簡易檢索 / 詳目顯示

研究生: 柯唯翔
Wei-Hsiang Ko
論文名稱: 諧波濾波器對電壓源型變流器諧波電流影響之研究
Evaluating the Harmonic Filters on the Harmonic Current Distortion of Voltage Source Inverter-Fed Drives
指導教授: 辜志承
Jyh-Cherng Gu
口試委員: 陳在相
Tsai-Hsiang Chen
陳南鳴
Nan-Ming Chen
吳啟瑞
Chi-Jui Wu
楊金石
Jin-Shyr Yang
吳有基
Yu-Chi Wu
黃培華
Pei-Hwa Huang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 150
中文關鍵詞: 主動式濾波器被動式濾波器電壓源型變流器諧波分析總諧波電流失真率
外文關鍵詞: Active harmonic filter, Harmonic analysis, Passive harmonic filter, Total harmonic distortion, Voltage source inverter-fed drive
相關次數: 點閱:419下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主旨在分析應用主動式與被動式濾波器對電壓源型變流器(VSI)諧波電流失真率之影響與其改善策略之研究。於電力系統諧波分析時,一般皆將非線性負載等效為諧波定電流源。然而,當應用主動式或被動式濾波器濾除VSI所產生之諧波時,負載之總諧波電流失真率實際上將發生變化。此現象將導致系統電源回路之諧波改善結果未能達預期效果,並造成被動式濾波器發生過電壓與過電流之問題。
為深入分析此現象之原因與主要影響因素,本研究建立VSI之等效電路,並分析其交流側諧波電流轉換關係式。接著推導主動式濾波器之全階補償與選階補償控制模型,以及被動式濾波器諧波等效模型。本文藉由建立之範例系統模型分別模擬不同系統短路容量、交流側扼流電感器、負載率與不同諧波改善方案等條件下,VSI諧波電流失真率之變化倍率與趨勢。本研究藉由模擬與實測匯整結果,總結此現象之產生原因與主要影響因素。此外,本研究擬定主動式與被動式濾波器額定容量之設計方法,使系統電源回路達最佳之諧波改善結果,並能有效克服濾波器之應用問題。藉由本論文提出之諧波電流變化倍率與系統短路容量關係曲線,當應用主動式或被動式濾波器作為VSI之諧波改善方案時,能快速且有效評估VSI之總諧波電流增加倍率。最後,藉由模擬分析與實際量測結果可知,本論文之研究成果可有效解決主動式與被動式濾波器應用於VSI諧波改善之問題。


The main purpose of this dissertation is to investigate the impact of harmonic filter applications on the harmonic current distortion of Voltage Source Inverter-fed drives (VSI) and improving strategies. In general, the nonlinear loads are assumed as a constant harmonic current source in harmonic analysis of power systems. However, when an active or passive harmonic filter is invited to mitigate the harmonics produced by the VSI load, the total harmonic current distortion of the load actually changes. The increasing of the VSI total harmonic current distortion will lead to the unexpected harmonic improving result at system side, and cause insufficient harmonic carrying capability, such as the rated voltage and rated current of the passive harmonic filter.
In order to analyze the causes and main influencing factors of this harmonic changing phenomenon, a VSI equivalent circuit is established in this study, and its ac side harmonic current transformation equation is also derived in this investigation. The whole and selective harmonic compensation control models of the active harmonic filter are deduced, as well as the equivalent harmonic model of passive harmonic filters. In this reaseach, correlation analysis system models are constructed and simulated to illustrate the impact of different system short-circiut levels, VSI loadings, ac choke reactors of the VSI, and different filter compensation modes on the harmonic current distortion of the VSI. Then, the simulation and measurement results are used to summarize the causes of this phenomenon and the main influencing factors. Furthermore, this research proposed a design method for active and passive harmonic filters, which optimizes the system harmonic improvement results, and effectively solves the application problems of the active and the passive harmonic filters. Finally, from the simulation and field measurement results, the dissertation is of value to solve the harmonic improving problems on the active and passive harmonic filter applications.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 符號索引 XVI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 研究方法與步驟 5 1.4 研究貢獻 7 1.5 論文架構 8 第二章 電力諧波概論 10 2.1 前言 10 2.2 電力諧波相關定義 10 2.2.1 諧波失真率 10 2.2.2 諧波相序 11 2.2.3 K係數與諧波損耗係數 12 2.3 電力諧波相關國際規範 13 2.3.1 美國IEEE標準 13 2.3.2 歐洲IEC標準 14 2.3.3 日本標準 15 2.3.4 台灣台電暫行管制標準 17 2.3.5 中國GB國家標準 17 2.4 電力諧波之影響 19 2.4.1 電力設備 19 2.4.2 供電系統 22 2.5 本章小結 26 第三章 電壓源型變流器與濾波器諧波等效模型之建立 27 3.1 前言 27 3.2 系統電源 27 3.3 電壓源型變流器 28 3.3.1 全導通週期 30 3.3.2 換相週期 31 3.3.3 諧波等效模型 33 3.4 主動式濾波器 35 3.4.1 架構與補償原理 35 3.4.2 諧波等效模型 37 3.5 被動式濾波器 41 3.5.1 架構與補償原理 41 3.5.2 諧波等效模型 44 3.6 本章小結 46 第四章 應用粒子群演算法於濾波器裝置容量之設計 47 4.1 前言 47 4.2 粒子群最佳化演算法 47 4.3 諧波濾波器額定容量之設計 51 4.3.1 主動式濾波器 51 4.3.2 被動式濾波器 54 4.4 本章小結 59 第五章 濾波器對電壓源型變流器諧波失真率之影響 60 5.1 前言 60 5.2 模擬方法與步驟 60 5.3 範例系統架構與參數設定 63 5.4 應用主動式濾波器之諧波模擬分析 65 5.4.1 全階補償模式 66 5.4.2 選階補償模式 67 5.4.3 模擬結果之討論 69 5.4.4 模擬與實測結果之比較 70 5.5 應用被動式濾波器之諧波模擬分析 76 5.5.1 單階補償架構 76 5.5.2 雙階補償架構 78 5.5.3 模擬結果之討論 80 5.5.4 模擬與實測結果之比較 81 5.6 本章小結 87 第六章 濾波器正確容量與諧波改善效果之評估 89 6.1 前言 89 6.2 模擬方法與步驟 89 6.3 範例系統架構與參數設定 90 6.4 應用主動式濾波器之諧波改善分析 92 6.4.1 全階補償模式 92 6.4.2 選階補償模式 94 6.4.3 模擬與實測結果之比較 96 6.5 應用被動式濾波器之諧波改善分析 100 6.5.1 單階補償架構 101 6.5.2 雙階補償架構 103 6.5.3 模擬與實測結果之比較 106 6.6 本章小結 109 第七章 結論與未來研究方向 111 7.1 結論 111 7.2 未來研究方向 113 參考文獻 114 附錄A 121

[1] J. R. Espinoza and G. Joos, "A Current-Source Inverter Fed Induction Motor Drive System with Reduced Losses," in Proc. Industry Applications Conf., 1995, pp. 45-52.
[2] H. Gao, S. Das, B. Wu, M. Pande, and D. Xu, " A Space Vector Modulation Based Direct Torque Control Scheme for a Current Source Inverter Fed Induction Motor Drive," in Proc. Industrial Electronics Conf., 2015, pp. 1307-1312.
[3] D. Banerjee and V. T. Ranganathan, " Load-Commutated SCR Current-Source-Inverter-Fed Induction Motor Drive with Sinusoidal Motor Voltage and Current," IEEE Trans. Power Electronics, vol. 24, pp. 1048-1061, Apr. 2009.
[4] K. A. Puskarich, W. E. Reid, and P. S. Hamer, "Harmonic Experiences with a Large Load-Commutated Inverter Drive," IEEE Trans. Industry Applications, vol. 37, pp. 129-136, Jan. 2001.
[5] K. D. McBee and M. G. Simoes, "Evaluating the Long-Term Impact of a Continuously Increasing Harmonic Demand on Feeder-Level Voltage Distortion," IEEE Trans. Industry Applications, vol. 50, pp. 2142-2149, May 2014.
[6] D. Salles, J. Chen, W. Xu, W. Freitas, and H. E. Mazin, "Assessing the Collective Harmonic Impact of Modern Residential Loads—Part I: Methodology," IEEE Trans. Power Delivery, vol. 27, pp. 1937-1946, Aug. 2012.
[7] J. Chen, R. Torquato, D. Salles, and W. Xu, "Method to Assess the Power-Quality Impact of Plug-in Electric Vehicles," IEEE Trans. Power Delivery, vol. 29, pp. 958-965, Mar. 2014.
[8] S. Dineshkumar and N. Senthilnathan, "Three Phase Shunt Active Filter Interfacing Renewable Energy Source with Power Grid," in Proc. Communication Systems and Network Technologies Conf., 2014, pp. 1026-1031.
[9] K. Zhou, Y. Yang, F. Blaabjerg, and D. Wang, "Optimal Selective Harmonic Control for Power Harmonics Mitigation," IEEE Trans. Industrial Electronics, vol. 62, pp. 1220-1230, Jan. 2015.
[10] Q. Liu, Y. Deng, and X. He, "Boost-type Inverter-less Shunt Active Power Filter for VAR and Harmonic Compensation," IET Power Electronics, vol. 6, pp. 535-542, Jun. 2013.
[11] S. K. Khadem, M. Basu, and M. F. Conlon, "Harmonic Power Compensation Capacity of Shunt Active Power Filter and its Relationship with Design Parameters," IET Power Electronics, vol. 7, pp. 418-430, Feb. 2014.
[12] T. Hruby, S. Kocman, and P. Pecinka, "Using Active Filter for Harmonic Mitigation in Power Grid of Industry Plant," in Proc. Int. Electric Power Engineering Scientific Conf., 2015, pp. 301-306.
[13] A. F. Zobaa and S. H. Eldeen Abdel Aleem, "A New Approach for Harmonic Distortion Minimization in Power Systems Supplying Nonlinear Loads," IEEE Trans. Industrial Informatics, vol. 10, pp. 1401-1412, May 2014.
[14] A. B. Nassif, W. Xu, and W. Freitas, "An Investigation on the Selection of Filter Topologies for Passive Filter Applications," IEEE Trans. Power Delivery, vol. 24, pp. 1710-1718, Jun. 2009.
[15] C. B. Julio and M. M. O. Jose, "Comprehensive Design Methodology of Tuned Passive Filters Based on a Probabilistic Approach," IET Transmission and Distribution, vol. 8, pp. 170-177, Jan. 2014.
[16] R. N. Beres, X. F. Wang, Frede. Blaabjerg, Ma. Liserre, and C. L. Bak, "Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications," IEEE Trans. Power Electronics, vol. 31, pp. 2083-2098, Mar. 2016.
[17] B. Badrzadeh, K. S. Smith, and R. C. Wilson, "Designing Passive Harmonic Filters for an Aluminum Smelting Plant," IEEE Trans. Industry Applications, vol. 47, pp. 973-983, Mar./Apr. 2011.
[18] J. C. Das, " Design and Application of a Second-Order High-Pass Damped Filter for 8000-Hp ID Fan Drives—A Case Study," IEEE Trans. Industry Applications, vol. 51, pp. 1417-1426, Mar./Apr. 2015.
[19] G. A. Conway and K. I. Jones, "Harmonic Currents Produced by Variable Speed Drives with Uncontrolled Rectifier Inputs," in Proc. IEE Colloquium on Three Phase LV Industrial Supplies: Harmonic Pollution and Recent Developments in Remedies, 1993, pp. 4/1-4/5.
[20] M. Grotzbach and R. Redmann, "Line Current Harmonics of VSI-Fed Adjustable-Speed Drives," IEEE Trans. Industry Applications, vol. 36, pp. 683-690, Aug. 2002.
[21] S. V. Giannoutsos and S. N. Manias, "A Systematic Power Quality Assessment and Harmonic Filter Design Methodology for Variable Frequency Drive Application in Marine Vessels," IEEE Trans. Industry Applications, vol. 51, pp. 1909-1919, Mar. 2015.
