簡易檢索 / 詳目顯示

研究生: 吳陳昂
Chen-Ang Wu
論文名稱: 用於先進無線通訊之DC-2GHz 可程式增益放大器
DC-2GHz Programmable-Gain Baseband Amplifier for Advanced Wireless Communication
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 陳筱青
Hsiao-Chin Chen
邱弘緯
Hung-Wei Chiu
鄭桂忠
Gui-Zhong Zheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 49
中文關鍵詞: 無線通訊基頻電路可程式增益放大器主動式電感總諧波失真線性度
外文關鍵詞: Wireless Communication, baseband circuit, PGA, active inductor, total harmonic distortion, linearity
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用TSMC 90奈米CMOS製程技術設計並實現應用於先進無線通訊之可程式增益放大器。發射機端可程式增益放大器在1.2 pF電容負載下的-3 dB頻寬為2.2 GHz,由5-bit 數位電路切換電壓增益範圍為-18 dB~ 2 dB,單位切換增益為1 dB,S21為-15.79 ~ 3.01 dB。在1.2 V電源供應下,電路功耗為22.7 mW。晶片面積為0.999 mm2。 接收機端可程式增益放大器在1 pF電容負載下的-3 dB頻寬為2 GHz,由5-bit 數位電路切換電壓增益範圍為13.5 dB ~ 60 dB,單位切換增益為1.5 dB。在1.2 V電源供應下,電路功耗為39 mW。晶片面積為0.8 mm2。


    Two types of programmable-gain baseband amplifier (PGA) are designed and implemented using TSMC 90-nm CMOS technology for advanced wireless communication. Transmitter PGA measurement achieves the voltage gain range of -18~2 dB in steps of 1 dB, S21 of -15.79~3.01 dB. -3 dB bandwidth of 2.2 GHz with 1.2 pF capacitive load, controlled by 5-bits decoder. With a 1.2 V supply, the circuit consumes 22.7 mW. The chip area is 0.999 mm2. Receiver PGA simulation achieves the voltage gain range of 13.5~60 dB in steps of 1 dB, -3 dB bandwidth of 2 GHz with 1 pF capacitive load, controlled by 5-bits decoder. With a 1.2 V supply, the circuit consumes 39 mW. The chip area is 0.8 mm2.

    摘要 IV Abstract V Contents VIII List of Figures IX List of TABLEs XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 2 Chapter 2 Circuit Design of Programmable Gain Amplifier 3 2.1 Architecture of Transmitter PGA 3 2.1.1 Linearity Analysis 4 2.1.2 A-Type Gain Cell 6 2.1.3 B-Type Gain Cell 7 2.2 Simulation Results of Transmitter PGA 10 2.3 Architecture of Receiver PGA 13 2.3.1 The Modified Cherry-Hooper Circuit 13 2.3.2 Active Inductor 15 2.3.3 Capacitor Array 21 2.3.4 DC-Offset Cancellation Circuit 22 2.3.5 System-Level Analysis 24 2.3.6 Resistor Array 25 2.3.7 Source Follower Buffer 26 2.4 Simulation Results of Receiver PGA 27 Chapter 3 Measurement Results 30 Chapter 4 Conclusion 36 Reference 37

    [1]H. Liu et al., "A Wideband Analog-Controlled Variable-Gain Amplifier With dB-Linear Characteristic for High-Frequency Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 2, pp. 533-540, Feb. 2016
    [2]K. Tang et al., "A high gain decibel-linear programmable gain amplifier of synthetic aperture radar receiver," 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016
    [3]Y. Wang, C. Hull, G. Murata and S. Ravid, "A linear-in-dB analog baseband circuit for low power 60GHz receiver in standard 65nm CMOS," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, 2013
    [4]Behzad Razavi. Design of Integrated Circuits for Optical Communicat ions, 2nd Edition. McGraw-Hill, Inc. New York, NY, USA, Aug 2012
    [5]Y. Wang, B. Afshar, L. Ye, V. C. Gaudet and A. M. Niknejad, "Design of a Low Power, Inductorless Wideband Variable-Gain Amplifier for High-Speed Receiver Systems," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 696-707, April 2012
    [6]Rui-Zhang Chang, "Design of Wideband Programmable Gain Amplifier in High Speed Mobile Communication Baseband Circuit" National Taiwan University, 2019
    [7]T. B. Kumar, K. Ma and K. S. Yeo, "A 4 GHz 60 dB Variable Gain Amplifier With Tunable DC Offset Cancellation in 65 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 1, pp. 37-39, Jan. 2015
    [8]Y. Huang, W. Woo, H. Jeon, C. Lee and J. S. Kenney, "Compact Wideband Linear CMOS Variable Gain Amplifier for Analog-Predistortion Power Amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 68-76, Jan. 2012
    [9]M. Lu, T. B. Kumar, X. Yu and K. S. Yeo, "Linear-in-decibel variable gain amplifier design in 0.18µm SIGE BICMOS technology," 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2016, pp. 116-119
    [10]Yu-Lun Wei, "Programmable Gain Amplifier for 5G Mobile Communication" National Taiwan University of Science and Technology, 2018
    [11]R. Chen, M. Liu and K. Wang, "A 62μW CMOS Programmable Gain Amplifier with Reused Current and Resistor-Ladder Achieving 37.8dB Peak Gain and 1.5GHz GBW," 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2020, pp. 35-36
    [12]H. Kim, Y. Park, H. Yang and S. Kim, "A constant bandwidth switched-capacitor programmable-gain amplifier utilizing adaptive miller compensation technique," 2017 30th IEEE International System-on-Chip Conference (SOCC), 2017, pp. 249-252
    [13]R. Oneţ, M. Neag, I. Kovács, M. D. Ţopa, S. Rodriguez and A. Rusu, "Compact Variable Gain Amplifier for a Multistandard WLAN/WiMAX/LTE Receiver," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 1, pp. 247-257, Jan. 2014

    無法下載圖示 全文公開日期 2027/02/08 (校內網路)
    全文公開日期 2027/02/08 (校外網路)
    全文公開日期 2027/02/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE