簡易檢索 / 詳目顯示

研究生: 童尚勇
Shang-Yung Tung
論文名稱: 適用於多躍式無線骨幹網路之實體層載波偵測漣波協定
Physical-carrier-sensing-based Ripple Protocol for Multihop Wireless Backhaul Networks
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 呂政修
Jenq-Shiou Leu
許獻聰
Shiann-Tsong Sheu
曹孝櫟
Shiao-Li Tsao
王獻
Xian Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 31
中文關鍵詞: 多躍式無線骨幹網路漣波協定空間重覆利用實體層載波偵測漣波協定遮蔽效應
外文關鍵詞: MWBN, Ripple protocol, spatial reuse, PCS-Ripple, shadowing effect
相關次數: 點閱:203下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多躍式無線骨幹網路的環境下,參考論文[14]中提出了漣波(Ripple)協定,讓節點在傳輸封包時避免彼此碰撞,並使空間重覆利用(spatial reuse)最大化。而本篇論文所提出之實體層載波偵測漣波協定(Physical-carrier-sensing-based Ripple, PCS-Ripple),將把漣波協定中,『節點傳輸與干擾範圍相等』以及『資料訊框大小固定』等兩個理想的假設移除,並且考慮了遮蔽效應(shadowing effect)的影響。而在本篇論文中也利用數學進行分析,並利用NS-2進行模擬,驗證了分析的正確性。模擬結果顯示,在流量處於高負載的形況下,PCS-Ripple可以比802.11 DCF達到更高且更穩定的效能。


    In [14], a Ripple protocol was proposed to maximize the spatial reuse and protect nodes from unintentional packet collisions for a chain-based multihop wireless backhaul network (MWBN). A physical-carrier-sensing-based Ripple (PCS-Ripple) protocol is then presented to remove assumptions of ‘identical data transmission time’ and ‘identical interference range and transmission range’ in Ripple, and the shadowing effect was considered. An analytical model is further presented to estimate the performance of PCS-Ripple. The effectiveness of PCS-Ripple and the accuracy of the analysis were verified via NS-2. Simulation results indicate that PCS-Ripple achieved stable and higher throughput than that of 802.11 DCF in highly loaded situations.

    論文摘要 I ABSTRACT II 誌謝 III Table of Contents IV List of Figures V 1. Introduction 1 2. PCS-Ripple 5 2.1. System Model 5 2.2. Operation of PCS-Ripple 6 2.3. Performance Analysis 11 3. Simulation Results 15 4. Conclusion 21 Reference 22 作者簡介 25

    [1] V. Gambiroza, B. Sadeghi, and E. W. Knightly, “End-to-end performance and fairness in multihop wireless backhaul networks,” Proc. of ACM MobiCom, Sept. 2004.
    [2] R. Bruno, M. Conti, and E. Gregori, “Mesh networks: Commodity multihop ad hoc networks,” IEEE Communications Magazine, pp. 123-131, March 2005.
    [3] L. Yang, “Issues for mesh media access coordination component in 11s,” IEEE 802.11-04/0968R13, January 2005.
    [4] J. Jangeun and M. L. Sichitiu, “The nominal capacity of wireless mesh networks,” IEEE Wireless Communications, pp. 8-14, Oct. 2003.
    [5] WIFLY Service, http://www.wifly.com.tw/wifly3/en/AboutWIFLY/WhatIsWIFLY/
    [6] G. R. Hiertz, Y. Zang, and J. Habetha, “Multi hop connections using 802.11,” IEEE 802.11-04/0709r2, July 2004.
    [7] S. Xu and T. Saadawi, “Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks?” IEEE Communications Magazine, P130-137, June 2001.
    [8] J. Li, C. Blake, D. S. De Couto, H. I. Lee, and R. Morris, “Capacity of ad hoc wireless networks,” Proc. of ACM MobiCom, pp. 61-69, July 2001.
    [9] K. Xu, M. Gerla, and S. Bae, "How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks," Proc. of IEEE Globecom, pp. 72 -76, 2002.
    [10] N. Jain, S. R. Das, and A. Nasipuri, “A multichannel CSMA MAC protocol with receiver-based channel selection for multihop wireless networks,” Proc. of IEEE ICCCN, October 2001.
    [11] A. Acharya and A. Misra, “High-performance architecture for IP-based multihop 802.11 networks,” IEEE Wireless Communications, pp.22-28, Oct. 2003.
    [12] D. Raguin, M. Kubisch, H. Karl, and A. Woltz, “Queue-driven cut-through medium access in wireless ad hoc networks,” Proc. of IEEE WCNC, pp.1909-1914, 2004.
    [13] M. Ergen, D. Lee, R. Sengupta, and P. Varaiya, “WTRP – Wireless token ring protocol,” IEEE Trans. Vehicular Technology, vol. 53, no. 6, pp. 1863-1881, Nov. 2004.
    [14] R. G. Cheng, C. Y. Wang, L. H. Liao and J. S. Yang, “Ripple: A wireless token-passing protocol for multi-hop wireless mesh networks,” IEEE Communications Letters, vol. 10, no. 2, pp. 123-125, Feb. 2006.
    [15] Q. V. Nguyen and R. G. Cheng, “Enhanced Ripple (E-Ripple) protocol for multihop wireless chain-based networks,” the 10th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), June 2009.
    [16] F. Talucci and M. Gerla, “MACA-BI (MACA by invitation). A Wireless MAC Protocol for High Speed Ad hoc Networking,” Proc. IEEE ICUPC ’97, vol.2, pp. 913-917, Oct. 1997
    [17] X. Guo, S. Roy, and W. S. Conner, “Spatial reuse in wireless ad-hoc networks”, IEEE Vehicular Technology Conference, 2003 (VTC 2003-Fall), vol. 3, pp. 1437-1442, Oct. 2003.
    [18] J. Deng, B. Liang, and P. K.Varshney, “Tuning the carrier sensing range of IEEE 802.11 MAC”, IEEE Global Telecommunications Conference, 2004 (GLOBECOM '04), vol. 5, pp. 2987-2991, Dec. 2004.
    [19] A. Acharya, S. Ganu, and A. Misra, “DCMA: a labble switching MAC for efficient packet forwarding in multihop wireless,” IEEE Journal on Selected Areas in Communications, Vol. 24, no. 11, November 2006.
    [20] T. S. Rappaport, Wireless Communications, Principles and Practices, 2nd ed, Upper Saddle River, N.J.: Prentice Hall, 2002, pp. 107-140.
    [21] Z. Li, S. Nandi, and A. K. Gupta, “ECS: An enhanced carrier sensing mechanism for wireless ad hoc networks,” Computer Communications, vol. 28, no. 17, pp. 1970 -1984, 2005.
    [22] Q. Chen, F. Schmidt-Eisenlohr, D. Jiang, M. Torrent-Moreno, L. Delgrossi, and H. Hartenstein,” Overhaul of IEEE 802.11 modeling and simulation in ns-2”, In MSWiM ’07: Proc. of the 10th ACM international symposium on modeling, analysis, and simulation of wireless and mobile systems, pp. 159–168, 2007.
    [23] P. Mahasukhon, M. Hempel, S. Ci, H. Sharif, “Comparison of throughput performance for the IEEE 802.11a and 802.11g networks”, In proceedings of the 21st International Conference on Advanced Information Networking and Applications, ( AINA 2007), pp. 792-799, May 2007.

    QR CODE