簡易檢索 / 詳目顯示

研究生: 紀炅廷
Jyong-ting Ji
論文名稱: 以氧化亞氮氧化法製備酚之研究
Synthesis of Phenol by Nitrous Oxide Oxidation
指導教授: 劉端祺
Tuan-chi Liu
口試委員: 蕭敬業
Ching-yeh Hsio
陳郁文
Yu-wen Chen
吳紀聖
Chi-sheng Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 108
中文關鍵詞: 反應器副產物氧化亞氮光繞射異丙苯法
外文關鍵詞: issue
相關次數: 點閱:274下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

酚為重要的化學工業原料,傳統上它是以異丙苯法製造,但此法製程複雜,收率低,又有大量的廢氣產生,已不適合用於生產酚,尋找合適的製程來替代現有的製程是目前工業重要的課題。近年來的研究發現,酚可以在ZSM-5的存在下,以笑氣為氧化劑,將苯直接氧化生成酚,此法的產率高、廢氣產生量少,因此引起廣泛的興趣。
為進一步了解此製程,本研究以不同矽鋁比之ZSM-5進行苯的直接氧化,了解矽鋁比的效應;另外,再於ZSM-5上含浸銅,製成Cu-ZSM-5觸媒,測試銅對ZSM-5觸媒活性的促進效果。所製備的觸媒以各種儀器鑑定之,包括以能量分散光譜儀(EDX)測量觸媒組成、以X光繞射分析儀(XRD)分析觸媒的晶體、以氨氣程式升溫脫附裝置(TPD)及傅立葉紅外線光譜儀(FTIR)來了解觸媒的酸性。
觸媒的活性是在常壓下於微型管狀反應器中進行,使用0.5克的觸媒,反應物以連續流動的方式通過觸媒床。反應測試的結果發現矽鋁比高的ZSM-5活性較佳,銅對ZSM-5的活性有促進的效果。銅的促進效果來自其可增加笑氣的吸附量及活性氧(或稱為α-O)的生成量。
適當的反應溫度為380-400C,反應溫度超過420℃時,會使觸媒表面的α-O脫附而降低活性。進料的組成對酚的選擇率有很大的影響,進料中N2O的含量增加時,反應的選擇率降低,主要的副產物為CO2,經測試,最佳的進料組成為[苯]:[笑氣]=1:1,在此組成下酚的選擇率接近100%。

本研究另進行反應動力的研究,在反應溫度為380~400℃,CB濃度為5.73~10.6x10-3 mol/dm3時,得到以直接氧化法製酚的反應動力式為:

其中
-RA的單位為 mol/h g-cat; CB的單位為mol/dm3;
R= 8.314 J/mol K; T的單位為K


Phenol is an important chemical raw material. Traditionally, it was produced by cumene process. However, this process is rather complicate and suffers from both low yield and high waste gas production, and is no longer suitable for the production of phenol. Hence, searching for a new catalyst to replace current one becomes an important issue in industry. Recent development has shown that phenol can be produced by direct benzene oxidation in the presence of ZSM-5, using nitrous oxide as the oxidant. The new process is characterized by high yield and low waste gas production. Therefore, is widely interested by people in industry.
To further understand the new process, ZSM-5 of varied Si/Al ratio was used in this study for the direct oxidation. The purpose is to examine to effects of Si/Al ratio. The promoting effects of copper were also explored by using ZSM-5 impregnated with copper. All catalysts prepared were characterized by EDX (for the composition of the catalysts ), XRD (for the crystalline phases of the catalysts), TPD (for the acidic property of the catalysts), and FTIR (also for the acidic property of the catalysts).
The activity of the catalysts was studied using a tubular micro-reactor, loaded with 0.5 g catalyst. Reactant was fed continuously to the reactor and passing the catalyst bed. The results of the activity test show that ZSM-5 of higher Si/Al ratio is with greater activity. The activity of the zeolite can be promoted by the incorporation of copper. The promotion effects come from the enhancements in the adsorption of nitrous oxide and in the formation of -O.
Proper reaction temperature is between 380 and 400C. Reaction temperature exceeding 420C will make the -O on catalyst surface to desorb and, as a consequence, causing the catalyst to deactivate. The selectivity of phenol is greatly affected by the feed composition. Increasing the content of N2O will produce excess carbon dioxide and lower the selectivity of phenol. The optimum benzene to nitrous oxide ratio in the feed is 1. The selectivity is nearly 100% at this ratio.

Reaction kinetic was also studied. The rate equation for a reaction temperature between 380~400C and a concentration between 5.73~10.6 x10-3 mol/dm3 may be expressed as

where
-RA is in mol/h g-cat; CB is in mol/dm3;
R= 8.314 J/mol K; T is inK

目錄 中文摘要………………………………………………………… …...…I 英文摘要…………………………………………………...… … …...…III 誌謝…………………………………………………… … ………..……V 目錄………………………………………………………… …….…… IV 圖目錄……...…………………………………………….……………X 表目錄…………………………...……………..………………………XII 第一章 緒論 ……………………………………………………………1 第二章 文獻回顧………………………………………………………5 2.1 酚……………………………………………………………….……5 2.1.1 酚的用途…………………………………………………..……5 2.1.2 目前酚的合成方法 ………………………………………..…..6 2.2 沸石………………………………………………………...….…10 2.2.1 介紹 …..………...…………………………………...……..…10 2.2.2沸石的合成 ……………………….……..……………………12 2.2.3 沸石的應用 ……………………………..……………………13 2.2.4 沸石的改質 ……………………………..……………………18 2.2.5 沸石的酸性 ……………………………………..……………19 2.2.6 沸石的物理性質的鑑定 …………..…………………………20 2.2.7 ZSM-5沸石 ……………...……………………………………22 2.3 苯直接催化氧化製備酚……..……………………………………26 2.3.1 以O2為氧化劑 …………………………..……………………26 2.3.2 以H2O2為氧化劑 ……………………………..………………27 2.3.3 以N2O為氧化劑………….…………………..………………27 第三章 實驗……………………………………………………………29 3.1 實驗試料及氣體……………...……………………………………29 3.1.1 實驗氣體………………………………………………………29 3.1.2 實驗藥品………………………………………………………29 3.1.3 實驗儀器………………………………………………………30 3.2 觸媒製備………...…………………………………………………31 3.3 氧化苯製酚反應……….……………..……………………………32 3.3.1 實驗裝置與條件………………………………………………32 3.3.2 分析方法與儀器………………………………………………33 3.4 觸媒的鑑定……………..….………………………………………39 3.4.1程式升溫脫附(TPD)………...……………………………..…39 3.4.2 能量分散光譜儀(EDX) ……………...………………………42 3.4.3 X光繞射光譜分析……………………………………………43 3.4.4 傅立葉轉換紅外光譜(FTIR)分析……………...……………46 第四章 結果與討論……………………………………………………48 4.1 觸媒的鑑定……………………...…………………………………48 4.1.1 EDX分析……...…..…..…..…...………………………………48 4.1.2 X光繞射分析…………..……....………………………………50 4.1.3程式升溫脫附……………..……..……..………………………52 4.1.3.1 NH3-TPD…………………………………………………52 4.1.3.2 Benzene-TPD……….……………………………………54 4.1.3.3 N2O-TPD……………....…………………………………55 4.1.4 傅立葉轉換紅外線光譜分析(FTIR)……....…….……………56 4.2 N2O直接氧化苯製酚反應…………………….……………………60 4.2.1 N2O直接氧化苯製酚反應機構的討論…..………..…..………60 4.2.2 矽鋁比的影響………..…..……………………………………61 4.2.3 觸媒的改質……………..……..………………………………63 4.2.3.1 最佳金屬含量………………...…………………………63 4.2.3.2 最佳進料………………...………………………………65 4.2.4 接觸時間的影響………..…………..…………………………70 4.2.5 反應溫度的影響……..….…….………………………………72 4.2.6 觸媒的穩定性…………………………………………………74 4.3 反應動力………...…………………………………………………76 第五章 結論……………………..……………………………………83 第六章 參考文獻…..…………………..………………………………85 附錄…………………………..…………………………………………90 作者簡介……………………..…………………………………………93 圖目錄 圖2–1.沸石(a) 親水表面 (b) 疏水表面 對水的吸附……..……..…16 圖2–2.沸石之布忍斯特酸和路易士酸位置及其轉換……..……….. 19 圖2–3. ZSM-5沸石之之SBU…………………………..…………… 24 圖2–4. ZSM-5沸石之孔道結構的兩種表示法……...……………… 24 圖2–5. ZSM-5兩種孔道及交叉孔道……...………...……...……...…25 圖3–1.氧化苯製酚反應流程圖………………………..……..……… 34 圖3–2.氧化苯製酚反應實驗裝置………………..………..………… 35 圖3–3.動力討論反應裝置圖……………………...……..……………36 圖3–4.氧化苯製酚出料GC圖譜………………...……..…………… 38 圖3–5.程式升溫脫附裝置…………..……………..………………… 41 圖3–6.SEM及EDX結構圖…………….………………………… 44 圖3–7. X光經晶體的繞射圖………………...…...……………… 45 圖3–8. FTIR光譜儀………………………….……………………… 47 圖4–1. EDX之典型分析結果………………..……………………… 48 圖4–2. ZSM-5沸石與1%wt.Cu/ZSM-5的XRD圖……..………...…51 圖4–3.不同矽鋁比之ZSM-5的氨氣程式升溫脫附圖…….…..…… 53 圖4–4. ZSM-5與1wt.%Cu/ZSM-5的苯程式升溫脫附圖………...…54 圖4–5. ZSM-5與1wt.%Cu/ZSM-5的笑氣程式升溫脫附圖……...…55 圖4–6. ZSM-5沸石的FTIR光譜………………………..……………58 圖4–7. ZSM-5與Cu/ZSM-5沸石吸附口比啶的FTIR光譜………..… 59 圖4–8. 線上時間對不同矽鋁比產率的影響……………...…....…... 61 圖4–9. 含浸不同銅量的ZSM-5對苯轉化率圖…………..……..… 64 圖4–10. 進料組成對ZSM-5之苯轉化率與酚選擇率的影響…..… 67 圖4–11. 進料組成對Cu/ZSM-5之苯轉化率與酚選擇率的影響..…68 圖4–12. 進料組成對產率的影響…………………………….………69 圖4–13. 接觸時間對產率的影響…………………………………… 71 圖4–14. 溫度對產率的影響…………………………….……………73 圖4–15. 觸媒壽命對產率的影響…………………………………… 75 圖4–16. ln(CA)對ln(-ra)作圖…………………………...…………… 77 圖4–17. ln(CB)對ln(-ra)作圖………………………...……………… 80 圖4–18. 溫度倒數(1/T)對k的自然對數(lnk)作圖……….………… 81 圖4–19. 速率計算值(n=1)與實驗值的R-squre值…….……………… 82 表目錄 表1–1. 美國1991年通過的空氣清淨法增修案再重組汽油配方….2 表1–2. 「氣候變化綱要公約」京都議定書(1997)………….………..2 表2–1. 沸石的組成…………………………………………………10 表2–2. 沸石在觸媒上應用…………………………………………14 表2–3. 已商業化之沸石催化製程…………………………………15 表2–4. 沸石在吸附上的應用………………………………………17 表2–5. 沸石常見的分析項目與分析方法及相對應之特性………20 表2–6. 美孚公司應用ZSM-5觸媒之專利製程……………………26 表2–7.不同氧化催化體系下的苯直接氧化製備酚的結果……..…28 表4–1. EDX分析結果………………………………………………48 表4–2. 官能基的紅外線吸收頻率…………………………………57 表4–3. 各溫度的濃度與速率以及作圖所得的k值…………….…78

