簡易檢索 / 詳目顯示

研究生: 徐勝祥
Sheng-Siang Syu
論文名稱: 太陽光電熱能複合系統結合反射板之系統設置參數設計最佳化與實務驗證
Optimization and Practical Verification of System Configuration Parameter Design for a Photovoltaic Thermal System Combined with a Reflector
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
蘇德利
Te-Li Su
張嘉德
Chia-Der Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 139
中文關鍵詞: 太陽光電熱能複合系統反射板田口法變異數分析主成份分析反應曲面法迴歸分析最陡坡度法TRNSYS
外文關鍵詞: Steepest Descent Method
相關次數: 點閱:315下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本太陽光電熱能複合系統結合反射板之系統參數最佳化之研究,係探討增置南北兩片反射板及調整水循環系統對系統之電效率及熱效率增益,建置此反射板需考慮多項參數,如:反射板材質、反射板尺寸及反射板角度等,在水循環系統調整方面選擇調整循環水流速及出入水口溫度兩項。
    因每季太陽之起落角度位置差異,本研究為使研究更加嚴謹,分別於11至1月、2至4月、5至7月及8至10月,實驗運用田口直交表規劃實驗,分析其發電效率及儲熱效率之最佳化參數,且利用變異數分析檢視各參數之影響力,並使用主成份分析法計算各組實驗之主成份得點,再將結果利用迴歸分析建立反應曲面法模型,檢視各因子間關係圖及影響主成份得點程度,最後使用最陡坡度求得最佳化參數,並進行確認實驗驗證理論。
    此外本研究將確認實驗之環境資料輸入對應公式求取當日之逐時日照量,再依反射板理論計算增置反射板後之日照量增益值,並利用增益值代入模擬軟體TRNSYS,模擬電能輸出及儲水槽水溫,計算發電效率及儲熱效率並與實體確認實驗做比較,於三季確認實驗中反射板增置前後發電量可增加約17%及儲熱量可增加約33%,換算發電量可增加約0.144kWh及儲水槽溫度可增加約2.16℃,且經研究證實後預測誤差小於5%,可做為往後研究發展之參考,有助於提升目前太陽能相關產品之效率。


    This study optimized the system parameters for a photovoltaic thermal system (PV/T System) combined with reflectors, and discussed the gain of electrical efficiency and thermal efficiency on the system by adding two reflectors on each of the south and north sides, as well as by adjusting the water circulation system. Multiple parameters must be considered for the installation of a reflector, such as its material, size, and angle of installation. For the adjustment of the water circulation system, the water circulation speed and temperature are the main parameters. As the rising angle and position of the sun varies each season, in order to make this study more rigorous, experiments were conducted from November to January, February to April, May to July and August to October. The Taguchi Method was applied for experimental planning to analyze the optimal parameters for electrical efficiency and thermal efficiency. Analysis of Variance (ANOVA) was conducted to examine the influential power of the parameters, and Principal Component Analysis (PCA) was used to calculate the principal component point of each experiment. The results were analyzed through regression analysis to construct a Response Surface Methodology (RSM) model with which to examine the relation diagram among the factors and the degree of influence on the principal component point. Finally, the Steepest Descent Method was used to obtain the optimal parameters and validate the experimental theories. This study inputted the verified environmental data from the experiment into the corresponding equations to obtain the hourly sunshine amount, and applied the reflector theory to calculate the gain of sunshine amount after installing the reflector. Moreover, the gain was inputted into the simulation software TRNSYS to simulate the electrical power output and the water temperature in the water storage tank, as well as to calculate the electrical efficiency and thermal efficiency. The results were then compared with the experiment. The confirmatory experiments of the three seasons found that the electrical energy after installing the reflector increased by 17%, and the thermal energy increased by 33%. After conversion, the power generation could be increased by 0.144kWh and the water temperature in the water tank could be increased by 2.16℃. The experiment confirmed that the prediction error was less than 5%. The results could serve as a reference for future studies to improve the efficiency of solar power related products.

    目錄 摘要 I Abstract III 致謝 V 目錄 VII 圖索引 X 表索引 XVI 第1章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 太陽光電熱能複合系統 3 1.3.2 系統模擬理論 6 1.3.3 參數最佳化理論 7 1.4 研究流程 10 第2章 太陽能光電熱能複合系統設置 11 2.1 太陽能環境評估 11 2.1.1 經緯座標系統與天赤道座標系統 11 2.1.2 逐時太陽方位角、仰角計算 13 2.1.3 逐時日照量[18] 14 2.2 反射板設置原理與反射日照量 16 2.3 太陽光電熱能複合系統介紹 23 2.3.1 太陽光電熱能複合系統介紹 23 2.3.2 太陽光電熱能複合系統性能介紹 26 2.4 TRNSYS軟體介紹 27 第3章 最佳化理論 29 3.1 田口法實驗設計[36] 29 3.1.1 直交表 29 3.1.2 S/N比 32 3.2 變異數分析[27] 33 3.3 主成份分析法[37] 37 3.3.1 主成份原理與步驟 37 3.4 反應曲面法[32] 40 3.4.1 實驗設計法 40 3.4.2 迴歸分析 43 3.4.3 最佳化程序 45 第4章 實驗規劃 46 4.1 太陽光電熱能複合系統 46 4.2 反射板架設 50 4.3 實驗步驟 53 4.3.1 實驗流程圖 56 第5章 實驗結果 57 5.1 太陽光電熱能複合系統參數最佳化 57 5.1.1 11至1月實驗數據分析 58 5.1.2 2至4月實驗數據分析 71 5.1.3 5至7月實驗數據分析 84 5.1.4 8至10月實驗數據分析 97 5.2 太陽光電熱能複合系統最佳化確認實驗 110 5.2.1 11至1月確認實驗 111 5.2.2 2至4月確認實驗 116 5.2.3 5至7月確認實驗 121 5.2.4 8至10月確認實驗 125 第6章 結論 130 6.1 太陽光電熱能複合系統參數最佳化 130 6.2 太陽光電熱能複合系統最佳化確認實驗 132 6.3 環境評估及系統模擬 133 參考文獻 135

    參考文獻
    1. 經濟部能源局,2012年能源產業技術白皮書,中華民國 (2012)。
    2. 張克勤,鍾光民,李清安,成功的再生能源運用-太陽能熱水器,科學發展,44期 (2010)。
    3. B. J. Huang, T. H. Lin, W. C. Hung and F. S. Sun, “Performance Evaluation of Solar Photovoltaic/Thermal Systems”, Solar Energy, Vol. 70, pp. 443-448 (2001).
    4. H. A. Zondag, D. W. De Vries, W. G. J. Van Helden, R. J. C. Van Zolingen and A. A. Van Steenhoven, “The Thermal and Electrical Yield of A PV-Thermal Collector”, Solar Energy, Vol. 72, pp. 113-128 (2002).
    5. A. Tiwari and M. S. Sodha, “Performance Evaluation of Solar PV/T System: An Experimental Validation”, Solar Energy, Vol. 80, pp. 751-759 (2006).
    6. W. He, Y. Zhang and J. Ji, “Comparative Experiment Study on Photovoltaic and Thermal Solar System Under Natural Circulation of Water”, Applied Thermal Engineering, Vol. 31, pp. 3369-3376 (2011).
    7. J. F. Zhao, Z. Y. Luo, J. C. Cai, H. Wang and M. J. Ni, “Overview of Photovoltaic/Thermal Technology”, Proceedings of the CSEE, Vol. 29, pp. 0258-8013 (2009).
    8. T. T. Chow, “A Review on Photovoltaic/Thermal Hybrid Solar Technology”, Applied Energy, Vol. 87, pp. 365-379 (2010).
    9. K. Nagano, T. Mochida, K. Shimakura, K. Murashita and S. Takeda, “Development of Thermal-Photovoltaic Hybrid Exterior Wallboards Incorporating PV Cells in and Their Winter Performances”, Solar Energy Materials and Solar Cells, Vol. 77, pp. 265-282 (2003).
    10. H. Davidsson, B. Perers and B. Karlsson, “System Analysis of A Multifunctional PV/T Hybrid Solar Window”, Solar Energy, Vol. 86, pp. 903-910 (2012).
    11. V. V. Tyagi, S. C. Kaushik and S. K. Tyagi, “Advancement in Solar Photovoltaic/Thermal (PV/T) Hybrid Collector Technology”, Solar Energy, Vol. 16, pp. 1383-1398 (2012).
    12. X. Zhang, X. Zhao, S. Smith, J. Xu and X. Yu, “Review of R&D Progress and Practical Application of The Solar Photovoltaic/Thermal (PV/T) Technologies”, Renewable and Sustainable Energy Reviews, Vol. 16, pp. 599-617 (2012).
    13. J. W. Bollentin and R. D. Wilk, “Modeling The Solar Irradiation on Flat Plate Collectors Augmented with Planar Reflectors”, Solar Energy, Vol. 55, pp. 343-354 (1995).
    14. Y. Tripanagnostopoulos, T. H. Nousia, M. Souliotis and P. Yianoulis, “Hybrid Photovoltaic/Thermal Solar Systems”, Solar Energy, Vol. 72, pp. 217-234 (2002).
    15. B. Robles-Ocampo, E. Ruiz-Vasquezb, H. Canseco-Sanchez, R. C. Cornejo-Mezac, G. Trapaga-Martinezd, F. J. Garcia-Rodrigueza, J. Gonzalez-Hernaindeze and Yu. V. Vorobievd, “Photovoltaic/Thermal Solar Hybrid System with Bifacial PV Module and Transparent Plane Collector”, Solar Energy Materials and Solar Cells, Vol. 91, pp. 1966-1971 (2007).
    16. L. T. Kostic, T. M. Pavlovic and Z. T. Pavlovic, “Optimal Sesign of Orientation of PV/T Collector with Reflectors”, Applied Energy, Vol. 87, pp. 3023-3029 (2010).
    17. M. Souliotis, P. Quinlan, M. Smyth, Y. Tripanagnostopoulos, A. Zacharopoulos, M. Ramirez and P. Yianoulis, “Heat Retaining Integrated Collector Storage Solar Water Heater with Asymmetric CPC Reflector”, Solar Energy, Vol. 85, pp. 2474-2487 (2011).
    18. Kreith/Kreider,太陽能工程原理,科技圖書股份有限公司 (1982)。
    19. W. S. Ou, M. C. Ho, J. L. Chen, J. F. Chen and S. C. Lo, “The Study on the Typical Radiation for Solar Architecture Design of Taiwan”, Journal of Architecture, Vol. 64, pp. 103-118 (2008).
    20. 經濟部標準檢驗局,自然循環式太陽能熱水系統檢驗法,CNS12558 (1989)。
    21. 經濟部標準檢驗局,太陽光電系統之性能監測-量測、數據交換與分析指南,CNS15119 (2007)。
    22. U. Jordan and K. Vajen, “Influence of The DHW Load Profile on The Fractional Energy Savings: A Case Study of A Solar Combi-System With TRNSYS Simulations”, Solar Energy, Vol. 69, pp. 197-208 (2000).
    23. S. A. Kalogirou, “Use of TRNSYS for Modeling and Simulation of A Hybrid Pv–Thermal Solar System for Cyprus”, Renewable Energy, Vol. 23, pp. 247-260 (2001).
    24. H. T. Lin and K. T. Huang, “The Research and Application of Typical Meteorological Years of Taiwan”, Journal of Architecture, Vol. 53, pp. 79-94 (2005).
    25. 吳俊諆,吳信宗,太陽電熱複合系統之分析,國立中央大學,能源工程研究所,碩士論文 (2009)。
    26. 吳俊諆,陳雅鈴,使用TRNSYS 模擬與驗證聚光型太陽光電系統電力性能,國立中央大學,能源工程研究所,碩士論文 (2011)。
    27. 郭中豐,梁辛瑋,應用雷射刻劃微晶矽薄膜太陽能電池絕緣製程參數最佳化之研究,國立台灣科技大學,自動化及控制研究所,碩士論文 (2009)。
    28. 郭中豐,張珀瑞,平板式集熱器製程參數最佳化之研究與實務驗證,國立台灣科技大學,自動化及控制研究所,碩士論文 (2010)。
    29. 郭中豐,劉瑞民,太陽光電熱能複合系統之最佳化參數設計與實務驗證,國立台灣科技大學,自動化及控制研究所,碩士論文 (2012)。
    30. 何文獻,蔡進聰,林清煌,周志宏,應用反應曲面法與基因演算法於船體結構構件斷面尺寸之最佳化設計,中國造船暨輪機工程學刊,第二十六卷第一期 (2007)。
    31. 盧昆宏,黃雋心,粘孝堉,應用灰關聯分析、田口法與反應曲面法於多重品質特性最佳化,品質學會高雄分會,92頁-103頁 (2009)。
    32. 陳榮盛,謝岳哲,以反應曲面法分析相同尺寸晶片堆疊式封裝之最佳化設計,國立成功大學工程科學系碩士論文 (2008)。
    33. 郭中豐,陳秋吟,聚乳酸複合材料之改質特性分析與加工製程參數最佳化設計之研究,國立台灣科技大學,材料科學與工程所,碩士論文 (2012)。
    34. 陳輝樺,http://aeea.nmns.edu.tw/aeea/courses/2006_courses/,AEEA天文教育資訊網 (2006)。
    35. 氣象局,http://www.cwb.gov.tw/V7/astronomy/cdata/season.htm,交通部中央氣象局 (2013)。
    36. 李輝煌,田口方法-品質設計的原理與實務,高利圖書有限公司,台北 (2011)。
    37. 郭中豐,黃智達,熱超音波覆晶接合技術用於發光二極體製程參數最佳化之研究,國立台灣科技大學,高分子所,碩士論文 (2007)。
    38. M. Souliotis, Y. Tripanagnostopoulos, S. A. Kalogirou, G. Florides, M. Ekhrawat and D. Tsipas, “Experimental Study of A Thermosiphonic Hybrid PV/T Solar System”, Proceedings of SOLPOL (2008).
    39. T. H. Guan, “The Potential of Solar Energy Systems: The Hybrid Photovoltaic Thermal Example”, ESI Bulletin, Vol. 3, Issue 1 (2010).

    無法下載圖示 全文公開日期 2018/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE