簡易檢索 / 詳目顯示

研究生: 梁宇誠
Yu-Cheng Liang
論文名稱: 行波管之高壓直流驅動電源系統設計與實現
Design and Implementation of High Voltage DC Power System for Driving Traveling Wave Tube
指導教授: 林長華
Chang-Hua Lin
口試委員: 王見銘
Chien-Ming Wang
陳偉倫
Woei-Luen Chen
林長華
Chang-Hua Lin
劉添華
Tian-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 177
中文關鍵詞: 行波管驅動電源電流饋入推挽式轉換器並聯諧振電路主動箝位返馳式轉換器交錯式相位互補ZigBee無線通訊
外文關鍵詞: traveling wave tube power supply, current-fed push-pull converter, parallel resonant circuit, active clamp flyback converter, interleaved phase-shifted, ZigBee wireless communication
相關次數: 點閱:337下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製適用於行波管之高壓直流驅動電源系統。所提系統的主電路架構包括:集極驅動器、慢波驅動器,此二部份是共用調壓型自激電流饋入推挽式轉換器的架構;聚焦驅動器也是採用集極驅動器的架構,惟規格略有不同;燈絲加熱電路則是採用主動箝位返馳式轉換器。其次,系統控制方面,使用數位控制器結合無線通訊模組輔以人機介面,讓使用者可以直觀地監控系統狀態,相較於傳統的類比驅動系統,具有更好的穩定性,可以避免元件老化導致的電壓漂移、不穩定性和增加外部元件的需求,且能根據應用場景和需求執行複雜的控制策略。再者,因考量行波管運行之穩定,本文利用交錯式相位互補方法,目的為減少電源系統體積與輸出漣波,以較少的電容實現期望的輸出電壓漣波。最後,根據行波管高壓直流電源系統各級之輸出電壓位準不同,採用模組化處理,以利絕緣規劃,並降低各級輸出之間的干擾。同時,本文中推導了系統各級電路的數學模型,建立完整的設計考慮,並通過電腦模擬和實測驗證系統的可行性。


    The aim of this study is to develop a high-voltage DC power supply system suitable for traveling wave tubes. The main circuit architecture of the proposed system includes a collector driver and a slow-wave driver, both of which share a buck-type self-oscillating current-fed push-pull converter. The focusing driver also adopts a collector driver architecture with slightly different specifications. The filament heating circuit utilizes an active clamp flyback converter. In terms of system control, a digital controller is used in combination with a wireless communication module and a human-machine interface to provide users with intuitive monitoring of the system status. Compared to traditional analog drive systems, this digital control approach offers better stability, avoids voltage drift and instability caused by component aging, reduces the need for external components, and enables the execution of complex control strategies according to application scenarios and requirements. Furthermore, to ensure the stability of the traveling wave tube operation, an interleaved phase-shifted approach is employed to minimize the volume and output ripple of the power supply system, achieving the desired output voltage ripple with fewer capacitors. Lastly, considering the different output voltage levels of each stage in the high-voltage DC power supply system for traveling wave tubes, a modular approach is adopted to facilitate insulation planning and reduce interference between different output stages. The mathematical models of each stage in the system are derived, providing a comprehensive design consideration. The feasibility of the system is verified through computer simulations and experimental testing.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XVI 符號索引 XI 第一章 緒論 1 1.1 研究背景 1 1.1.1 行波管高壓直流電源發展歷程 1 1.1.2 行波管高壓直流電源發展趨勢 3 1.1.3 行波管高壓直流電源的技術問題與瓶頸突破 5 1.2 文獻探討 7 1.3 論文架構 10 第二章 行波管高壓直流電源轉換器簡介與分析 11 2.1 行波管高壓直流電源轉換器簡介 11 2.2 調壓型自激電流饋入推挽式轉換器架構介紹 14 2.3 調壓型自激電流饋入推挽式轉換器分析與設計 16 2.3.1 降壓轉換器工作模式與數學分析 16 2.3.2 自激電流饋入推挽式之工作模式與數學分析 20 2.3.3 倍壓電路之工作模式與數學分析 38 2.3.4 調壓型自激電流饋入推挽式之電壓增益 45 2.4 主動箝位返馳式轉換器架構介紹 46 2.5 主動箝位返馳式轉換器之分析與設計 48 第三章 輔助系統與數位控制器之設計與分析 56 3.1 數位控制器之設計 56 3.1.1 數位控制器STM32H750VBT6之介紹 58 3.1.2 數位控制器與週邊元件之連結 61 3.1.3 基於嵌入式系統之FreeRTOS實時作業系統簡介 63 3.1.4 系統之控制流程 65 3.2 人機介面之設計與實現 68 無線通訊模組簡介 72 3.3 無線通訊應用與系統輔助電路 73 3.3.1 無線通訊技術簡介 73 3.3.2 系統週邊輔助電路簡介 74 3.3.3 數位控制輸出回授取樣架構 75 3.3.4 無線通訊數據校驗程序 78 3.4 高壓電路絕緣考量 80 3.4.1 空間直線距離與爬電距離安全考量 81 3.4.2 輔助電源絕緣考量 85 第四章 系統規格及設計考量 86 4.1 倍壓電路元件規格選用及絕緣考量 87 4.2 高壓變壓器繞製與絕緣考量設計 88 4.2.1 估計變壓器輸入功率 89 4.2.2 推算變壓器Ap值及絕緣距離 89 4.2.3 計算線圈匝數 92 4.2.4 選用導線直徑 94 4.3 自激電流饋入推挽式轉換器電路設計 98 4.3.1 自激電流饋入推挽式轉換器儲能電感設計 98 4.3.2 自激電流饋入推挽式轉換器諧振電容選用 99 4.3.3 自激電流饋入推挽式轉換器米勒效應考量 101 4.4 降壓轉換器電路設計 109 4.4.1 降壓轉換器儲能電感設計 111 4.4.2 降壓轉換器之輸出電容設計 112 4.5 主動箝位返馳式轉換器之電路設計 113 4.5.1 主動箝位返馳式轉換器圈數比設計 115 4.5.2 主動箝位返馳式轉換器激磁電感設計 115 4.5.3 主動箝位返馳式轉換器諧振電感設計 116 4.5.4 主動箝位返馳式轉換器箝位電容設計 116 4.5.5 主動箝位返馳式轉換器死區時間(dead time)設計 116 4.6 高速PWM驅動電路設計 117 第五章 電路模擬與實測結果 118 5.1 系統規格 118 5.1.1 系統實測環境建置 118 5.1.2 電腦模擬條件 123 5.2 模擬與實測結果 124 5.2.1 模擬結果 124 5.2.2 實測結果 132 5.2.3 估測系統效率 141 第六章 結論與未來展望 143 6.1 結論 143 6.2 未來展望 144 參考文獻 145

    [1] J. Copeland and A. A. Haeff, "The true history of the traveling wave tube," IEEE Spectrum, vol. 52, no. 9, pp. 38-43, Sept. 2015.
    [2] P. Y. Wong, D. Chernin, and Y. Y. Lau, "Modification of Pierce’s Classical Theory of Traveling-Wave Tubes," IEEE Electron Device Letters, vol. 39, no. 8, pp. 1238-1241, Aug. 2018, doi: 10.1109/LED.2018.2851544.
    [3] A. Babaeihaselghobi, M. N. Akram, H. B. Ghavifekr, and L. R. Billa, "A Novel Chevron-Shape Double-Staggered Grating Waveguide Slow Wave Structure for Terahertz Traveling Wave Tubes," IEEE Transactions on Electron Devices, vol. 67, no. 9, pp. 3781-3787, Sept. 2020, doi: 10.1109/TED.2020.3006038.
    [4] Y. Du, J. Cai, X. Zhang, R. Dong, X. Wu, and J. Feng, "A Substantially Lowered-Voltage High-Power W-Band Pulsed Traveling Wave Tube," IEEE Microwave and Wireless Components Letters, vol. 31, no. 6, pp. 590-592, June 2021, doi: 10.1109/LMWC.2021.3070637.
    [5] Akash and M. Thottappan, "Stability and Multimode Simulation Studies of W-Band Uniformly Dielectric-Loaded Gyrotron Traveling-Wave Tube Amplifier," IEEE Transactions on Electron Devices, vol. 66, no. 12, pp. 5305-5312, Dec. 2019, doi: 10.1109/TED.2019.2944487.
    [6] A. M. Cook, E. L. Wright, K. T. Nguyen, C. D. Joye, J. C. Rodgers, R. L. Jaynes, and I. A. Chernyavskiy, "Demonstration of a W-Band Traveling-Wave Tube Power Amplifier With 10-GHz Bandwidth," IEEE Transactions on Electron Devices, vol. 68, no. 5, pp. 2492-2498, May 2021, doi: 10.1109/TED.2021.3068926.
    [7] J. M. Socuéllamos, R. Dionisio, R. Letizia, and C. Paoloni, "Experimental Validation of Phase Velocity and Interaction Impedance of Meander-Line Slow-Wave Structures for Space Traveling-Wave Tubes," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 4, pp. 2148-2154, April 2021, doi: 10.1109/TMTT.2021.3054913.
    [8] Young-Ju Park, "Development of Airborne High Density High Voltage Power Supply for Traveling Wave Tubes," Electronic Warfare Systems Department, Agency for Defense Development (ADD).
    [9] M.S. HSU and Y.S.Lee, "Design and Analysis High Voltage Power Supply Applied to Traveling Wave Tube Amplifier" Journal of Yilan University, vol. 1, no. 7, pp. 59-68, Jan 2003, doi: 10.6178/niu.2003.01.18.
    [10] B. Zhao and X. Zhang, "An Efficiency-Oriented Two-Stage Optimal Design Methodology of High-Frequency LCLC Resonant Converters for Space Travelling-Wave Tube Amplifier Applications," IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1068-1080, Feb. 2020, doi: 10.1109/TIE.2019.2901644.
    [11] D. G. Bandeira, T. B. Lazzarin, and I. Barbi, "High Voltage Power Supply Using a T-Type Parallel Resonant DC–DC Converter," IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2459-2470, May-June 2018, doi: 10.1109/TIA.2018.2792446.
    [12] I. Barbi and R. Gules, "Isolated DC-DC converters with high-output voltage for TWTA telecommunication satellite applications," IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 975-984, July 2003, doi: 10.1109/TPEL.2003.813762.
    [13] M. Schmid, D. Hrabal, B. Piosczyk, and M. Thumm, "Past and future upgrades of the gyrotron high voltage cathode power supplies at the Forschungszentrum Karlsruhe, " Fusion Engineering and Design, vol. 84, Issues 7–11, 2009.
    [14] 周志敏、周紀海、紀愛華, "開關電源實用技術:設計與應用",人民郵電出版社。。
    [15] Y. Hou, Y. Gong, J. Xu, S. Wang, Y. Wei, L. Yue, and J. Feng, "A Novel Ridge-Vane-Loaded Folded-Waveguide Slow-Wave Structure for 0.22-THz Traveling-Wave Tube," IEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 1228-1235, March 2013, doi: 10.1109/TED.2013.2238941.
    [16] M. Liao, Y. Wei, Y. Gong, J. He, W. Wang, and G. -S. Park, "A Rectangular Groove-Loaded Folded Waveguide for Millimeter-Wave Traveling-Wave Tubes," IEEE Transactions on Plasma Science, vol. 38, no. 7, pp. 1574-1578, July 2010, doi: 10.1109/TPS.2010.2049866.
    [17] M. Sumathy, K. J. Vinoy, and S. K. Datta, "Analysis of Ridge-Loaded Folded-Waveguide Slow-Wave Structures for Broadband Traveling-Wave Tubes," IEEE Transactions on Electron Devices, vol. 57, no. 6, pp. 1440-1446, June 2010, doi: 10.1109/TED.2010.2045680.
    [18] L. Kumar, R. S. Raju, S. N. Joshi, and B. N. Basu, "Modeling of a vane-loaded helical slow-wave structure for broad-band traveling-wave tubes," IEEE Transactions on Electron Devices, vol. 36, no. 9, pp. 1991-1999, Sept. 1989, doi: 10.1109/16.34282.
    [19] X. Shi, Z. Wang, X. Tang, T. Tang, H. Gong, Q. Zhou, W. Bo, Y. Zhang, Z. Duan, and Y. Wei, "Study on Wideband Sheet Beam Traveling Wave Tube Based on Staggered Double Vane Slow Wave Structure," IEEE Transactions on Plasma Science, vol. 42, no. 12, pp. 3996-4003, Dec. 2014, doi: 10.1109/TPS.2014.2365582.
    [20] A. M. Latha, V. Gahlaut, R. K. Sharma, V. Srivastava, and S. K. Ghosh, "Multistage Depressed Collector With Improved Thermal Management for High Efficiency Travelling Wave Tubes," IEEE Transactions on Electron Devices, vol. 61, no. 5, pp. 1536-1540, May 2014, doi: 10.1109/TED.2014.2309339.
