簡易檢索 / 詳目顯示

研究生: 李佳芸
Chia-Yun Li
論文名稱: 添加不同表面處理的奈米矽顆粒對於熱塑性聚氨酯的發泡影響
Effect of adding surface treated nanostructured silica to the structure of thermoplastic polyurethane foam
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 何明樺
Ming-Hua Ho
賴森茂
Sun-Mou Lai
王鎮杰
Chen-Chieh Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 101
中文關鍵詞: 熱塑性聚氨酯奈米矽顆粒硬度二氧化碳批次發泡泡孔收縮
外文關鍵詞: Thermoplastic polyurethane, nanosilica particles, hardness, carbon oxide, batch foaming, foam shrinkages
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 添加無機顆粒提高高分子泡孔密度是發泡加工中常見的方式,然而目前常見的礦物基天然成核劑因為粒徑尺寸分布不同,會造成發泡樣品品質差異,在本研究中,我們添加添加氣相合成的奈米矽顆粒(fumed silica)作為成核劑增加異質成核的效果,希望能有效降低泡孔尺寸並提高泡孔密度,並且能進一步提升產品的泡孔結構均勻性。
    在本實驗中,我們將結果分為兩部分討論。首先,將硬度分別為85A和90A的兩種不同品牌TPU與是否經表面處理的奈米矽顆粒混合,以超臨界二氧化碳當作發泡劑發泡。我們觀察到添加矽顆粒後,泡孔結構有明顯的改變,泡孔密度明顯變高,但在某些情況下也觀察到大小泡孔結構。綜合所有實驗結果,顯示添加奈米矽顆粒明顯降低了泡孔尺寸並增加了泡孔密度。


    Adding inorganic particles to increase the cell density of polymers is a common practice in foaming processing. However, due to the different particle size distribution of mineral based nucleating agents, the quality of foam could be different. In this study, we investigated effect of fumed silica as a nucleating agent to the cell size and cell density, and further improve the cell structure uniformity of the product.
    This study contains two parts. First, two different brands TPUs with hardness of 85A and 90A were mixed with nanostructured silica particles with or without surface treatment, and foamed using supercritical carbon dioxide as a blowing agent. In the presence of nanosilica, the cell structure changed significantly, and the cell density was significantly increased. In some cases, bimodal structures were observed. Our results showed that nanosilica is an effect nucleating agent. The addition of nanosilica particles significantly reduces the cell size and increases the cell density of the TPU foam.

    摘要 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1前言 第二章 文獻回顧 2.1熱塑性聚氨酯 2.1.1 熱塑性聚氨酯組成 2.1.2 TPU微相分離 2.1.3 TPU結晶與微相分離 2.2高分子發泡材料 2.2.1發泡劑 2.2.2發泡機制 2.2.3批次發泡 2.2.4泡珠材料 2.3添加劑 2.3.1 成核劑 2.4 奈米矽顆粒Si-NPs 2.4.1矽顆粒的合成 2.4.2表面性質 第三章 實驗方法 3.1 實驗材料 3.2 實驗儀器 3.3 實驗步驟 3.3.1實驗流程圖 3.3.2 混煉 3.3.3 熱壓成型(製作流變試片) 3.3.4 物性分析 3.3.5一步法批次發泡 3.3.5 掃描式電子顯微鏡(SEM) 3.3.6測量泡材密度、膨脹倍率、收縮率 3.3.7計算泡孔尺寸 3.3.8計算泡孔密度 第四章 結果與討論 4.1熱性質分析 4.1.1 DSC熱分析 4.1.2 TMA分析 4.1.3 流變性質 4.2 泡材泡孔結構討論 4.2.1 添加未經表面處理矽顆粒(A130)對泡孔結構的影響 4.2.2 添加表面處理矽顆粒(R972)對泡孔結構的影響 4.3 探討添加奈米矽顆粒對泡材收縮的改善 4.3.1 TPU添加不同比例A130的收縮情形 4.3.2 TPU添加不同比例R972的收縮情形 4.3.3 TPU添加相同比例不同奈米矽顆粒的比較 第五章 結論 參考文獻

    1. G.I. Analysts, Global Elastomeric Foam Industry, (2021). Available from: https://www.reportlinker.com/p05798450/Global-Elastomeric-Foam-Industry.html?utm_source=GNW
    2. S. Jia, J. Qu, C. Wu, W. Liu, R. Chen, S. Zhai, Z. Huang, F. Chen, Novel Dynamic Elongational Flow Procedure for Reinforcing Strong, Tough, Thermally Stable Polypropylene/Thermoplastic Polyurethane Blends, Langmuir, 29(44), (2013), p. 13509-13517.
    https://doi.org/10.1021/la4023079.
    3. Ghariniyat, S.N. Leung, Development of thermally conductive thermoplastic polyurethane composite foams via CO2 foaming-assisted filler networking, Composites Part B: Engineering, 143, (2018), p. 9-18. https://doi.org/https://doi.org/10.1016/j.compositesb.2018.02.008.
    4. R.J. Zdrahala, R.M. Gerkin, S.L. Hager, F.E. Critchfield, Polyether‐based thermoplastic polyurethanes. I. Effect of the hard‐segment content, Journal of Applied Polymer Science, 24(9), (1979), p. 2041-2050. https://doi.org/10.1002/app.1979.070240912.
    5. H. Janani, M.H.N. Famili, Investigation of a strategy for well controlled inducement of microcellular and nanocellular morphologies in polymers, Polymer Engineering and Science, 50(8), (2010), p. 1558-1570. https://doi.org/10.1002/pen.21688.
    6. L. Wang, Polyurethane Foam-From furniture cushions to insulation, versatile polymer has found a world of applications, 84(2), (2006), p. 48. Available from: https://cen.acs.org/articles/84/i2/Polyurethane-Foam.html.
    7. J. Yekrang, D. Semnani, M. Beigi, S. Karbasi, Electrospinning of Aligned Medical Grade Polyurethane Nanofibers and Evaluation of Cell-Scaffold Interaction Using SHED Stem Cells, Micro & Nano Letters, 12(6), (2017), p. 412-417.
    https://doi.org/10.1049/mnl.2017.0035.
    8. J.T. Koberstein, A.F. Galambos, L.M. Leung, Compression-molded polyurethane block copolymers. 1. Microdomain morphology and
    73
    thermomechanical properties, Macromolecules, 25(23), (1992), p. 6195-6204. https://doi.org/10.1021/ma00049a017.
    9. D.C. Allport, P. Davies, W.F. Diller, J. Doe, F.E Floc'h, H.D. Hoffmann, M. Katoh, J.P. Lyon, D.I. Bernstein, MDI and TDI: Safety, Health and the Environment-Health, (2003), p. 155-228. https://doi.org/https://doi.org/10.1002/0470865687.ch3.
    10. H. Kothandaraman, K. Venkatarao, B.C. Thanoo, Crosslinking studies of polyether-ester-based polyurethane systems, Journal of Applied Polymer Science, 39(4), (1990), p. 943-954.
    https://doi.org/10.1002/app.1990.070390413
    11. L. Jiang, J. Wu, C. Nedolisa, A. Saiani, H.E. Assender, Phase Separation and Crystallization in High Hard Block Content Polyurethane Thin Films, Macromolecules, 48(15), (2015), p. 5358-5366. https://doi.org/10.1021/acs.macromol.5b01083.
    12. R. Gallu, F. Méchin, J.-F. Gérard, F. Dalmas, Influence of the chain extender of a segmented polyurethane on the properties of polyurethane-modified asphalt blends, Construction and Building Materials, 328, (2022), p. 127061. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.127061.
    13. B. Fernández d'Arlas, L. Rueda, K. de la Caba, I. Mondragon, A. Eceiza, Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI, Polymer Engineering & Science, 48(3), (2008), p. 519-529.
    https://doi.org/https://doi.org/10.1002/pen.20983.
    14. I. Yilgor, E. Yilgor, Structure‐Morphology‐Property Behavior of Segmented Thermoplastic Polyurethanes and Polyureas Prepared without Chain Extenders, Polymer Reviews, 47(4), (2007), p. 487-510. https://doi.org/10.1080/15583720701638260.
    15. T.R. Hesketh, J.W.C. Van Bogart, S.L. Cooper, Differential scanning calorimetry analysis of morphological changes in segmented elastomers, Polymer Engineering & Science, 20(3), (1980), p.190-197. https://doi.org/10.1002/pen.760200304.
    16. E. Yildirim, M. Yurtsever, The role of diisocyanate and soft segment on the intersegmental interactions in urethane and urea based segmented copolymers:
    74
    A DFT study, Computational and Theoretical Chemistry, 1035, (2014), p. 28-38.
    https://doi.org/https://doi.org/10.1016/j.comptc.2014.02.021.
    17. Y. He, D. Xie, X. Zhang, The structure, microphase-separated morphology, and property of polyurethanes and polyureas, Journal of Materials Science, 49, (2014), p. 7339-7352.
    https://doi.org/10.1007/s10853-014-8458-y.
    18. H. Goering, H. Krüger, M.J.M.M. Bauer, Engineering, Multimodal polymer networks: design and characterisation of nanoheterogeneous PU elastomers, Macromolecular Materials and Engineering, 278, (2000), p. 23-35.
    https://doi.org/10.1002/(SICI)1439-2054(20000501)278:1<23::AID-MAME23>3.0.CO;2-P
    19. T.L. Corporation, Drying of Medical Grade Thermoplastic Polyurethanes, (2017). Avaliable from: https://www.lubrizol.com/-/media/Lubrizol/Health/Literature/TPU-Drying-Guide.pdf. ,
    20. I. Yilgör, E. Yilgör, G.L. Wilkes, Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review, Polymer, 58, (2015), p. A1-A36. https://doi.org/https://doi.org/10.1016/j.polymer.2014.12.014.
    21. R.J. Gaymans, Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials, Progress in Polymer Science, 36(6), (2011), p. 713-748.
    https://doi.org/10.1016/j.progpolymsci.2010.07.012.
    22. N.M.K. Lamba, K.A. Woodhouse, S.L. Cooper, Polyurethanes in biomedical applications, CRC Press, Boca Raton, (1998).
    23. R.M. Briber, E.L. Thomas, The structure of MDI/BDO-based polyurethanes: Diffraction studies on model compounds and oriented thin films, Journal of Polymer Science: Polymer Physics Edition, 23(9), (1985), p. 1915-1932. https://doi.org/10.1002/pol.1985.180230913.
    24. A. Saiani, W.A. Daunch, H. Verbeke, J.W. Leenslag, J.S. Higgins, Origin of Multiple Melting Endotherms in a High Hard Block Content Polyurethane. 1. Thermodynamic Investigation, Macromolecules, 34(26), (2001), p. 9059-9068. https://doi.org/10.1021/ma0105993.
    75
    25. L.M. Leung, J.T. Koberstein, DSC annealing study of microphase separation and multiple endothermic behavior in polyether-based polyurethane block copolymers, Macromolecules, 19(3), (1986), p. 706-713. https://doi.org/10.1021/ma00157a038.
    26. J.T. Koberstein, T.P. Russell, Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers, Macromolecules, 19(3), (1986), p. 714-720.
    https://doi.org/10.1021/ma00157a039
    27. A. Saiani, C. Rochas, G. Eeckhaut, W.A. Daunch, J.W. Leenslag, J.S. Higgins, Origin of Multiple Melting Endotherms in a High Hard Block Content Polyurethane. 2. Structural Investigation, Macromolecules, 37(4), (2004), p. 1411-1421.
    https://doi.org/10.1021/ma034604+.
    28. B. Fernández‐d'Arlas, J. Maiz, R.A. Pérez‐Camargo, R.P. Baumann, E. Pöselt, R. Dabbous, A. Stribeck, A.J. Müller, SSA fractionation of thermoplastic polyurethanes, Polymer Crystallization, 4(1), (2021). https://doi.org/10.1002/pcr2.10148.
    29. J. Maiz, B. Fernández-D'Arlas, X. Li, J. Balko, E. Pöselt, R. Dabbous, T. Thurn-Albrecht, A.J. Müller, Effects and limits of highly efficient nucleating agents in thermoplastic polyurethane, Polymer, 180, (2019), p. 121676. https://doi.org/10.1016/j.polymer.2019.121676.
    30. B. Fernández-D'Arlas, R.P. Baumann, E. Pöselt, A.J. Müller, Influence of composition on the isothermal crystallisation of segmented thermoplastic polyurethanes, CrystEngComm, 19(32), (2017). https://doi.org/10.1039/c7ce01028a.
    31. J. Balko, B. Fernández-D’Arlas, E. Pöselt, R. Dabbous, A.J. Müller, T. Thurn-Albrecht, Clarifying the Origin of Multiple Melting of Segmented Thermoplastic Polyurethanes by Fast Scanning Calorimetry, Macromolecules, 50(19), (2017), p. 7672-7680.
    https://doi.org/10.1021/acs.macromol.7b00871.
    32. B. Fernández-d’Arlas, J. Balko, R.P. Baumann, E. Pöselt, R. Dabbous, B. Eling, T. Thurn-Albrecht, A.J. Müller, Tailoring the Morphology and Melting Points of Segmented Thermoplastic Polyurethanes by Self-Nucleation, Macromolecules, 49(20), (2016), p. 7952-7964.
    76
    https://doi.org/10.1021/acs.macromol.6b01527.
    33. L.J. Lee, C. Zeng, X. Cao, X. Han, J. Shen, G. Xu, Polymer nanocomposite foams, Composites Science and Technology, 65(15-16), (2005), p. 2344-2363. https://doi.org/https://doi.org/10.1016/j.compscitech.2005.06.016.
    34. C. Okolieocha, D. Raps, K. Subramaniam, V. Altstädt, Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review, European Polymer Journal, 73, (2015), p. 500-519. https://doi.org/10.1016/j.eurpolymj.2015.11.001.
    35. J.E. Martini-Vvedensky, N.P. Suh, F.A. Waldman, Microcellular closed cell foams and their method of manufacture, US4473665A
    36. D. Eaves, Rapra Technology Limited, Handbook of polymer foams, U.K., 2004.
    37. J. Martini, The Production and Analysis of Microcellular Thermoplastic Foam, 1982.
    38. K. Okamoto, Microcellular Processing, Hanser Gardner Publications, 2003.
    39. S. Kazarian, Polymer Processing with Supercritical Fluids, Polymer Science, 42(1), (2000), p. 78-101.
    40. N. Hossieny, V. Shaayegan, A. Ameli, M. Saniei, C.B. Park, Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology, Polymer, 112, (2017), p. 208-218. https://doi.org/10.1016/j.polymer.2017.02.015.
    41. Z. GmbH, CO2 in industrial processes: Personal and plant protection by reliable carbon dioxide monitoring, 2020. Available from: https://zila.de/en/blog/item/71-co2-in-industrial-processes-personal-and-plant-protection-by-reliable-carbon-dioxide-monitoring.
    42. W. Zhai, J. Jiang, C.B. Park, A review on physical foaming of thermoplastic and vulcanized elastomers, Polymer Reviews, 62(1), (2022), p. 95-141. https://doi.org/10.1080/15583724.2021.1897996.
    43. H. Ventura, L. Sorrentino, E. Laguna-Gutierrez, M.A. Rodriguez-Perez, M. Ardanuy, Gas Dissolution Foaming as a Novel Approach for the Production of Lightweight Biocomposites of PHB/Natural Fibre Fabrics, Polymers, 10(3), (2018),p. 249.
    https://doi.org/10.3390/polym10030249
    77
    44. S.N. Leung, C.B. Park, H. Li, Effects of nucleating agents shapes and interfacial properties on cell nucleation, Journal of Cellular Plastics, 46(5), (2010), p. 441-460.
    https://doi.org/10.1177/0021955x10369418.
    45. A. Wong, C.B. Park, The effects of extensional stresses on the foamability of polystyrene–talc composites blown with carbon dioxide, Chemical Engineering Science, 75, (2012), p. 49-62. https://doi.org/https://doi.org/10.1016/j.ces.2012.02.040.
    46. S.N. Leung, A. Wong, L.C. Wang, C.B. Park, Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents, Journal of Supercritical Fluids, 63, (2012), p. 187-198. https://doi.org/10.1016/j.supflu.2011.12.018.
    47. J.S. Colton, N.P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations, Polymer Engineering and Science, 27(7), (1987), p. 485-492. https://doi.org/https://doi.org/10.1002/pen.760270702.
    48. S.N.S. Leung, Mechanisms of Cell Nucleation, Growth, and Coarsening in Plastic Foaming: Theory, Simulation, and Experiment, University of Toronto (Canada), Ann Arbor, 2009, p. 240.
    49. A. Khaleghi, S.M. Sadrameli, M. Manteghian, Thermodynamic and kinetics investigation of homogeneous and heterogeneous nucleation, Reviews in Inorganic Chemistry, 40(4), (2020), p. 167-192. https://doi.org/doi:10.1515/revic-2020-0004.
    50. S.N. Leung, C.B. Park, D. Xu, H. Li, R.G. Fenton, Computer Simulation of Bubble-Growth Phenomena in Foaming, Industrial & Engineering Chemistry Research, 45(23), (2006), p. 7823-7831.
    https://doi.org/10.1021/ie060295a.
    51. S. Ito, K. Matsunaga, M. Tajima, Y. Yoshida, Generation of microcellular polyurethane with supercritical carbon dioxide, Journal of Applied Polymer Science, 106(6), (2007), p. 3581-3586.
    https://doi.org/10.1002/app.26854.
    52. S. Sankarpandi, C.B. Park, A.K. Ghosh, CO2-induced crystal engineering of polylactide and the development of a polymeric nacreous microstructure,
    78
    Polymer International, 66(11), (2017), p. 1587-1597. https://doi.org/10.1002/pi.5417.
    53. S. Sankarpandi, C.B. Park, A.K. Ghosh, CO2-induced crystallization of polylactide and its self-templating ‘stack of coins’ crystalline microstructure, Polymer Engineering & Science, 57(4), (2017), p. 365-373. https://doi.org/10.1002/pen.24431.
    54. J.G. Drobny, Handbook of Thermoplastic Elastomers, Second Edition. Ed., ELSEVIER, Amsterdam, 2014.
    55. A. Pattanayak, S.C. Jana, Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties, Polymer, 46(14), (2005), p. 5183-5193.
    https://doi.org/10.1016/j.polymer.2005.04.035.
    56. N.J. Hossieny, M.R. Barzegari, M. Nofar, S.H. Mahmood, C.B. Park, Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams, Polymer, 55(2), (2014), p. 651-662.
    https://doi.org/10.1016/j.polymer.2013.12.028.
    57. M. Nofar, E. Büşra Küçük, B. Batı, Effect of hard segment content on the microcellular foaming behavior of TPU using supercritical CO2, The Journal of Supercritical Fluids, 153, (2019), p. 104590. https://doi.org/https://doi.org/10.1016/j.supflu.2019.104590.
    58. M.R. Barzegari, N. Hossieny, D. Jahani, C.B. Park, Characterization of hard-segment crystalline phase of poly(ether-block-amide) (PEBAX®) thermoplastic elastomers in the presence of supercritical CO2 and its impact on foams, Polymer, 114, (2017), p. 15-27.
    https://doi.org/10.1016/j.polymer.2017.02.088.
    59. K.A. Arora, A.J. Lesser, T.J. McCarthy, Preparation and Characterization of Microcellular Polystyrene Foams Processed in Supercritical Carbon Dioxide, Macromolecules, 31(14), (1998), p. 4614-4620. https://doi.org/10.1021/ma971811z.
    60. R. Pop-Iliev, F. Liu, G. Liu, C.B. Park, Rotational Foam Molding of Polypropylene with Control of Melt Strength, Advances in Polymer Technology, 22(4), (2003), p. 280-296.
    https://doi.org/10.1002/adv.10056.
