簡易檢索 / 詳目顯示

研究生: 葉家誠
Jia-Cheng Ye
論文名稱: 針對環型式離子風扇空氣動力性能受入風口遮蔽效應之影響
The Effects of Inlet Blockage on Aerodynamic Performance of Needle-to-Ring Electrohydrodynamic Pumps
指導教授: 溫琮毅
Tsrong-Yi Wen
口試委員: 林顯群
Sheam-Chyun Lin
田維欣
Wei-Hsin Tien
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 60
中文關鍵詞: 離子風扇速度曲線效率遮蔽效應
外文關鍵詞: velocity profile
相關次數: 點閱:308下載:49
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子產品因為體積縮小且功率密度增加,因此需要好的散熱提高穩定性及降低故障機率。離子風扇是以電液動力學為原理產生氣流的新型風扇。由於不需要旋轉動件,因此離子風扇所需的安裝空間跟產生的噪音都很小,非常適合應用在較小的散熱系統中。風扇的性能通常由壓力流量曲線(PQ 曲線)來表示。一般來說,PQ 曲線的量測都是在風扇入口沒有任何遮蔽物的狀態下進行,但已經有研究指出,當入口有遮蔽效應會明顯地降低軸流扇的性能。然而,少有研究針對離子風扇與遮蔽效應間的關係進行探討。本研究將探討針對環型式的離子風扇在不同尺寸、不同操作方式、及不同電極間距下,離子風扇的性能變化。本研究以熱線風速計測量速度曲線,再利用速度曲線及離子風扇消耗之電功率計算並探討離子風扇的效率。速度曲線的結果顯示,小尺寸之離子風扇無論在定電流或定電壓操作下,皆不太受遮蔽效應影響。而大尺寸之離子風扇在定電壓下受遮蔽效應影響較大,中心風速可降低至多21%。離子風扇之電功率在定電流下受遮蔽效應影響時,電功率會有些微增加之趨勢。而在定電壓下受遮蔽效應影響時,電功率則會有下降之趨勢。這個現象說明速度曲線在受遮蔽效應時,定電壓操作下速度變化較定電流操作下大之行為。而利用速度曲線計算之流量在受遮蔽效應時,和速度曲線有較接近之趨勢。小尺寸之離子風扇的流量受遮蔽效應影響較小,大尺寸之離子風扇則在定電壓下流量變化較大,至多可降低約13% 之流量。離子風扇的效率在消耗低電功率時,會產生較高之效率,且大尺寸離子風扇因為產生之流量較高,所以效率較小尺寸離子風扇高。透過上述結果說明,小尺寸離子風扇的風速、功率、流量、及效率受遮蔽效應影響較小。因此小尺寸之離子風扇較適合在受遮蔽效應影響的環境中使用。


    Electrohydrodynamic pump (EHD pump) is one of the solutions for space-limited
    cooling systems due to the smaller space requirement. Electronic devices become smaller, thinner, and generate more heat making the cooling system more important. Another important issue for space-limited cooling systems is blockage effect. Blockage effect will decrease the performance of the fans and generates louder noise. This study presents the performance of needle to ring EHD pump and the influence of blockage effect on the performance. Three different sizes ( and 10 cm in diameter) of ring will be investigated. The velocity profile and power consumption will be measured to evaluate the performance. The flow rate and efficiency will be calculated according to the results and show the influences of blockage effect. The results indicate that the velocity profile of the smaller EHD pumps is less affected by blockage at both constant current mode and constant voltage mode, while the larger EHD pumps are affected by blockage effect more. The central velocity of the large EHD pumps drops 21%. The power consumption of the EHD pumps shows that blockage effect slightly increases the power under constant current mode, and will decrease when EHD pumps are affected by the blockage under constant voltage mode. Blockage effect decreases the flow rate of large EHD pumps more than the small EHD pumps. Blockage effect can decrease the
    flow rate of large EHD pump up to 13%. However, large EHD pumps can maintain better performance at constant current mode than at constant voltage mode because the power consumption will increase under the blockage effect. EHD pumps are more efficient when EHD pumps are operating at low voltage or low current. The efficiency of large EHD pumps is higher than the efficiency of small EHD pumps because the flow rate of large EHD pumps is higher than the flow rate of small EHD pumps. Therefore, smaller EHD pumps can perform better under space-limited
    circumstances and be less affected by blockage effect.

    摘要.................................................................................................................................... i 英文摘要............................................................................................................................ ii 致謝.................................................................................................................................... iv 目錄.................................................................................................................................... vi 圖目錄................................................................................................................................ viii 表目錄................................................................................................................................ ix 第一章緒論.................................................................................................................... 1 1.1 研究背景........................................................................................................... 1 1.1.1 電子產品的散熱.................................................................................. 1 1.1.2 葉片風扇.............................................................................................. 2 1.1.3 離子風扇.............................................................................................. 3 1.2 研究動機........................................................................................................... 4 1.3 文獻回顧........................................................................................................... 5 1.3.1 離子風扇的幾何型式與性能.............................................................. 5 1.3.2 離子風扇的應用.................................................................................. 7 1.3.3 遮蔽效應.............................................................................................. 8 1.4 研究目的........................................................................................................... 9 1.5 論文架構........................................................................................................... 10 第二章實驗原理與方法................................................................................................ 11 2.1 電暈放電........................................................................................................... 11 2.2 實驗原理........................................................................................................... 11 2.2.1 功率...................................................................................................... 11 2.2.2 流量...................................................................................................... 12 2.2.3 效率...................................................................................................... 13 2.3 實驗架設........................................................................................................... 13 2.4 實驗參數........................................................................................................... 14 2.5 實驗方法........................................................................................................... 16 第三章結果與討論......................................................................................................... 18 3.1 特徵曲線........................................................................................................... 18 3.2 速度曲線........................................................................................................... 20 3.2.1 不同D 相同L 之速度曲線................................................................. 20 3.2.2 不同D 相同A 之速度曲線................................................................ 27 3.3 流量................................................................................................................... 34 3.3.1 不同D 相同L 之流量......................................................................... 34 3.3.2 不同D 相同A 之流量........................................................................ 35 3.4 功率................................................................................................................... 37 3.4.1 不同D 相同L 之功率......................................................................... 37 3.4.2 不同D 相同A 之功率........................................................................ 39 3.5 效率................................................................................................................... 41 3.5.1 不同D 相同L 之效率......................................................................... 41 3.5.2 不同D 相同A 之效率........................................................................ 42 第四章結論與建議......................................................................................................... 45 4.1 結論................................................................................................................... 45 4.2 未來工作與建議............................................................................................... 46 參考文獻............................................................................................................................ 50

    L. Xie, Y. Chen, and R. Kang, "Failure mode, mechanism and effect analysis for single board computers," in 2011 Prognostics and System Health Managment Confernece, 24-25 May 2011 2011, pp. 1-5, doi: 10.1109/PHM.2011.5939507.
    [2] X. Jin, E. W. M. Ma, T. W. S. Chow, and M. Pecht, "An investigation into fan reliability," Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing), pp. 1-7, 2012.
    [3] A. Moronis, E. Fylladitakis, and I. Raptis, "Two-stage cascaded EHD air pump evaluation," in 2018 IEEE International Conference on High Voltage Engineering and Application, ICHVE 2018, September 10, 2018 - September 13, 2018, Athens, Greece, 2018: Institute of Electrical and Electronics Engineers Inc., in ICHVE 2018 - 2018 IEEE International Conference on High Voltage Engineering and Application, p. IEEE Dielectrics and Electrical Insulation Society (DEIS).
    [4] N. Gallandat and J. Rhett Mayor, "Novel heat sink design utilizing ionic wind for efficient passive thermal management of grid-scale power routers," Journal of Thermal Science and Engineering Applications, vol. 7, no. 3, 2015.
    [5] N. E. Jewell-Larsen, H. Ran, Y. Zhang, M. K. Schwiebert, K. A. H. Tessera, and A. V. Mamishev, "Electrohydrodynamic (EHD) cooled laptop," in 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 15-19 March 2009 2009, pp. 261-266.
    [6] C. Tizaoui, "Ozone: A potential oxidant for COVID-19 virus (SARS-CoV-2)," Ozone: Science and Engineering, vol. 42, no. 5, pp. 378-385, 2020.
    [7] Y. Zhang, L. Liu, Y. Chen, and J. Ouyang, "Characteristics of ionic wind in needle-to-ring corona discharge," Journal of Electrostatics, vol. 74, pp. 15-20, 2015.