    [21] P. Srikrishna, T. Chanakya, R. Venkateswaran, P. R. R. Rao, and S. K. Datta, "Thermal Analysis of High-Average Power Helix Traveling-Wave Tube," IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2218-2226, June 2018, doi: 10.1109/TED.2017.2786941.
    [22] B. Zhao, X. Zhang, and Z. Zhang, "Sequential Offline-Online-Offline Measurement Approach for High-Frequency LCLC Resonant Converters in the TWTA Applications," IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1568-1579, Feb. 2020, doi: 10.1109/TIE.2019.2898601.
    [23] D. T. Lopes and C. C. Motta, "Design of vane loaded helical slow-wave structures for broad-band traveling-wave tubes," 2009 IEEE International Vacuum Electronics Conference, Rome, Italy, 2009, pp. 459-460, doi: 10.1109/IVELEC.2009.5193569.
    [24] J. Zhang, W. G. Hurley, and W. H. Wölfle, "Gapped Transformer Design Methodology and Implementation for LLC Resonant Converters," IEEE Transactions on Industry Applications, vol. 52, no. 1, pp. 342-350, Jan.-Feb. 2016.
    [25] F. Alaql and I. Batarseh, "Review and Comparison of Resonant DC-DC Converters for Wide-Input Voltage Range Applications," 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE), 2019.
    [26] R. P. Eldho, A. Chhabra, and C. P. Ragasudha, "An Overview on Single/Multi Output Isolated Resonant Converter Topologies for Vehicular applications," 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), 2021.
    [27] Y. Wei, Q. Luo, and A. Mantooth, "Overview of Modulation Strategies for LLC Resonant Converter," IEEE Transactions on Power Electronics, vol. 35, no. 10, pp. 10423-10443, Oct. 2020.
    [28] M. K. Kazimierczuk, D. Czarkowski, "Resonant Power Converters," John Wiley & Sons: Hoboken, NJ, USA, 2012.
    [29] J. Su, C. Tsai, and G. Hou, "High-Voltage Driver with Functions of ZVS and Over-Current Protection for Air Cleaner Applications," 2018 International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 2018.
    [30] Rishi Vermaa, A. Shyam, and Lakshmi Nair, "Development of battery powered 100 kV dc power supply," American Institute of Physics Publishing, October 2006.
    [31] Dian Ahmad Hapidin, Ismail Saleh, Muhammad Miftahul Munir, and Khairurrijal, "Design and Development of a Series-configuration Mazzilli Zero Voltage Switching Flyback Converter as a High-voltage Power Supply for Needleless Electrospinning," Procedia Engineering, Volume 170, 2017.
    [32] Oluseun D Oyeleke, Dr Sadiq Thomas, Dr Petrus Nzerem, and Dr. GokhanKoyunlu, "Design and Construction of a Prototype Wireless Power Transfer Device," I.J. Engineering and Manufacturing, March 2019.
    [33] D. Edry and S. Ben-Yaakov, "Capacitive-loaded push-pull parallel-resonant converter," Proceedings Eighth Annual Applied Power Electronics Conference and Exposition, 1993.
    [34] A. Abdolkhani, A. P. Hu, and J. Tian, "Autonomous Polyphase Current-Fed Push–Pull Resonant Converter Based on Ring Coupled Oscillators," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 568-576, June 2015.
    [35] Yu, Anning, Xiaoping Zeng, Dong Xiong, Mi Tian, and Junbing Li. "An Improved Autonomous Current-Fed Push-Pull Parallel-Resonant Inverter for Inductive Power Transfer System" Energies 11, 2018.
    [36] M. Borage, S. Tiwari, and S. Kotaiah, "A Passive Auxiliary Circuit Achieves Zero-Voltage-Switching in Full-Bridge Converter Over Entire Conversion Range," IEEE Power Electronics Letters, vol. 3, no. 4, pp. 141-143, Dec. 2005.
    [37] S. Jalbrzykowski and T. Citko, "Current-Fed Resonant Full-Bridge Boost DC/AC/DC Converter," IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1198-1205, March 2008.
    [38] K. Liu, Y. Sun, Y. Gao, P. Yan, and R. Fu, "High-Voltage High-Frequency Charging Power Supply Based on Voltage Feedback and Phase-Shift Control," IEEE Transactions on Plasma Science, vol. 41, no. 5, pp. 1358-1363, May 2013.
    [39] C. Li, Y. Zhang, Z. Cao, and D. XU, "Single-Phase Single-Stage Isolated ZCS Current-Fed Full-Bridge Converter for High-Power AC/DC Applications," IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 6800-6812, Sept. 2017.
    [40] G. Ivensky, S. Bronstein, and S. Ben-Yaakov, "A comparison of piezoelectric transformer AC/DC converters with current doubler and voltage doubler rectifiers," IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1446-1453, Nov. 2004, doi: 10.1109/TPEL.2004.836646.
    [41] G. Ivensky, M. Shvartsas, and S. Ben-Yaakov, "Analysis and modeling of a voltage doubler rectifier fed by a piezoelectric transformer," IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 542-549, March 2004, doi: 10.1109/TPEL.2003.823179.
    [42] P. J. Silva Costa, C. H. Illa Font, and T. B. Lazzarin, "Single-phase/-switch voltage-doubler DCM SEPIC rectifier with high power factor and reduced voltage stress on the semiconductors," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, pp. 1-6, doi: 10.1109/ECCE.2016.7855441.
    [43] P. J. Silva Costa, C. H. Illa Font, and T. B. Lazzarin, "Single-phase voltage-doubler SEPIC rectifier with high power factor," 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 2016, pp. 522-527, doi: 10.1109/ISIE.2016.7744944.
    [44] Jindong Zhang, L. Huber, M. M. Jovanovic, and F. C. Lee, "Single-stage input-current-shaping technique with voltage-doubler-rectifier front end," IEEE Transactions on Power Electronics, vol. 16, no. 1, pp. 55-63, Jan. 2001, doi: 10.1109/63.903989.
    [45] D. L. Waidelich and C. H. Gleason, "The Half-Wave Voltage-Doubling Rectifier Circuit," Proceedings of the IRE, vol. 30, no. 12, pp. 535-541, Dec. 1942, doi: 10.1109/JRPROC.1942.233344.
    [46] D. L. Waidelich, "The Full-Wave Voltage-Doubling Rectifier Circuit," Proceedings of the IRE, vol. 29, no. 10, pp. 554-558, Oct. 1941, doi: 10.1109/JRPROC.1941.232998.
    [47] Y. Kushino and H. Koizumi, "Piezoelectric energy harvesting circuit using full-wave voltage doubler rectifier and switched inductor," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014, pp. 2310-2315, doi: 10.1109/ECCE.2014.6953711.
    [48] J. S. Brugler, "Theoretical performance of voltage multiplier circuits," IEEE Journal of Solid-State Circuits, vol. 6, no. 3, pp. 132-135, June 1971.
    [49] D. L. Waidelich and C. L. Shackelford, "Characteristics of Voltage-Multiplying Rectifiers," in Proceedings of the IRE, vol. 32, no. 8, pp. 470-476, Aug. 1944, doi: 10.1109/JRPROC.1944.232739.
    [50] S. Iqbal, R. Besar, and C. Venkataseshaiah, "Single/three-phase symmetrical bipolar voltage multipliers for X-ray power supply," Conf. Rec. 2008 Second International Conference on Electrical Engineering, Lahore, 2008.
    [51] Taufik and J. J. Mullins, "Parallel Operation of Hybrid Loaded Resonant Converter Using Phase-Shift Control," in Conf. Rec. 2006 IEEE International Symposium on Industrial Electronics, Montreal, Que., 2006.
    [52] F. Hwang, Y. Shen, and S. H. Jayaram, "Low-Ripple Compact High-Voltage DC Power Supply," IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1139-1145, Sept.-Oct. 2006, doi: 10.1109/TIA.2006.880845.
    [53] M. Zarghani, S. Mohsenzade, and S. Kaboli, "A Very Low-Ripple High-Voltage High-Power DC Power Supply Using an Interleaved Converter and a Linear Ripple Elimination Unit," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 3, pp. 3339-3352, June 2021, doi: 10.1109/JESTPE.2020.3040072.
    [54] P. Y. Huang, "A Novel Tech Voltage Multiplier for Step-Up Power Conversion Applications," National Taiwan University of Science and Technology, Aug. 2015.
    [55] W. Hsu, J. Chen, Y. Hsieh, and Y. Wu, "Design and Steady-State Analysis of Parallel Resonant DC–DC Converter for High-Voltage Power Generator," IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 957-966, Feb. 2017.
    [56] J. Sun, X. Ding, M. Nakaoka, and H. Takano, "Series resonant ZCS-PFM DC-DC converter with multistage rectified voltage multiplier and dual-mode PFM control scheme for medical-use high-voltage X-ray power generator," IEE Proceedings - Electric Power Applications, vol. 147, no. 6, pp. 527-534, Nov. 2000.