1.Bibby, D. M., N. B. Milestone, and J. E. Patterson,”Coke Formation in Zeolite ZSM-5”, J. of Catal., 97, p493-502(1986).

2.Burch, R. and C. Howitt, “Direct Partial Oxidation of Benzene to Phenol on Zeolite Catalysts”, Appl. Catal. A: Gen., 86, p139-146(1992).

3.Dubkov, K. A., N. S. Ovanesyan, A. A. Shteinman, E. V. Starokon, and G. I. Panov, “Evolution of Iron States and Formation of α-Sites upon Activation of FeZSM-5 Zeolites”, J. of Catal., 207, p341-352(2002).

4.Grieken, R. V., J. L. Sotelo, J. M. Menendez, and J. A. Melero, “Anomalous Crystallization Mechanism in The Synthesis of Nanocrystalline ZSM-5”, Micropor. Mesopor. Mater., 39, p135-147(2000).

5.Hafele, M., A. Reitzmann, D. Roppelt, and G. Eming, “Hydroxylation of Benzene with Nitrous Oxide on H-Ga-ZSM-5 zeolite”, Appl. Catal. A: Gen., 150, p153-164(1997).

6.Hoelderich, W. F., “ ‘One-Pot’ Reaction: A Contribution to Environmental Protection”, Appl. Catal. A: Gen.,194-195, p487-496 (2000).

7.Ivanov, A. A., V. S. Chernyavsky, M. J. Gross, A. S. Kharitonov, A. K. Uriarte, and G. I. Panov, “Kinetics of Benzene to Phenol Oxidation over Fe-ZSM-5 Catalyst”, Appl. Catal. A: Gen., 249, p327-343(2003).

8.Iwamoto, M., J. Hirata, K. Matsukami, and S. Kagawa, “Catalytic Oxidation by Oxide Radical Ions. 1. One-Step Hydroxylation of Benzene to Phenol over Group 5 and 6 Oxides Supported on Silica Gel”, Phys. Chem., 87, p903-905(1983).

9.Kollmer, F., H. Hausmann, and W. F. Hoelderich, “ (NH4)SiF6-Modified ZSM-5 as Catalysts for Direct Hydroxylation of Benzene with N2O 2. A Comparative Study with Ferrisilicalite and Dealuminated and Iron-Exchanged ZSM-5”, J. of Catal., 227, p408-418(2004).

10.Kooyman, P. J., P. van der Waal, and H. van Bekkum, “Acid Dealumination of ZSM-5”, Zeolites, 18, p50-53(1997).

11.Kresnawahjuesa, O., G. H. Kuhl, R. J. Gorte, and C. A. Quierini, “An Examination of Bronsted Acid Sites in H-[Fe]ZSM-5 for Olefin Oligomerization and Adsorption”, J. of Catal., 210, p106-115(2002).

12.Kustov L. M., A. L. Tarasov, V. I. Bogdan, A. A. Tyrlov, and J. W. Fulmer, “Selective Oxidation of Aromatic Compounds on Zeolites Using N2O as A Mild Oxidant A New Approach to Design Active Sites”, Catal. Today, 61, p123-128(2000).

13.Lyons, M. G. and P. T. Oullins, “Preparation of Phenol by Direct Hydroxylation of Benzene”, US 5,001,280(1989).

14.McLellan, G. I. and R. F. Howe, “Effect of Coke Formation on the Acidity of ZSM-5”, J. of Catal, 99, p486-491(1986).

15.Miyahara T., H. Kanzaki, R. Hamada, S. Kuroiwa, S. Nishiyama, and S. Tsuruya, “Liguid-Phase Oxidation of Benzene to Phenol by CuO-Al2O3 Catalysts Prepared by Co-Precipitation Method”, J. Mol. Catal., 176, p141-150(2001).

16.Motz, J. L., H. Heinichen, and W. F. Holderrich, “Direct Hydroxylation of Aromatics to Their Corresponding Phenols Catalysed by H-[Al]ZSM-5 Zeolite”, J. Mol. Catal., 136, p175-184(1998).

17.Muller, M., G. Harvey, and R. Prins, “Comparision of The Dealumination of Zeolites Beta, Mordenite, ZSM-5 and Ferrierite by Thermal Treatmene, Leaching with by 1H, 29Si and 27Al MAS NMR”, Micropor. Mesopor. Mater., 34, p135-147(2000).

18.Panov, G. I., A. S. Kharitonov, and V. I. Sobolev, “Oxidative Hydroxylation Using Dinitrogen Monoxide: A Possible Route for Organic Synthesis over Zeolites”, Appl. Catal. A: Gen., 98, p1-20(1993).

19.Reding, G., T. Maurer, and B. Kraushaar-Czarnetzki, ”Comparing Synthesis Routes to nano-crystalline Zeolite ZSM-5”, Micropor. Mesopor. Mater., 57, p83-92(2003).

20.Reitzmann, A., E. Klemm, and G. Eming, “Kinetics of The Hydroxylation of Benzene with N2O on Modified ZSM-5 Zeolites”, Chem. Eng., 90, p149-164(2002).

21.Ribera, A., I. W. C. E. Arends, S. de Vries, J. Perez-Ramirez, and R. A. Sheldon, “Preparation, Characterization, and Performance of FeZSM-5 for the Selective Oxidation of Benzene to Phenol with N2O”, J. of Catal., 195, p287-297(2000).

22.Sobolev, V. I., K. A. Dubkov, E. A. Paukshtis, L. V. Pirutko, M. A. Rodkin, A. S. Kharitonov, and G. I. Panov, “On the Role of Bronsted Acidity in the Oxidation of Benzene to Phenol by Nitrous Oxide”, Appl. Catal. A: Gen., 141, p185-192(1996).

23.Waclaw, A., K. Nowinska, and W. Schwieger, ”Benzene to Phenol Oxidation over Iron Exchanged Zeolite ZSM-5”, Appl. Catal. A: Gen., 270, p151-156(2004).

24.Woolery, G. L., G. H. Kuehl, H. C. Timken, A. W.Chester, and J. C. Vartuli, “On the Nature of Framework Bronsted and Lewis Acid Sites in ZSM-5”, Zeolites, 19, p288-296(1997).

25.Yamanaka, H., R. Hamada, H. Nibuta, S. Nishiyama, and S. Tsuruya, “Gas-Phase Catalytic Oxidation of Benzene over Cu-Supported ZSM-5 Catalysts: An Attempt of One-Step Production of Phenol”, J. Mol. Catal. A: Chem., 178, p89-95(2002).

26.Yoo, J. S., A. R. Sohail, S. Scott Grimmer, and Chin Choi-Feng, “One-Step Hydroxylation of Benzene to Phenol. II.Gas Phase N2O Oxidation over Mo/Fe/Borosilicate Molecular Sieve”, Catal. Lett., 29, p299-310(1994).

27.Yoshizawa, K., Y. Shiota, and T. Kamachi, ”Mechanistic Proposals for Direct Benzene Hydroxylation over Fe-ZSM-5 Zeolites”, J. Phys. Chem. B, 107, p11404-11410(2003).

28.Zhang C., Q. Liu, Z. Xu, and K. Wan, “Synthesis and Characterization of Composite Molecular Sieves with Mesoporous and Microporous Structure from ZSM-5 Zeolites by Heat Treatment”, Micropor. Mesopor. Mater., 62, p157-163(2003).

29.楊學萍,”沸石催化劑在煉油和石油化工中的應用”,工業催化, 2003,6月,11(6): p19-24。

30.蘭忠,王立秋,張守臣,劉長厚,”N2O直接催化氧化苯製苯酚研究進展”,2002,21(9): p621-625。

31.陳勝洲、董新法、林維明,”苯直接催化氧化製苯酚的研究”,工業催化,2003,11(6): p34-37。

32.蔣義,梁娟,”ZnHZSM-5芳構化催化劑積碳影響因素的研究”,催化學報,1994,15(6): p463-467。

33.江文彥,”酚與化學工業”,化工技術 ,1997,11月,第五卷,第十一期。

34.王國鎮,楊思明,”沸石觸媒之特性與應用”,化工技術,1994,3月,第二卷,第三期。

35.張昆典,”大放異彩的觸媒—ZSM-5”,化工技術,1994,2月,第二卷,第二期。

36.王奕凱,李秉傑,邱宏明,”非均勻項觸媒原理與應用”,渤海堂文化事業有限公司,1988,2月。

37.趙桂蓉,”冒泡泡的分子篩-沸石在觸媒界的應用”,科學月刊,1990,10月,250期。

38.謝福渝,”ZSM-5型沸石之酸性與反應性質的研究”,國立清華大學化學系碩士論文,1979年七月。

39.林家慶,” 沸石ZSM-5 結構與性質之探討”, 國立清華大學化學系碩士論文,1984年七月。

40.黃佩為,”環己烷於絲光沸石上的異構化反應研究”,國立台灣科技大學化工系碩士論文,2003年七月。

41.鐘嘉憲,”在碳系載體鎳觸媒上的濕式氧化”,國立台灣科技大學化工系碩士論文,2004年七月。

QR CODE