    [8] Y. Guan, R. S. Vaddi, A. Aliseda, and I. Novosselov, "Analytical model of electro-hydrodynamic flow in corona discharge," Physics of Plasmas, vol. 25, no. 8, p. 083507, 2018.
    [9] N. M. Brown and F. C. Lai, "Electrohydrodynamic gas pump in a vertical tube," Journal of Electrostatics, vol. 67, no. 4, pp. 709-714, 2009.
    [10] Y. T. Birhane, S. C. Lin, and F. C. Lai, "Flow characteristics of a single stage EHD gas pump in circular tube," Journal of Electrostatics, vol. 76, pp. 8-17, 2015.
    [11] E. D. Fylladitakis, A. X. Moronis, and K. Kiousis, "Design of a prototype EHD air pump for electronic chip cooling applications," Plasma Science and Technology, vol. 16, no. 5, p. 491, 2014.
    [12] M. Peng, T. H. Wang, and X. D. Wang, "Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel," International Journal of Heat and Mass Transfer, vol. 93, pp. 1072-1081, 2016.
    [13] P. H. Wang and T. Y. Wen, "Effects of electrical driving mode on pressure and flow rate of wire rod electrohydrodynamic pumps," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, no. 4, pp. 621-625, 2020.
    [14] Y. T. Birhane, S. C. Lin, and F. C. Lai, "Flow characteristics of a two-stage EHD gas pump in a circular pipe," IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2461-2470, 2017.
    [15] N. E. Jewell-Larsen, H. Ran, Y. Zhang, M. K. Schwiebert, and K. A. Honer, "Electrohydrodynamic (EHD) cooled laptop," 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2009.
    [16] A. A. Ramadhan, N. Kapur, J. L. Summers, and H. M. Thompson, "Numerical development of EHD cooling systems for laptop applications," Applied Thermal Engineering, vol. 139, pp. 144-156, 2018.
    [17] S. C. Lin and C. A. Chou, "Blockage effect of axial-flow fans applied on heat sink assembly," Applied Thermal Engineering, vol. 24, no. 16, pp. 2375-2389, 2004.
    [18] K. Ochiai and S. Nakamura, "Flow characteristics of axial flow fans with an upstream downstream blockage disk," Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, vol. 1A, 2017.
    [19] T. Fukue, K. Hirose, T. Hatakeyama, M. Ishizuka, and K. Koizumi, "Evaluation of pressure drop characteristics around axial cooling fans with electrical components," in 2016 International Conference on Electronics Packaging (ICEP), 20-22 April 2016 2016, pp. 173-178.
    [20] P. H. Wang, "Effects of electrical driving conditions and inlet blockage on electrohydrodynamic pumps with different number of electrodes and sizes," National Taiwan University of Science and Technology, Taiwan, 2019.
    [21] M. J. Johnson and D. B. Go, "Recent advances in electrohydrodynamic pumps operated by ionic winds: a review," Plasma Sources Science and Technology, vol. 26, no. 10, 2017.
    [1] L. Xie, Y. Chen, and R. Kang, "Failure mode, mechanism and effect analysis for single board computers," in 2011 Prognostics and System Health Managment Confernece, 24-25 May 2011 2011, pp. 1-5, doi: 10.1109/PHM.2011.5939507.
    [2] X. Jin, E. W. M. Ma, T. W. S. Chow, and M. Pecht, "An investigation into fan reliability," Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing), pp. 1-7, 2012.
    [3] A. Moronis, E. Fylladitakis, and I. Raptis, "Two-stage cascaded EHD air pump evaluation," in 2018 IEEE International Conference on High Voltage Engineering and Application, ICHVE 2018, September 10, 2018 - September 13, 2018, Athens, Greece, 2018: Institute of Electrical and Electronics Engineers Inc., in ICHVE 2018 - 2018 IEEE International Conference on High Voltage Engineering and Application, p. IEEE Dielectrics and Electrical Insulation Society (DEIS).
    [4] N. Gallandat and J. Rhett Mayor, "Novel heat sink design utilizing ionic wind for efficient passive thermal management of grid-scale power routers," Journal of Thermal Science and Engineering Applications, vol. 7, no. 3, 2015.
    [5] N. E. Jewell-Larsen, H. Ran, Y. Zhang, M. K. Schwiebert, K. A. H. Tessera, and A. V. Mamishev, "Electrohydrodynamic (EHD) cooled laptop," in 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 15-19 March 2009 2009, pp. 261-266.