    79
    61. M. Hernández-Alamilla, A. Valadez-Gonzalez, The effect of two commercial melt strength enhancer additives on the thermal, rheological and morphological properties of polylactide %J Journal of Polymer Engineering, 36(1), (2016), p. 31-41.
    https://doi.org/doi:10.1515/polyeng-2014-0322.
    62. H.E. Naguib, C.B. Park, N. Reichelt, Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams, Journal of Applied Polymer Science, 91(4), (2004), p. 2661-2668. https://doi.org/10.1002/app.13448.
    63. Y. Fukasawa, T. Okuda, T. Shimada, M. Hattori, H. Saito, Mechanism of Permeability Modification in Polyethylene Foams, Journal of Cellular Plastics, 44(2), (2008), p. 107-123.
    https://doi.org/10.1177/0021955X07081649.
    64. B.J. Briscoe, T. Savvas, Gas diffusion in dense poly(ethylene) foams, Advanced in Polymer Technology, 17(2), (1998), p. 87-106. https://doi.org/https://doi.org/10.1002/(SICI)1098-2329(199822)17:2<87::AID-ADV1>3.0.CO;2-D.
    65. R. Zhang, K. Huang, S. Hu, Q. Liu, X. Zhao, Y. Liu, Improved cell morphology and reduced shrinkage ratio of ETPU beads by reactive blending, Polymer Testing, 63, (2017), p. 38-46. https://doi.org/10.1016/j.polymertesting.2017.08.007.
    66. A. Huang, X. Peng, L.-S. Turng, In-situ fibrillated polytetrafluoroethylene (PTFE) in thermoplastic polyurethane (TPU) via melt blending: Effect on rheological behavior, mechanical properties, and microcellular foamability, Polymer, 134, (2018), p. 263-274. https://doi.org/10.1016/j.polymer.2017.11.053.
    67. J.H. Ahn, J.S. Hong, K.H. Ahn, Mechanically enhanced poly(lactic acid)/polyurethane blend with interfacial-localized clay particles, Journal of Applied Polymer Science, 139(27), (2022), e52426. https://doi.org/10.1002/app.52466.
    68. S. Jafari Horastani, M. Karevan, M. Ghane, Structural, thermal, and viscoelastic response of nanoclay reinforced polylactic acid/thermoplastic polyurethane shape-memory nanocomposites of low transition temperature, Polymers for
    80
    Advanced Technologies, 33(9), (2022), p. 2720-2735. https://doi.org/10.1002/pat.5727.
    69. S.-K. Yeh, R. Rangappa, T.H. Hsu, S. Utomo, Effect of extrusion on the foaming behavior of thermoplastic polyurethane with different hard segments, Journal of Polymer Research, 28(7), (2021).
    https://doi.org/10.1007/s10965-021-02604-z.
    70. M. Haurat, M. Dumon, Amorphous Polymers' Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO2, a Way to Fabricate Porous Polymers from Macro to Nano Porosities in Batch or Continuous Processes, Molecules, 25(22), (2020), p. 5320. https://doi.org/10.3390/molecules25225320.
    71. Y.T. Guo, N. Hossieny, R.K.M. Chu, C.B. Park, N.Q. Zhou, Critical processing parameters for foamed bead manufacturing in a lab-scale autoclave system, Chemical Engineering Journal, 214, (2013), p. 180-188. https://doi.org/10.1016/j.cej.2012.10.043.
    72. H. Wang, S.L. Zhang, M. Nofar, R. Barzegari, C.B. Park, Z.H. Jiang, Development of bead foaming technology for high performance peek I. Thermal analysis, Annual Technical Conference - ANTEC, Conference Proceedings, (2012), p. 2355-2359.
    73. E.K. Lee, Novel Manufacturing Processes for Polymer Bead Foams, Mechanical and Industrial Engineering, University of Toronto, (2010).
    74. M. Nofar, A. Ameli, C.B. Park, A novel technology to manufacture biodegradable polylactide bead foam products, Materials and Design, 83, (2015), p. 413-421.
    https://doi.org/10.1016/j.matdes.2015.06.052.
    75. U. Keppeler, Method for production expanded polyester foam particles, WO2015052020.
    76. D. Raps, N. Hossieny, C.B. Park, V. Altstädt, Past and present developments in polymer bead foams and bead foaming technology, Polymer, 56, (2015), p. 5-19. https://doi.org/http://dx.doi.org/10.1016/j.polymer.2014.10.078.(與84重複)
    77. C.P. Park, G.A. Garcia, R.G. Watson, Amorphous polyester foam, US5475037A.
    81
    78. O. Kriha, K. Hahn, P. Desbois, V. Warzelhan, H. Ruckdäschel, M. Hofmann, C. Exner, R. Hingmann, Expandable pelletized polyamide material, US20110294910A1.
    79. M. Naoki, Hata, N., Michi, H., Yuichi, G., EXPANDED PARTICLES AND MOLDED FOAM (PC 泡珠), JP 2016188321.
    80. T. Köppl, D. Raps, V. Altstädt, E-PBT - Bead foaming of poly(butylene terephthalate) by underwater pelletizing, Journal of Cellular Plastics, 50(5), (2014), p. 475-487.
    https://doi.org/10.1177/0021955X14528524.
    81. T. Richter, S. Schwarz-Barac, K. Bernhard, I. Liebl, M. Schnabel, S. SCHWEITZER, D. Poppe, J. Vorholz, Bead polymer for producing pmi foams, US20150361236A1.
    82. C. Schips, K. Hahn, I. Bellin, D. Longo, J. Assmann, A. Gietl, J. Gassan, Bead foam moldings composed of expandable acrylonitrile copolymers, US20100190877A1.
    83. A.H. Behravesh, C.B. Park, E.K. Lee, Formation and characterization of polyethylene blends for autoclave-based expanded-bead foams, Polymer Engineering and Science, 50(6), (2010), p. 1161-1167. https://doi.org/10.1002/pen.21641.
    84. J. Murphy, Additives for Plastics Handbook (Second Edition), CHAPTER 2 - Types of Additive and the Main Technical Trends, Elsevier Science, Amsterdam, (2001), p. 5-11.
    https://doi.org/https://doi.org/10.1016/B978-185617370-4/50004-X.
    85. R.H. Hansen, W.M. Martin, Novel methods for the production of foamed polymers ii. nucleation of dissolved gas by finely-divided metals, Journal of Polymer Science Part B: Polymer Letters, 3(4), (1965), p. 325-330. https://doi.org/10.1002/pol.1965.110030416.
    86. F. Avalos-Belmontes, L.F. Ramos-deValle, A.B. Espinoza-Martínez, J.G. Martínez-Colunga, E. Ramírez-Vargas, S. Sánchez-Valdés, J.C. Ortíz-Cisneros, E.E. Martínez-Segovia, F.I. Beltrán-Ramírez, Effect of Different Nucleating Agents on the Crystallization of Ziegler-Natta Isotactic Polypropylene, International Journal of Polymer Science, (2016), p. 1-9. https://doi.org/10.1155/2016/9839201.
    82
    87. K. Mai, K. Wang, Z. Han, H. Zeng, Study on the thermal stability of heterogeneous nucleation effect of polypropylene nucleated by different nucleating agents, Journal of Applied Ploymer Science, 83(8), (2002), p. 1643-1650.
    https://doi.org/https://doi.org/10.1002/app.10071.
    88. S.N. Leung, A. Wong, C.B. Park, J.H. Zong, Ideal surface geometries of nucleating agents to enhance cell nucleation in polymeric foaming processes, Journal of Applied Polymer Science, 108(6), (2008), p. 3997-4003. https://doi.org/10.1002/app.28038.
    89. A. Wong, H. Guo, V. Kumar, C.B. Park, N.P. Suh, Microcellular Plastics, Encyclopedia of Polymer Science and Technology, (2016), p. 1-57. https://doi.org/10.1002/0471440264.pst468.pub2.
    90. L. Chen, K. Blizard, R. Straff, X. Wang, Effect of Filler Size on Cell Nucleation during Foaming Process, Journal of Cellular Plastics, 38(2), (2002), p. 139-148. https://doi.org/10.1177/0021955X02038002245.
    91. L.J. Lee, C.C. Zeng, X. Cao, X.M. Han, J. Shen, G.J. Xu, Polymer nanocomposite foams, Composites Science and Technology, 65(15-16), (2005), p. 2344-2363.
    https://doi.org/10.1016/j.compscitech.2005.06.016.
    92. 越.及. 林達也, 熱可塑性ポリウレタン発泡粒子及び熱可塑性ポリウレタン発泡粒子成形体, JP6828979B2.
    93. R.B. McClurg, Design criteria for ideal foam nucleating agents, Chemical Engineering Science, 59(24), (2004), p. 5779-5786. https://doi.org/https://doi.org/10.1016/j.ces.2004.06.025.
    94. L. Sun, W.J. Boo, H.-J. Sue, A. Clearfield, Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios, New Journal of Chemistry, 31(1), (2007), p. 39-43.
    https://doi.org/10.1039/B604054C.
    95. M. Alhawat, A. Ashour, A. El-Khoja, Properties of concrete incorporating different nano silica particles, Materials Research Innovations, 24(3), (2020), p. 133-144.
    https://doi.org/10.1080/14328917.2019.1616140.
    96. M.J. Cadena, J.C. Parker, A. Raman, R.G. Reifenberger, Fabrication and characterization of mesopores in a silica gel matrix, Materials Research
    83
    Innovations, 22(4), (2018), p. 242-246. https://doi.org/10.1080/14328917.2017.1304676.
    97. S. Jangra, S. Duhan, M.S. Goyat, V. Chhokar, S. Singh, A. Manuja, Influence of functionalized mesoporous silica in controlling azathioprine drug release and cytotoxicity properties, Materials Research Innovations, 21(7), (2017), p. 413-425.
    https://doi.org/10.1080/14328917.2016.1265257.
    98. Evonik AG, Aerosil Fumed Silica Technical Overview.
    99. E.A. Gorrepati, P. Wongthahan, S. Raha, H.S. Fogler, Silica Precipitation in Acidic Solutions: Mechanism, pH Effect, and Salt Effect, Langmuir, 26(13), (2010), p. 10467-10474.
    https://doi.org/10.1021/la904685x.
    100. H. Barthel, L. Rösch, J. Weis, Fumed Silica - Production, Properties, and Applications, Organosilicon Chemistry Set, 2005, p. 761-778. https://doi.org/https://doi.org/10.1002/9783527620777.ch91a.
    101. F. Akhter, D.S.A. Soomro, A.R. Jamali, V.J. Inglezakis, Structural, Morphological and Physiochemical Analysis of SiC8H20O4/C2H5O/C7H16 Modified Mesoporous Silica Aerogels, Physical Chemistry Research, 11(1), (2023), p. 1-8.
    https://doi.org/10.22036/pcr.2022.332609.2044.
    102. H. Cheng Liu, J. Xi Wang, Y. Mao, R. San Chen, The preparation and growth of colloidal particles of concentrated silica sols, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 74(1), (1993), p. 7-13. https://doi.org/https://doi.org/10.1016/0927-7757(93)80393-S.
    103. F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review, Journal of Aerosol Science, 29(5-6), (1998), p. 511-535. https://doi.org/https://doi.org/10.1016/S0021-8502(97)10032-5.
    104. P. Singh, S. Srivastava, S.K. Singh, Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications, ACS Biomaterials Science & Engineering, 5(10), (2019), p. 4882-4898. https://doi.org/10.1021/acsbiomaterials.9b00464.
    84
    105. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, 26(1), (1968), p. 62-69.
    https://doi.org/10.1016/0021-9797(68)90272-5.
    106. Y. Wong, L. Zhu, W. Teo, Y. Tan, Y. Yang, C. Wang, H. Chen, Revisiting the Stober Method: In homogeneity in Silica Shells, Journal of the American Chemical Society, 133(30), (2011), p. 11422-11425. https://doi.org/10.1021/ja203316q.
    107. C.A.R. Costa, C.A.P. Leite, F. Galembeck, Size Dependence of Stöber Silica Nanoparticle Microchemistry, The Journal of Physical Chemistry B, 107(20), (2003), p. 4747-4755.
    https://doi.org/10.1021/jp027525t.
    108. K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J.P. Delville, M.H. Delville, Smart Control of Monodisperse Stöber Silica Particles: Effect of Reactant Addition Rate on Growth Process, Langmuir, 21(4), (2005), p. 1516-1523.
    https://doi.org/10.1021/la048569r.
    109. N. Shimura, M. Ogawa, Preparation of surfactant templated nanoporous silica spherical particles by the Stöber method. Effect of solvent composition on the particle size, Journal of Materials Science, 42(14), (2007), p. 5299-5306. https://doi.org/10.1007/s10853-007-1771-y.
    110. A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Synthesis and surface functionalization of silica nanoparticles for nanomedicine, Surface Science Reports, 69(2-3), (2014), p. 132-158. https://doi.org/https://doi.org/10.1016/j.surfrep.2014.07.001.
    111. W. Li, D. Zhao, Extension of the Stöber Method to Construct Mesoporous SiO2 and TiO2 Shells for Uniform Multifunctional Core–Shell Structures, Advanced Materials, 25(1), (2013), p. 142-149. https://doi.org/https://doi.org/10.1002/adma.201203547.
    112. S. Rezaei, I. Manoucheri, R. Moradian, B. Pourabbas, One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication, Chemical Engineering Journal, 252, (2014), p. 11-16. https://doi.org/https://doi.org/10.1016/j.cej.2014.04.100.
    85
    113. F.J. Arriagada, K. Osseo-Asare, Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration, Journal of Colloid and Interface Science, 211(2), (1999), p. 210-220.
    https://doi.org/10.1006/jcis.1998.5985.
    114. F.J. Arriagada, K. Osseo-Asare, Controlled hydrolysis of tetraethoxysilane in a nonionic water-in-oil microemulsion: a statistical model of silica nucleation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 154(3), (1999), p. 311-326.
    https://doi.org/https://doi.org/10.1016/S0927-7757(98)00870-X.
    115. K. Chandra Hembram, S. Prabha, R. Chandra, B. Ahmed, S. Nimesh, Advances in preparation and characterization of chitosan nanoparticles for therapeutics, Artificial Cells, Nanomedicine, and Biotechnology, 44(1), (2016), p. 305-314. https://doi.org/10.3109/21691401.2014.948548.
    116. D. Capco, Y. Chen, Nanomaterial: Impacts on Cell Biology and Medicine, (2014).
    https://doi.org/10.1007/978-94-017-8739-0.
    117. W. Chuang, J. Geng-sheng, P. Lei, Z. Bao-lin, L. Ke-zhi, W. Jun-long, Influences of surface modification of nano-silica by silane coupling agents on the thermal and frictional properties of cyanate ester resin, Results in Physics, 9, (2018), p. 886-896.
    https://doi.org/https://doi.org/10.1016/j.rinp.2018.03.056.
    118. J. Vega-Baudrit, V. Navarro-Bañón, P. Vázquez, J.M. Martín-Martínez, Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives, International Journal of Adhesion and Adhesives, 26(5), (2006), p. 378-387. https://doi.org/https://doi.org/10.1016/j.ijadhadh.2005.06.004.
    119. G. Wang, G. Fu, T. Gao, H. Kuang, R. Wang, F. Yang, W. Jiao, L. Hao, W. Liu, Preparation and characterization of novel film adhesives based on cyanate ester resin for bonding advanced radome, International Journal of Adhesion and Adhesives, 68, (2016), p. 80-86. https://doi.org/https://doi.org/10.1016/j.ijadhadh.2016.02.004.
    120. J. Zhang, S. Hu, G. Zhan, X. Tang, Y. Yu, Biobased nanocomposites from clay modified blend of epoxidized soybean oil and cyanate ester resin, Progress in
    86
    Organic Coatings, 76(11), (2013), p. 1683-1690. https://doi.org/https://doi.org/10.1016/j.porgcoat.2013.07.017.
    121. T. Instruments, Q400 TMA. Available from: https://www.tainstruments.com/q400/?lang=zh-hant.
    122. V. Kumar, N.P. Suh, A process for making microcellular thermoplastic parts, Polymer Engineering and Science, 30(20), (1990), p. 1323-1329. https://doi.org/10.1002/pen.760302010.
    123. J. Jiang, F. Liu, X. Yang, Z. Xiong, H. Liu, D. Xu, W. Zhai, Evolution of ordered structure of TPU in high-elastic state and their influences on the autoclave foaming of TPU and inter-bead bonding of expanded TPU beads, Polymer, 228, (2021), p. 123872. https://doi.org/10.1016/j.polymer.2021.123872.
    124. R.W. Seymour, S.L. Cooper, DSC studies of polyurethane block polymers, Journal of Polymer Science Part B: Polymer Letters, 9(9), (1971), p. 689-694.
    https://doi.org/https://doi.org/10.1002/pol.1971.110090911.
    125. L. Wei, A.G. McDonald, Thermophysical properties of bacterial poly(3-hydroxybutyrate): Characterized by TMA, DSC, and TMDSC, Journal of Applied Materials, 132(34), (2015), p. 42412.
    https://doi.org/https://doi.org/10.1002/app.42412.
    126. A.S. Altorbaq, A.A. Krauskopf, X. Wen, R.A. Pérez-Camargo, Y. Su, D. Wang, A.J. Müller, S.K. Kumar, Crystallization kinetics and nanoparticle ordering in semicrystalline polymer nanocomposites, Progress in Polymer Science, 128 (2022), p. 101527.
    https://doi.org/10.1016/j.progpolymsci.2022.101527.
    127. M. Nofar, C.B. Park, Poly (lactic acid) foaming, Progress in Polymer Science, 39(10), (2014), p. 1721-1741. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2014.04.001.
    128. T. Hayashi, N. KOSHITA, M. Oikawa, Thermoplastic Polyurethane Foam Particle Molded Article And Method For Producing Same, And Thermoplastic Polyurethane Foam Particles, WO2018003316.
    129. S. Hassanajili, M.T. Sajedi, Fumed silica/polyurethane nanocomposites: effect of silica concentration and its surface modification on rheology and mechanical properties, Iranian Polymer Journal, 25(8), (2016), p. 697-710. https://doi.org/10.1007/s13726-016-0458-0.
    87
    130. B.J. Briscoe, S. Zakaria, Gas-induced damage in elastomeric composites, Journal of Materials Science, 25(6), (1990), p. 3017-3023. https://doi.org/10.1007/BF00584920.
    131. 曾子娟, 以二氧化碳批次發泡不同軟段多元醇組成熱塑性聚氨酯之研究, 材料科學與工程系, 國立臺灣科技大學, 台北市, (2016), p. 106.
    132. M. Keshtkar, M. Nofar, C.B. Park, P.J. Carreau, Extruded PLA/clay nanocomposite foams blown with supercritical CO2, Polymer, 55(16), (2014) p. 4077-4090.
    https://doi.org/https://doi.org/10.1016/j.polymer.2014.06.059.
    133. C.-T. Yang, K.L. Lee, S.T. Lee, Dimensional Stability of LDPE Foams: Modeling and Experiments, Journal of Cellular Plastics, 38(2), (2002), p. 113-128.
    https://doi.org/10.1177/0021955X02038002243.
    134. M. Perez-Blanco, J.R. Hammons, R.P. Danner, Measurement of the solubility and diffusivity of blowing agents in polystyrene, Journal of Applied Polymer Science, 116(4), (2010), p. 2359-2365.
    https://doi.org/10.1002/app.31740.

    無法下載圖示 全文公開日期 2028/01/03 (校內網路)
    全文公開日期 2028/01/03 (校外網路)
    全文公開日期 2028/01/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE