簡易檢索 / 詳目顯示

研究生: 馮天駿
Tien-Chun Feng
論文名稱: 面版儲存櫃之氣流夾層設計與參數化分析
Utility Air Plenum Design and Parametric Analysis on the Minienviroment for LCD Stocker
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 莊福盛
Fu-Sheng Chuang
羅玉山
Yu-Shan Luo
周永泰
Yung-Tai Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 280
中文關鍵詞: 潔淨室氣流夾層開孔率塵埃粒子動態網格
外文關鍵詞: clean room, utility air plenum, porosity, particle, dynamic mesh
相關次數: 點閱:156下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於目前LCD面板的需求量越來越大,為了提升產品的良率且降低製造成本,於是本文以垂直層流式面板儲存櫃為研究課題,深入探討其中之氣流夾層區域,並著重於內部流場與污染粒子排除的分析;期望以不變動內部元件配置,且節省經濟成本的方式作為設計之基礎,利用有限體積法的軟體FLUENT來分析計算其結果。採用暫態之動態網格方式,分析物體運動狀態之流場分佈,以模擬真實狀況中,移動物體對內部氣流所造成之重大影響。本文利用原始設計分析出內部流場之均勻度與粒子滯留情形,針對氣流夾層區域裝設擋板及配置整流板之兩種方案,與原始設計相比較其差異性,並分析改善後所得之結果;最後以分析之最佳氣流夾層設計為基礎,做一系列參數化分析及探討,針對不同之塵埃粒徑、入口風速及自動運載裝置之速度做模擬分析,以了解參數變化對於整體流場之影響,並藉由其流場變化,得到最佳之操作參數,使得整體設計更加完善。由模擬的結果可得知,為了使整體潔淨度提高及污染微粒迅速排除,氣流夾層區域必須控制得當,以避免內部迴流的發生,才得以達到最佳效能,而所得之結論亦可提供關於垂直層流式面板儲存櫃之建造及改良作為參考,以達到提升產品良率之成效。


    To meet the increasing demand on quality improvement and cost reduction of LCD panel technology, the outlet flow distribution of utility air plenum for the stock region inside a clean room becomes the research topic in this study. By setting the operation cost as the major design concern, the major emphases are focused on the discussions of the flow pattern and the distribution of polluted particles inside the stocker region for various designs of the utility air plenum. At first, unsteady flowfield simulations for the AGV (automatic guided vehicle) moving inside the stocker region are accomplished under various operating conditions with the aids of FLUENT CFD code and dynamic mesh technique. Later, the uniform ratio and the mote deposition inside the flow field for the initial design are examined carefully based on the numerical results. Several unfavorable phenomenons, such as non-uniform distribution, circulation, and reversed flow, are found inside the utility air plenum.
    Afterwards, two alternatives, blockage plate and flow straightener, are proposed to be installed at several locations inside the utility air plenum for a better mote deposition. CFD outcome shows that the air plenum design with straighteners and the flap plate at each corner can improve the overall flow patterns. It was observed that this improved design can dispose all the particles after 18 seconds while some particles are still trapped inside the original design. This improvement can upgrade the cleanness rate, shorten the disposed time of particles, and also reduce the operation cost.
    Thereafter, a comprehensive parametric study is carried out to realize their influences on the flow patterns and mote deposition for this improved design. The parameters considered includes diameter of particle, inlet air velocity, and AGV velocity. Extensive discussions on these results are summarized to serve as the guideline for attaining the appropriate parameter settings for a better cleanroom design. In conclusion, the air’s clean ratio can be improved and the polluted motes can be excluded efficiently when the flow streams at the exit of the utility air plenum and inside the clean room are uniformly distributed.

    目 錄 中文摘要 …………………………………………………………………………I 英文摘要 …………………………………………………………………………II 誌謝 …………………………………………………………………………IV 目錄 …………………………………………………………………………V 圖索引 …………………………………………………………………………X 表索引 …………………………………………………………………………XV 符號索引 …………………………………………………………………………XVI 第一章 緒論 ………………………………………………………………………1 1.1 前言 …………………………………………………………………………1 1.2 文獻回顧………………………………………………………………………2 1.2.1 潔淨室之流場分析…………………………………………………………3 1.2.2 潔淨室之氣流夾層設計……………………………………………………6 1.2.3 潔淨室之開孔板配置………………………………………………………9 1.2.4 塵埃粒子之沉積改善………………………………………………………10 1.3 研究動機………………………………………………………………………13 1.4 本文架構………………………………………………………………………19 第二章 潔淨室簡介 ………………………………………………………………22 2.1 潔淨室定義……………………………………………………………………22 2.2 潔淨室規範……………………………………………………………………32 2.3 潔淨室空氣過濾系統…………………………………………………………36 2.4 潔淨室面版儲存櫃……………………………………………………………40 第三章 物理模式 …………………………………………………………………45 3.1 物理模型介紹…………………………………………………………………45 3.2 數值模型建構…………………………………………………………………52 3.3 數值邊界設定…………………………………………………………………56 3.4 網格規劃………………………………………………………………………58 第四章 數值分析方法 ……………………………………………………………62 4.1 統御方程式……………………………………………………………………63 4.2 紊流模式………………………………………………………………………64 4.3 粒子運動方程式………………………………………………………………67 4.4 數值計算方法…………………………………………………………………71 4.4.1 對流-擴散方程式的差分方式……………………………………………71 4.4.2 壓力-速度耦合關係的處理………………………………………………75 4.4.3 動態網格(Deforming Mesh)分析…………………………………………79 4.5 數值分析軟體驗證(Code Verification) …………………………………87 4.5.1 靜態模擬與實驗值之比較…………………………………………………91 4.5.2 動態網格模擬與實驗值之比較……………………………………………93 第五章 原始設計之數值結果及討論 ……………………………………………97 5.1 垂直層流式面板儲存櫃的整體流場趨勢……………………………………99 5.2 左右兩側氣流夾層之區域……………………………………………………105 5.3 整流板與玻璃層組間之區域…………………………………………………109 5.4 玻璃層組間之區域……………………………………………………………113 5.5 玻璃層組與自動運載裝置間之區域…………………………………………116 5.6 自動運載裝置區域……………………………………………………………118 5.7 動態流場速度向量分佈………………………………………………………123 5.8 氣流均勻度分析探討…………………………………………………………130 第六章 改良設計之模擬分析 ……………………………………………………133 6.1 氣流夾層中裝設檔板…………………………………………………………134 6.1.1 左右兩側氣流夾層間………………………………………………………139 6.1.2 玻璃層組間…………………………………………………………………144 6.1.3 玻璃層組與自動運載裝置間………………………………………………146 6.1.4 自動運載裝置區域…………………………………………………………149 6.1.5 加裝檔板後氣流均勻度分析………………………………………………151 6.2 氣流夾層中裝設整流板………………………………………………………153 6.2.1 左右兩側氣流夾層間………………………………………………………160 6.2.2 玻璃層組間…………………………………………………………………164 6.2.3 玻璃層組與自動運載裝置間………………………………………………166 6.2.4 自動運載裝置區域…………………………………………………………168 6.2.5 加裝整流板後氣流均勻度分析……………………………………………170 第七章 面板儲存櫃內部參數化分析 ……………………………………………173 7.1 不同粒徑之塵埃粒子排除分析………………………………………………173 7.2 改變入口風速之流場分析……………………………………………………178 7.3 改變自動運載裝置速度之流場分析…………………………………………185 7.3.1 自動運載裝置速度為0.8 …………………………………………………185 7.3.2 自動運載裝置速度為1.2 …………………………………………………197 第八章 塵埃粒子沉積現象之探討與改善 ………………………………………211 8.1 不同設計方案之參數配置……………………………………………………212 8.2 原始設計方案(Case 1)………………………………………………………218 8.3 氣流夾層中裝設檔板(Case 2)………………………………………………227 8.4 氣流夾層中裝設整流板(Case 3)……………………………………………235 第九章 結論與建議 ………………………………………………………………248 9.1 結論……………………………………………………………………………248 9.1.1 原始設計……………………………………………………………………248 9.1.2 加裝擋板之設計……………………………………………………………249 9.1.3 氣流夾層中裝設整流板……………………………………………………251 9.2 建議……………………………………………………………………………252 參考文獻……………………………………………………………………………255 作者簡介……………………………………………………………………………261

    [1] Whyte, W., “Cleanroom Design”, Second Edition, John Wiley &Sons Ltd, Chichester, October 1999.
    [2] Murakami, S., Kato, S., and Suyama, Y., “Numerical Study on Diffusion of Fields as Affected by Arrangement of Supply and Exhaust Openings in Conventional Flow Type Cleanroom”, ASHRAE Transactions, Vol. 96, No. 2, pp. 343-355, 1989.
    [3] Marvell, G., “Minienvironment Air Flow Dynamics”, Solid State Technology, Vol. 36, pp. 47-48, 1993.
    [4] Abuzeid, S., “Comparing Various Types of Minienvironments”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 22-25, 1994.
    [5] Chung, Kee-Chiang and Hsu, Shou-Ping, “Effect of Ventilation Pattern on Room Air and Contaminant Distribution”, Building and Environment, Vol. 39, pp. 989-998, 2001.
    [6] 陳石法,“矩形空間中移動物體之動態流場與熱傳特性研究”,國立交通大學機械工程學系碩士論文,2001年.
    [7] 陳銘恩,“迷你環境潔淨室內空氣流場及微粒濃度控制分析”,國立交通大學碩士論文,2001年.
    [8] Yang, S. J., Fu, W. S., and Chen, S. F., “Numerical Study of Variations of Airflow Induced by a Moving Automatic Guided Vehicle in a Claenroom”, Journal of the Chinese Institute of Engineers, Vol. 25, No.1, pp. 67-75, 2002.
    [9] Yang, S. J. and Fu, W. S., “A Numerical Investigation of Effects of a Moving Operator on Airflow Patterns in a Cleanroom”, Building and Environment, Vol. 37, pp. 705-712, 2002.
    [10] Yamamoto, Toshiaki, Donovan, Robert, and Ensor, David, “Model Study for Optimization of Cleanroom Airflows”, The Journal of Environmental Sciences, pp. 24-29, 1988.
    [11] 許文獻,“空調區間之室內污染物移除分析”,元智大學機械工程研究所碩士論文,1999 年.
    [12] Hu, S. C., Chuah, Y. K. and Yen, M. C., “Design and Evaluation of a Minievironment for Semiconductor Manufacture Processes”, Building and Environment, Vol. 37, pp. 201-208, 2002.
    [13] 江秉芳,“在回風室安裝薄板的潔淨室內流場均勻度之影響”,大同大學機械工程研究所碩士論文,2003 年.
    [14] 劉啟熾,“TFT-LCD廠製程排氣系統之研究”,國立臺灣交通大學碩士論文,2003年.

    [15] Milberg, Joachim, Fischbacher, Johannes, and Engel, Andreas, “Fluidic Integration of Equipment in Cleanrooms”, Solid State Technology, pp. 43-45, August 1991.
    [16] Tannous, A. G., “Computational Modeling of Air Flow in a Mini-Environment”, Proceedings of Institute of Environmental Science, pp. 414-420, 1996.
    [17] Cheng, M., Liu, G. R., Lam, K. Y., Cai, W. J., and Lee, E. L., “Approaches for Improving Airflow Uniformity in Unidirectional Flow Cleanrooms”, Building and Environment, Vol. 34, Issue 3, pp. 275-284, 1998.
    [18] Chen, C. W., “The Influence of Floor’s Porosity and Height on Airflow Distribution in Cleanroom”, Master Thesis, Department of Mechanical Engineering , Tatung University, June 2001.
    [19] Lu, Weizhen and Howarth, Andrew T., “Numerical Analysis of Indoor Aerosol Particle Deposition and Distribution in Two-Zone Ventilation System”, Building and Environment, Vol. 3, pp 141-50, 1996 .
    [20] 蔡俊宏,“潔淨室的氣流特性與潔淨度控制”,中國冷凍空調雜誌,pp.78-88,1999年6月.
    [21] 蔡俊宏,“潔淨室中潔淨度控制的實例探討”,中國冷凍空調雜誌,pp. 73-81,1999年8月.
    [22] Kobayashi, Y., Kobayashi, K., Kato, Tokunaga K., and Minami, T., “Particle Characteristics of 300mm Minienvironment (FOUP and LPU),” IEEE Transactions on Semiconductor Manufacturing, Vol. 13, No. 3, August 2000.
    [23] 顏志銘,“超潔淨無塵室流場分析與改善之研究”,國立台北科技大學碩士論文,2000年.
    [24] 蕭宗容,“ 300㎜晶圓載卸模組FOUP/LPU之氣流及污染物粒子特性研究”,國立台北科技大學冷凍空調工程系碩士論文,2002年.
    [25] 顏登通,“潔淨室設計與管理”,全華科技圖書股份有限公司,1995年。
    [26] http://www.uisco.com.tw/
    [27] Murakami, S., Kato, S., Nagano, S., and Tanaka, Y., “Diffusion Characteristics of Airborne Particles with Gravitational Settling in a Convection-Dominant Indoor Flow Field”, ASHRAE Transactions: Research, pp. 82-97, 1992.
    [28] Murakami, S., Kato, S., and Suyama, Y., “Numerical and Experimental Study on Turbulent Diffusion Fields in Conventional Flow Type Clean Rooms”, ASHARE Transactions, Vol. 95, No. 2, pp. 469-493, 1988.

    [29] Kuehn, T. H. and Thomas, H., “Computer Simulation of Airflow and Particle Transport in Cleanrooms”, Journal Environmental Sciences, Vol. 31, No. 5, pp. 21-27, 1988.
    [30] Kuehn, T. H., Marple, V. A., Han, H., and Liu, D., “Comparison of Measured and Predicted Airflow Patterns in a Clean Room”, Proceedings-Institute of Environmental Sciences, Vol. 98, No. 2, pp. 331-336, 1988.
    [31] http://www.biocozy.com.tw/clean.htm
    [32] http://www.univic.co.kr/
    [33] 黃仲龍,“ LCD工廠現況與降低成本挑戰”,工研院新興機械產
    業技術簡訊,第26期,1993年1月。
    [34] Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence”, Academic Press, London, England, 1972.
    [35] Morsi, S. A. and Alexander, A. J. “An Investigation of Particle Trajectories in Two-Phase Flow Systems”, J. Fluid Mech, Vol. 2, pp. 193-208, January 1998.
    [36] Haider, A. and Levenspiel, O., “Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles”, Power Technology, Vol. 58: pp. 63-70, 1989.

    [37] Li, A. and Ahmadi, G., “Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow”, Aerosol Science and Technology, Vol. 16, pp. 209-266, 1992.
    [38] Saffman, P. G., “The Lift on a Small Sphere in a Slow Shear Flow”, J. Fluid Mech., Vol. 22, pp. 385-100, 1965.
    [39] Van Doormal, J. P., and Rairhby, G. D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows”, Numer. Heat Transfer, Vol. 7, pp. 147-163, 1984.
    [40] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
    [41] Fluent 6.1 User’s Guide, Fluent Inc. 2004.

    QR CODE