    [6] C. Tizaoui, "Ozone: A potential oxidant for COVID-19 virus (SARS-CoV-2)," Ozone: Science and Engineering, vol. 42, no. 5, pp. 378-385, 2020.
    [7] Y. Zhang, L. Liu, Y. Chen, and J. Ouyang, "Characteristics of ionic wind in needle-to-ring corona discharge," Journal of Electrostatics, vol. 74, pp. 15-20, 2015.
    [8] Y. Guan, R. S. Vaddi, A. Aliseda, and I. Novosselov, "Analytical model of electro-hydrodynamic flow in corona discharge," Physics of Plasmas, vol. 25, no. 8, p. 083507, 2018.
    [9] N. M. Brown and F. C. Lai, "Electrohydrodynamic gas pump in a vertical tube," Journal of Electrostatics, vol. 67, no. 4, pp. 709-714, 2009.
    [10] Y. T. Birhane, S. C. Lin, and F. C. Lai, "Flow characteristics of a single stage EHD gas pump in circular tube," Journal of Electrostatics, vol. 76, pp. 8-17, 2015.
    [11] E. D. Fylladitakis, A. X. Moronis, and K. Kiousis, "Design of a prototype EHD air pump for electronic chip cooling applications," Plasma Science and Technology, vol. 16, no. 5, p. 491, 2014.
    [12] M. Peng, T. H. Wang, and X. D. Wang, "Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel," International Journal of Heat and Mass Transfer, vol. 93, pp. 1072-1081, 2016.
    [13] P. H. Wang and T. Y. Wen, "Effects of electrical driving mode on pressure and flow rate of wire rod electrohydrodynamic pumps," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, no. 4, pp. 621-625, 2020.
    [14] Y. T. Birhane, S. C. Lin, and F. C. Lai, "Flow characteristics of a two-stage EHD gas pump in a circular pipe," IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2461-2470, 2017.
    [15] N. E. Jewell-Larsen, H. Ran, Y. Zhang, M. K. Schwiebert, and K. A. Honer, "Electrohydrodynamic (EHD) cooled laptop," 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2009.
    [16] A. A. Ramadhan, N. Kapur, J. L. Summers, and H. M. Thompson, "Numerical development of EHD cooling systems for laptop applications," Applied Thermal Engineering, vol. 139, pp. 144-156, 2018.
    [17] S. C. Lin and C. A. Chou, "Blockage effect of axial-flow fans applied on heat sink assembly," Applied Thermal Engineering, vol. 24, no. 16, pp. 2375-2389, 2004.
    [18] K. Ochiai and S. Nakamura, "Flow characteristics of axial flow fans with an upstream downstream blockage disk," Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, vol. 1A, 2017.
    [19] T. Fukue, K. Hirose, T. Hatakeyama, M. Ishizuka, and K. Koizumi, "Evaluation of pressure drop characteristics around axial cooling fans with electrical components," in 2016 International Conference on Electronics Packaging (ICEP), 20-22 April 2016 2016, pp. 173-178.
    [20] P. H. Wang, "Effects of electrical driving conditions and inlet blockage on electrohydrodynamic pumps with different number of electrodes and sizes," National Taiwan University of Science and Technology, Taiwan, 2019.
    [21] M. J. Johnson and D. B. Go, "Recent advances in electrohydrodynamic pumps operated by ionic winds: a review," Plasma Sources Science and Technology, vol. 26, no. 10, 2017.
    [22] W. Qiu, L. Xia, L. Yang, Q. Zhang, L. Xiao, and L. Chen, "Experimental study on the velocity and efficiency characteristics of a serial staged needle array-mesh type EHD Gas Pump," Plasma Science and Technology, vol. 13, no. 6, pp. 693-697, 2011.
    [23] A. A. Ramadhan, N. Kapur, J. L. Summers, and H. M. Thompson, "Performance and flow characteristics of miniature EHD air blowers for thermal management applications," Journal of Electrostatics, vol. 93, pp. 31-42, 2018.
    [24] H. C. Wang, N. E. Jewell-Larsen, and A. V. Mamishev, "Thermal management of microelectronics with electrostatic fluid accelerators," Applied Thermal Engineering, vol. 51, no. 1-2, pp. 190-211, 2013.
    [25] P. Giubbilini, "The current-voltage characteristics of point-to-ring corona," Journal of Applied Physics, vol. 64, p. 3730, 1988.

    QR CODE