[22] J. G. Mayordomo, L.F. Beites, A. Carbonero, X. Yang, and W. Xu, "An Analytical Procedure for Calculating Harmonics of Three-Phase Uncontrolled Rectifiers Under Nonideal Conditions," IEEE Trans. Power Delivery, vol. 30, pp. 44-152, Jan. 2015.
[23] M. Sakui and H. Fujita, "An Analytical Method for Calculating Harmonic Currents of a Three-Phase Diode-Bridge Rectifier with DC Filter," IEEE Trans. Power Electronics, vol. 9, pp. 631-637, Aug. 2002.
[24] K. L. Lian, B. K. Perkins, and P. W. Lehn, "Harmonic Analysis of a Three-Phase Diode Bridge Rectifier Based on Sampled-Data Model," IEEE Trans. Power Delivery, vol. 23, pp. 1088-1096, Mar. 2008.
[25] C. Batard, F. Poitiers, and M. Machmoum, "An Original Method to Simulate Diodes Rectifiers Behaviour with Matlab-Simulink Taking into Account Overlap Phenomenon," in Proc. IEEE Int. Symposium on Industrial Electronics Conf., 2007, pp. 971-976.
[26] Z. Zhang, X. Zou, Z. Wu, and Y. Zou, "Analysis on Harmonic Current of Three-phase Bridge Uncontrolled Rectifier," in Proc. Asia-Pacific Power and Energy Engineering Conf., 2010, pp. 1-4.
[27] G. Carpinelli, F. Iacovone, A. Russo, P. Varilone, and P. Verde, "Analytical Modeling for Harmonic Analysis of Line Current of VSI-Fed Drives," IEEE Trans. Power Delivery, vol. 19, pp. 1212-1224, Jun. 2004.
[28] N. He, D. G. Xu, and L. Huang, “The Application of Particle Swarm Optimization to Passive and Hybrid Active Power Filter Design,” IEEE Trans. Industrial Electronics, vol. 56, pp. 2841-2851, Apr. 2009.
[29] S. S. Patnaik and A. K. Panda, “Performance Improvement of Id-Iq Method Based Active Filter Using Particle Swarm Optimization,” in Proc. Int. Sustainable Energy and Intelligent Systems Conf., 2011, pp. 320-325.
[30] C. N. Ko, Y. P. Chang, and C. J. Wu, “A PSO Method With Nonlinear Time-Varying Evolution for Optimal Design of Harmonic Filters,” IEEE Trans. Power Systems, vol. 24, pp. 437-444, Dec. 2009.
[31] A. F. Zobaa “The Optimal Passive Filters to Minimize Voltage Harmonic Distortion at a Load Bus,” IEEE Trans. Power Delivery, vol. 20, pp. 1592-159, Apr. 2005.
[32] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Standard 519-1992, Apr. 1993.
[33] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Standard 519-2014, Mar. 2014.
[34] IEEE Recommended Practice for Establishing Liquid-Filled and Dry-Type Power and Distribution Transformer Capability When Supplying Nonsinusoidal Load Currents, IEEE Standard C57.110-2008, Aug. 2008.
[35] Standard for Dry-Type General Purpose and Power Transformers, UL Standard 1561, Mar. 2011.
[36] Standard for Transformers, Distribution, Dry-Type - Over 600 Volts, UL Standard 1562, Jan. 2013.
[37] Electromagnetic Compatibility (EMC) - Part 3: Limits - Section 6: Assessment of Emission Limits for Distorting Loads in MV and HV Power Systems - Basic EMC publication, IEC Standard 61000-3-6-2008, Feb. 2008.
[38] 江榮城,電力品質,台北,全華,民國96年。
[39] J. P. G. de Abreu and A. E. Emanuel, “Induction Motor Thermal Aging Caused by Voltage Distortion and Imbalance: Loss of Useful Life and Its Estimated Cost,” IEEE Trans. Industry Applications, vol. 38, pp, 12-20, Jan/Feb. 2002.
[40] M. Shareghi, B. T. Phung, M. S. Naderi, T. R. Blackburn, and E. Ambikairajah, “Effects of Current and Voltage Harmonics on Distribution Tansformer Losses,” in Proc. Int. Condition Monitoring and Diagnosis (CMD) Conf., 2012, pp. 633-636.
[41] W. R. N. Santos, E. R. C. Silva, C. B. Jacobina, E. M. Fernandes, A. C. Oliveira, R. R. Matias, D. F. G. Filho, O. M. Almeida, and P. M. Santos, “The Transformerless Single-Phase Universal Active Power Filter for Harmonic and Reactive Power Compensation,” IEEE Trans. Power Electronics, vol. 29, pp. 3563-3572, Jul. 2014.
[42] J. Miret, M. Castilla, J. Matas, J. M. Guerrero, and J. C. Vasquez, “Selective Harmonic-Compensation Control for Single-Phase Active Power Filter with High Harmonic Rejection,” IEEE Trans. Industrial Electronics, vol. 56, pp. 3117-3127, Aug. 2009.
[43] Z. Shu, S. Xie, Q. Li, “Single-Phase Back-to-Back Converter for Active Power Balancing, Reactive Power Compensation, and Harmonic Filtering in Traction Power System,” IEEE Trans. Power Electronics, vol. 26, pp. 334-343, Feb. 2011.
[44] L. B. G. Campanhol, S. A. O. Silva, and A. Goedtel, “Application of Shunt Active Power Filter for Harmonic Reduction and Reactive Power Compensation in Three-Phase Four-Wire Systems,” IET Power Electronics, vol. 7, pp. 2825-2836, Nov. 2014.
[45] V. F. Corasaniti, M. B. Barbieri, P. L. Arnera, and M. I. Valla, “Hybrid Active Filter for Reactive and Harmonics Compensation in a Distribution Network,” IEEE Trans. Industrial Electronics, vol. 56, pp. 670-677, Mar. 2009.
[46] P. N. Sakorn, “The Simplified Control of Three-Phase Four-Leg Shunt Active Power Filter for Harmonics Mitigation, Load Balancing and Reactive Power Compensation,” in Proc. 11th Int. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) Conf., 2014, pp. 1-6.
[47] R. L. A. Ribeiro, C. C. Azevedo, and R. M. Sousa, “A Robust Adaptive Control Strategy of Active Power Filters for Power-Factor Correction, Harmonic Compensation, and Balancing of Nonlinear Loads,” IEEE Trans. Power Electronics, vol. 27, pp. 718-730, Mar. 2012.
[48] A. Luo, S. Peng, C. Wu, J. Wu, and Z. Shuai, “Power Electronic Hybrid System for Load Balancing Compensation and Frequency-Selective Harmonic Suppression,” IEEE Trans. Industrial Electronics, vol. 59, pp. 723-732, Feb. 2012.
[49] P. Dey and S. Mekhilef, “Current Harmonics Compensation with Three-Phase Four-Wire Shunt Hybrid Active Power Filter Based on Modified D–Q Theory,” IET Power Electronics, vol. 8, pp, 2265-2280, Jun. 2015.
[50] B. R. Lin, H. K. Chiang, and C. H. Huang, “Three-phase Three-Level Active Power Filter with a Clamped Capacitor Topology,” IET Electric Power Applications, vol. 153, pp, 513-522, Jul. 2006.
[51] O. Vodyakho and T. Kim, “Shunt Active Filter Based on Three-Level Inverter for Three-Phase Four-Wire Systems,” IET Power Electronics, vol. 2, pp, 216-226, May 2008.
[52] W. H. Ko and J. C. Gu, “Using a Passive Filter to Suppress Harmonic and Resonance Effects on Railway Power Systems,” Journal of the Chinese Institute of Engineers, vol. 37, pp. 946-956, 2014.
[53] IEC Power transformers – Part 6: Reactors, IEC Standard 60076-6-2007, Dec. 2007.
[54] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proc. Int. Neural Networks Conf., 1995, pp. 1942-1948.

QR CODE