簡易檢索 / 詳目顯示

研究生: 劉政辰
Cheng-Chen Liu
論文名稱: 新式互補式金氧半壓控振盪器與注入鎖定除頻器之設計
Design of Novel CMOS Voltage Controlled Oscillators and Injection Locked Frequency Dividers
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang 
馮武雄
Wu-Shiung Feng
陳凰美
Hwan-Mei Chen
楊賜麟
Su-Lin Yang
莊昀學
Yunh-Sueh Chuang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 106
中文關鍵詞: 壓控振盪器相位雜訊直接注入鎖定除頻器鎖頻範圍互補式金氧半電晶體混頻器
外文關鍵詞: voltage-controlled oscillator, phase noise, injection-locked frequency divider, CMOS, mixer
相關次數: 點閱:239下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓控振盪器與除頻器是頻率合成器電路中,主要的電路之一。對壓控振盪器而言,低相位雜訊可避免相鄰雜訊訊號經由混波轉換的干擾,經由壓控振盪器的優質指數來判斷振盪器性能的優劣。而振盪器的輸出則經由除頻器來達成降頻的工作,因此,除頻器需具有高頻操作,寬的操作頻寬及低功率消耗。
    首先,本論文呈兩個優質指數佳的LC-tank差動壓控振盪器,一個3.85GHz差動壓控振盪器利用電感回授方式達到低功耗效果,其功率消耗為2.1 mW且調變範圍為13.5 %,其輸出之相位雜訊在距離載波頻率1MHz處所量測之結果可達-120.02 dBc/Hz,其優質指數為-188.5 dBc/Hz。另一個17 GHz差動壓控振盪器,在其電晶體之基底端給一正負偏壓來調整振盪器的操作頻率,在正偏壓值的最佳點,它的優質指數為-189.51 dBc/Hz,在負偏壓值的最佳點,它的優質指數為-191.55 dBc/Hz。
    注入鎖定技術可達到高頻操作及低功率損耗的功能。基於此技術,呈現三個可應用於寬鎖定範圍的注入鎖定除頻器。第一,實現一個寬鎖定範圍之除三注入鎖定除頻器,其鎖定之操作範圍可從29.96 GHz到34.9 GHz,其功率消耗為1.96 mW。第二,實現一個多模除數之主動混波器的寬注入鎖定除頻器,其除二的注入鎖定範圍是61.2%,其功率消耗為5.94 mW。最後實現一個低功耗且寬鎖頻之除二注入鎖定除頻器,其鎖定範圍9 GHz,其功率消耗為3.85 mW。


    The key building blocks in the frequency synthesizer are the voltage controlled oscillator (VCO) and the high frequency divider circuit. Most importantly, low phase-noise is required to avoid corrupting the mixer-converted signal by close interfering tones for VCO circuit, and the Figure of Merit (FOM) of VCO can be determined by it’s performance. The output of the VCO is divided down by the frequency divider which requires operating at high frequencies, wide operating range and lower power consumption.
    First, this thesis describes two differential VCOs with better FOM. A 3.85 GHz differential VCO uses transformer feedback to achieve a low power. The power consumption is 2.1 mW, the tuning range is 13.5 %, a phase noise of -120.02 dBc/Hz at 1 MHz frequency offset is found, and the FOM is -188.5 dBc/Hz. The second circuit is a 17 GHz differential VCO which uses positive / negative bias to the body terminal of transistor in order to change the operation oscillation frequency of VCO. At an optimum positive bias, VCO’s FOM is -189.51 dBc/Hz. The VCO’s FOM is -191.55 dBc/Hz at the condition of the optimum negative bias.
    The injection locking technique is applied in high speed, low power frequency dividers, namely injection locked frequency dividers (ILFDs). Based on this technique, three ILFDs are presented for wide locking range application. First, a wide locking range divider-by 3 ILFD is accomplished and the locking range is from 29.96 GHz to 34.9 GHz with the power consumption of 1.96 mW. Second, a multi-division ratio ILFD uses active mixer to achieve a wide injection locking range, and the locking range is 61.2% at divider-by 2 mode with the power consumption of 5.94 mW. Finally, a divide-by-2 ILFD with low voltage and wide locking range is proposed, the total locking range is 9 GHz with power consumption of 3.85 mW.

    中文摘要 I Abstract II 誌 謝 IV Table of Contents V List of Figures VII List of Tables X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2 Overview of the Voltage-Controlled Oscillators 5 2.1 Introduction 5 2.2 Basic Theory of Oscillators 6 2.3 Classification of Oscillators 10 2.3.1 Ring Oscillator 10 2.3.2 LC-Tank Oscillator 11 2.4 Inductor and Varactor Design in VCO 14 2.4.1 Inductor Design 14 2.4.2 Varactor Design 22 2.5 Important Parameters of VCO 26 2.5.1 Phase Noise 27 2.5.2 Tuning Range 29 2.5.3 Figure of Merit (FOM) 30 Chapter 3 Design of Voltage-Controlled Oscillators 31 3.1 A Low Power Armstrong VCO 31 3.1.1 Design of Differential Armstrong VCO 32 3.1.2 Measurement and Discussion 36 3.2 A CMOS Colpitts VCO Using Reverse- and Forward-Biased Diode Tuning 40 3.2.1 Design of Differential Colpitts VCO 40 3.2.2 Measurement Results 43 3.3 Summary 48 Chapter 4 Design of Injection-Locked Frequency Dividers 50 4.1 Principle of Injection-Locked Frequency Divider 51 4.1.1 Locking Range 52 4.1.2 ILFD’s Fundamental Block Diagram 55 4.1.3 ILFD’s Noise 56 4.2 Active/Passive Mixer Description 61 4.2.1 Active Mixer 61 4.2.2 Passive Mixer 63 4.3 A Low Power Divide-By-3 ILFD 64 4.3.1 Proposed Divide-By-3 ILFD 65 4.3.2 Measured Results 68 4.4 A Variable Division Ratio ILFD Based on Active Mixer 72 4.4.1 Design of the Mixer-VCO Core ILFD 73 4.4.2 Measured Results 76 4.5 An ILFD Based on Passive Mixer 82 4.5.1 Circuit Design 83 4.5.2 Measurement Results 85 4.6 Summary 88 Chapter 5 Conclusions 90 References 93 Publications 101 Journal Papers 101 Conference Papers 103 Patents 105 Author’s Brief Introduction 106

    [1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
    [2] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuits, vol. 27, no. 5, pp. 810−820, May 1992.
    [3] T. H. Lee, The design of CMOS radio frequency integrated circuits, Cambridge University Press 1998.
    [4] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, no. 2, pp. 101−109, Jun. 1974.
    [5] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736−744, May 1997.
    [6] P. Yue, C. Ryu, J. Lau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” International Electron Devices Meeting Technical Digest, pp. 155−158, Dec. 1996.
    [7] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905−910, Jun. 2000.
    [8] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569−572.
    [9] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
    [10] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
    [11] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [12] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
    [13] E. H. Armstrong, “Some recent developments in the audio receiver,” Proc. IRE, vol. 3, no. 9, pp. 215–247, Sept. 1915.
    [14] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 446–448, Oct. 2003.
    [15] N. T. Tchamov, T. Niemi, and N. Mikkola, “High-performance differential VCO based on Armstrong oscillator topology,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 139–141, Jan. 2001.
    [16] L. Perraud, J.-L. Bonnot, N. Sornin, and C.Pinatel, “Fully integrated 10 GHz CMOS VCO for multi-band WLAN applications,” European Solid-State Circuits Conference, Sept. 2003, pp. 353–356.
    [17] Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen, and J.-J.Jhao, “5-GHz low power current-reused balanced CMOS differential Armstrong VCOs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 139–141, Feb. 2007.
    [18] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896–909, Jun. 2001.
    [19] S. S. Broussev, T.A. Lehtonen, and N.T. Tchamov, “A wideband low phase-noise LC-VCO with programmable kVCO,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 4, pp. 274–276, Apr. 2007.
    [20] H. L. Kao, D. Y. Yang, Y. C. Chang, B. S. Lin, and C. H. Kao, “Switched resonators using adjustable inductors in 2.4/5 GHz dual-band LC VCO,” IEEE Electronics Letters, vol. 44, no. 4, pp. 299–300, Feb. 2008.
    [21] S.-H. Lee, Y.-H. Chuang, S.-L. Jang, and C.-C. Chen, “Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 145–147, Feb. 2007.
    [22] S.-H. Lee, S.-L. Jang, Y.-S. Chuang, and C.-F. Lee, “A new LC-tank voltage controlled oscillator,” IEEE Asia-Pacific Cir. Syst. Conf., Dec. 2004, pp. 425–427.
    [23] A. P. Wel, S. L. J. Gierkink, R. C. Frye, V. Boccuzzi, and B. Nauta, “A robust 43-GHz VCO in CMOS for OC-768 SONET applications,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1159–1163, Jul. 2004.
    [24] C. Cao and K. K. O, “Millimeter-wave voltage-controlled oscillators in 0.13 μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41,no. 6, pp. 1297–1304, Jun. 2006.
    [25] A. Porret, T. Melly, C. Enz, and E. Vittoz, “Design of high-Q varactors for low-power wireless applications using a standard CMOS process,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 337–345, Mar. 2000.
    [26] H. Wang, “A 9.8 GHz back-gate tuned VCO in 0.35 um CMOS,” ISSCC Tech. Dig., Feb. 1999, pp. 406–407.
    [27] R. Murji and M. J. Deen, “Noise contributors in 7.2 GHz low-power VCO with automatic amplitude control,” Proc. IEEE RFIC Symp., Jun. 2005, pp. 407–410.
    [28] H.-K. Chen, H.-J. Chen, D.-C. Chang, Y.-Z. Juang, and S.-S. Lu, “A 0.6 V, 4.32 mW, 68 GHz low phase-noise VCO with intrinsic-tuned technique in 0.13μm CMOS,” IEEE Microwave Wireless Compon. Lett., vol. 18, no. 7, pp. 467−469, Jul. 2008.
    [29] C. R. C. De Ranter and M. S. J. Steyaert, “A 0.25μm CMOS 17 GHz VCO,” IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2001, pp. 370−371.
    [30] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [31] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μmCMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Tech. Dig., Feb. 2001, pp. 412–413.
    [32] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by- 128/129 prescaler in 0.7-μm CMOS,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 890−897, July 1996.
    [33] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 456−463, Mar. 1996.
    [34] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594−601, Apr. 2004.
    [35] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813−821, Jun. 1999.
    [36] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), Sept. 2002, pp. 823−826.
    [37] M. Tiebout, “A 480 μW 2 GHz ultra low power dual-modulus prescaler in 0.25 μm standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), May 2000, vol. 5, pp. 741−744.
    [38] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection-locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, Jun. 2001, pp. 47−50.
    [39] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 845−851, Jul. 2002.
    [40] W. Z. Chen and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25 μm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), Sept. 2002, pp. 89−92.
    [41] H. Wu, Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits, PhD thesis, California Institute of Technology, 2003.
    [42] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp. 1380−1385, Oct. 1973.
    [43] V. Issakov, A. Thiede, L. Verweyen, and L. Maurer, “Wideband resistive ring mixer for automotive and industrial applications in 0.13 μm CMOS,” German Microwave Conference, Mar. 2009, pp. 1–4.
    [44] H. Darabi and J. Chiu , “A noise cancellation technique in active RF-CMOS mixers,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2628−2632, Dec. 2005.
    [45] D. Siprak, M. Tiebout, and P. Baumgartner, “Reduction of VCO phase noise through forward substrate biasing of switched MOSFETs,” 34th European Solid-State Circuits Conference(ESSCIRC), Sep. 2008, pp. 326–329.
    [46] K. Jeongwook, D. Schmitt-Landsiedel, R. Thewes, and R. Brederlow, “A complementary switched MOSFET architecture for the 1/f noise reduction in linear analog CMOS ICs,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1352–1361, Dec. 2007.
    [47] V. Issakov, D. Siprak, M. Tiebout, A. Thiede, W. Simburger, and L. Maurer, “Comparison of 24 GHz receiver front-ends using active and passive mixers in CMOS,” IET Circuits Devices Systtems, vol. 3, no. 6, pp. 340–349, Aug. 2009
    [48] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
    [49] S.-L. Jang and C.-F. Lee, “A wide locking range LC-tank injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 613–615, Aug. 2007.
    [50] K. Yamamoto and M. Fujishim, “70 GHz CMOS harmonic injection locked divider,” In IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2006, pp. 2472–2481.
    [51] S.-H. Lee, S.-L. Jang, C.-F. Lee, and M.-H. Juang, “Wide locking range divide-by-4 injection locked frequency dividers,” Microwave and Optical Technology Lett., vol. 49, no. 7, pp. 1533–1536, Jul. 2007.
    [52] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp. 27–29.
    [53] S.-L. Jang, C.-Y. Lin, and C.-F. Lee, “A low voltage 0.35 μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 470–472, Jul. 2008.
    [54] S.-L. Jang, W. Yeh, and C.-F. Lee, “A low power CMOS divide-by-3 LC-tank injection locked frequency divider,” Microwave and Optical Technology Lett., vol. 50, no. 1, pp. 259–262, Jan. 2008.
    [55] S.-L. Jang, C.-F. Lee, and W.-H. Yeh, “A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 142–144, Feb. 2008.
    [56] S.-L. Jang, C.-C. Liu, and C.-W. Hsue, “LC-tank injection locked frequency divider with variable division ratio,” Microwave and Optical Tech. Lett., vol. 50, no. 12, pp. 3232–3236, Dec. 2008.
    [57] S.-L. Jang, P.-X. Lu, C.-F. Lee, and M.-H. Juang, “Divide-by-3 LC injection locked frequency divider with a transformer as an injector’s load,” Microwave and Optical Tech. Lett., vol. 50, no. 10, pp. 2722–2725, Oct. 2008.
    [58] S.-L. Jang, R.-K. Yang, C.-W. Chang, and M.-H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 311–313, May, 2009.
    [59] T.-N. Luo, S.-Y. Bai, and Y.-J. E. Chen, “A 60-GHz 0.13-μm CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409–2415, Nov. 2008.
    [60] T. Shibasaki, H. Tamura, K. Kanda, H. Yamaguchi, J. Ogawa, and T. Kuroda, “20GHz quadrature injection locked LC dividers with enhanced locking range,” IEEE J. Solid State Circuits, vol. 43, no. 3, pp. 610–618, Mar. 2008.
    [61] H. Zheng and H. C. Luong, “A 0.5-V 16GHz-20GHz differential injection-locked divider in 0.18-μm CMOS process,” Proc. IEEE Custom Integrated Circuits Conference, 2007, pp. 813–816.
    [62] K. L. Fong, and R. G. Meyer, “Monolithic RF active mixer design ” IEEE Trans. Circuits and Systems, vol. 46, no. 3, pp. 231–243, Sept. 1999.
    [63] F.-H. Huang, D.-M. Lin, H.-P. Wang, W.-Y. Chiu, and Y.-J. Chan, “20 GHz CMOS injection-locked frequency divider with variable division ratio,” Proc. Radio Frequency Integrated Circuits Symposium., 2005, pp. 469–472.
    [64] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, “Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electron., vol. E91-C, no. 6, pp. 956–962, Jun. 2008.
    [65] H. Zheng and H. C. Luong, “Ultra-low-voltage 20-GHz frequency dividers using transformer feedback in 0.18-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2293–2302, Oct. 2008.
    [66] A. Mazzanti, L. Larcher, and F. Svelto, “Balanced CMOS LC-tank analog frequency dividers for quadrature LO generation,” Proc. IEEE Custom Integrated Circuits Conf., Sep. 2005, pp. 575–578.
    [67] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
    [68] A. Rylyakov, L. Klapproth, B. Jagannathan, and G. Freeman, “100 GHz dynamic frequency divider in SiGe bipolar technology,” Electronics Letters, vol. 39, no. 2, pp. 217–218, Jan. 2003.
    [69] R. H. Derksen, V. Luck, and H.-M. Rein, “Stability ranges of regenerative frequency dividers employing double balanced mixers in large-signal operation,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 10, pp. 1759–1762, Oct. 1991.
    [70] J. Mullrich, W. Klein, R. Khlifi, and H.-M. Rein, “SiGe regenerative frequency divider operating up to 63 GHz,” Electronics Letters, vol. 35, no. 20, pp. 1730–1731, Sep. 1999.
    [71] S.-L. Jang, S.-H. Huang, C.-F. Lee, and M.-H. Juang, “LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 560–562, Aug. 2008.

    QR CODE