol. 15, no.22, pp. 1321-1323, 1990.
    [72] H. Wang, H.W. Chiu, S. K. Liaw and C. C. Fan, “Saturable absorber–based single longitudinal mode tunable fiber laser using a Faraday rotator mirror as the rear cavity end,” Journal of Lightwave Technology, vol. 12, no.3, pp. 116118, 2014.
    [73] P.F. Wysocki, M.J.F. Digonnet, B.Y. Kim and H.J.Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor application,” Journal of Lightwave Technology, vol. 12, no.3, pp. 550-567, 1994.
    [74] L.A. Wang and C.D. Su, “Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications,” Journal of Lightwave Technology, vol.17, no.11, pp. 2307-2315, 1999.
    [75] T. S. Peng, Y. W. Huang, L. A. Wang, R. Y. Liu, and F. I. Chou, “Photo-annealing effects on gamma radiation induced attenuation in Erbium doped fibers and the sources using 532-nm and 976-nm lasers,” IEEE Transactions on Nuclear Science, vol. 57, no. 4, pp. 2327-2331, 2010.
    [76] T. S. Peng, L. A. Wang, and R. Y. Liu, “A radiation-tolerant superfluorescent fiber source in double-pass backward configuration by using reflectivity-tuning method,” IEEE Photonics Technology Letters, vol. 23, no. 20, pp. 1460-1462, 2011.
    [77] T. S. Peng, and L. A. Wang, “Radiation-tolerant superfluorescent fiber sources for high-performance fiber-optic gyroscopes working under gamma irradiation higher than 200 krad,” IEEE Photonics Technology Letters, vol. 24, no. 15, pp. 1340-1342, 2012.
    [78] S. H. Chang, R. Y. Liu, C. E. Lin, F. I. Chou, C. Y. Tai, and C. C. Chen, “Photo-annealing effect of gamma-irradiated Erbium-doped fibre by femtosecond pulsed laser,” Journal of Physics D: Applied Physics, vol. 46, no. 49, pp. 29827, 2013.
    [79] Y. H. Yang, X. X. Su, and W. Yang, “Radiation-induced attenuation self-compensating effect in super-fluorescent fiber source,” Chinese Physics B, vol. 23, no. 9, pp. 094213, 2014.
    [80] P. F. Wysocki, M. J. F. Digoneet, and B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Optics Letters, vol. 16, no. 12, pp. 961-963, 1991.
    [81] 吳宗遠,“以複合材料補償光纖光柵因溫度造成的波長漂移之改良式機制”,國立臺灣大學碩士論文,2003。
    [82] D. C. Hall and W. K. Burns, “Wavelength stability optimization in Er3+-doped superfluorescent fibre sources,” Electronics Letters, vol. 30, no. 8, pp. 653-654, 1994.
    [83] M. K. Jazi, S. Shahi, M. J. Hekmat, H. Saghafifar. A. T. Khuzani, H. Khalilian, and M. D. Baghi, “The evaluation of various designs for a C and L band superfluorescent source based Erbium doped fiber,” Laser Physics, vol. 23, no. 6, 2013.
    [84] W. Wang, X. F. Wang, and J. L. Xia, “The influence of Er-doped fiber source under irradiation on fiber optic gyro,” Optical Fiber Technology, vol. 18, no. 1, pp. 39-43, 2012.
    [85] 呂宗祐,“抗輻射之低溫度係數平坦光源研製與即時監控”,國立臺灣科技大學碩士論文,2013。
    [86] M. N. Armenise, C. Ciminelli, F. Dell’Oilo, and V. M. M. Passaro, “Advances in gyroscope technologies,” Springer, Berlin, Germany, 2010.
    [87] S. Merlo, M. Norgia, and S. Donati, “Fiber gyroscope principles,” Handbook of Fiber Optic Sensing Technology, 2000.
    [88] M. A. Terrel, M. J. F. Digonnet, and S. H. Fan, “Resonant fiber optic gyroscope using an air-core fiber,”IEEE Journal of Lightwave Technology, vol. 30, no. 7, pp. 931-937, 2012.
    [89] F. Zarinetchi, S. P. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Optics Letters, vol. 16, no. 4, pp. 229-231, 1991.
    [90] A.Morana, S. Giard, E. Marin, C. Marcandella, P. Paillet, J. Perisse, J. R. Mace, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Optics Letters, vol. 39, no. 18, pp. 5313-5316, 2014.

    QR CODE