    [57] S. Mao, J. Popović, and J. A. Ferreira, "Diode Reverse Recovery Process and Reduction of a Half-Wave Series Cockcroft–Walton Voltage Multiplier for High-Frequency High-Voltage Generator Applications," IEEE Transactions on Power Electronics, vol. 34, no. 2, pp. 1492-1499, Feb. 2019, doi: 10.1109/TPEL.2018.2834406.
    [58] Saijun Mao, Pengcheng Zhang, J. Popovic, and J. A. Ferreira, "Diode reverse recovery analysis of Cockcroft-Walton voltage multiplier for high voltage generation," 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), 2017.
    [59] 劉賢,"高頻高壓變壓器等效電路模型參數提取方法研究", 2017年版中國工程物理研究院科技年報 2018。
    [60] Yang Xiao-wei and Yan Ping, "35 kV/0.7 A high voltage variable frequency constant current capacitor charging power supply," High Voltage Engineering, 2006.
    [61] J. Zhang, X. Huang, X. Wu, and Z. Qian, "A High Efficiency Flyback Converter With New Active Clamp Technique," IEEE Transactions on Power Electronics, vol. 25, no. 7, pp. 1775-1785, July 2010, doi: 10.1109/TPEL.2010.2042302.
    [62] Ching-Lung Chu and Chao-Chung Huang, "Analysis And Implementation Of Soft Switching Flyback Converter With An Active Clamp Circuit," Journal of Technology, Vol. 27, No. 4, pp. 207-220, 2012.
    [63] R. Watson, F. C. Lee, and G. C. Hua, "Utilization of an active-clamp circuit to achieve soft switching in flyback converters," IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 162-169, Jan. 1996.
    [64] Bor-Ren Lin, Huann-Keng Chiang, Kao-Cheng Chen, and David Wang, "Analysis, design and implementation of an active clamp flyback converter," 2005 International Conference on Power Electronics and Drives Systems, Kuala Lumpur, 2005, pp. 424-429, doi: 10.1109/PEDS.2005.1619724.
    [65] R. Watson, F. C. Lee, and G. C. Hua, "Utilization of an active-clamp circuit to achieve soft switching in flyback converters," Proceedings of 1994 Power Electronics Specialist Conference - PESC'94, Taipei, Taiwan, 1994, pp. 909-916 vol.2, doi: 10.1109/PESC.1994.373787.
    [66] W. W. Peterson and D. T. Brown, "Cyclic Codes for Error Detection," Proceedings of the IRE, vol. 49, no. 1, pp. 228-235, Jan. 1961.
    [67] Anant S Kamath, Kannan Soundarapandian, High-voltage reinforced isolation: definitions and test methodologies datasheet, Texas Instruments.
    [68] Infineon Technologies, Electrical safety and isolation in high voltage discrete component applications and design hints, Application Note AN 2012-10 V1.0 October 2012.
    [69] IEC 60950 safety specific standards datasheet.
    [70] 胡君臣,"高頻變壓器的設計與製作[J]",電器開關,2005 (1):8-11。
    [71] 台灣東電化電子股份有限公司,PQ5050 cores datasheet
    [72] Jasdi Chemicals CO., LTD,FEP三層絕緣線。
    [73] Y. Murakami, Y. Nakajima, T. Hayashi and T. Mihara, "Grounded-trench-MOS structure assisted normally-off bipolar-mode power FET," 8th International Symposium on Power Semiconductor Devices and ICs. ISPSD '96. Proceedings, 1996.
    [74] Jess Brown, Guy Moxey, "Power MOSFET Basics_Understanding MOSFET Characteristics Associated With The Figure of Merit", Vishay Siliconix AN605.
    [75] Jess Brown, "Power MOSFET Basics Understanding Gate Charge and Using it to Assess Switching Performance", Vishay Siliconix AN608A.
    [76] Laszlo Balogh, " Design Review: 140W, Multiple Output High Density DC/DC Converter", Texas Instruments Power Supply Design Seminar.
    [77] K. Kushwaha and R. K. Singh, "Mains Interface Circuit Design for Traveling Wave Tube Amplifier," 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India, 2022, pp. 1-4, doi: 10.1109/UPCON56432.2022.9986386.

    無法下載圖示 全文公開日期 2033/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE