簡易檢索 / 詳目顯示

研究生: 陳冠宇
Kuan-Yu Chen
論文名稱: 應用於自然光系統之多級串連耦合裝置設計與分析
Design and analysis of multiple series connection coupler used for Natural Light Illumination Systems
指導教授: 黃忠偉
Allen Jong-Woei Whang
口試委員: 趙涵捷
Han-Chieh Chao
郭重顯
Chung-Hsien Kuo
鄭超仁
Chau-Jern Cheng
蔡明忠
Ming-Jong Tsai
艾和昌
Her-Chang Ay
周雍強
Yon-Chun Chou
林瑞珠
Jui-Chu Lin
黃柏仁
Bohr-Ran Huang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 85
中文關鍵詞: 自然光照明耦合器。
外文關鍵詞: daylighting, coupler
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於地球暖化的影響,越來越多人致力於綠能科技的研究,尤其是使用自然光做為室內照明的領域,因此不少文獻中許多的光學元件漸漸的被創造,並且朝著輕薄短小的目標發展,也有著各種不同的應用。
建築照明耗能隨著社會的發展已佔據了台灣總能源耗能之5%以上,並且有逐漸上升之趨勢。自然光不但能創造高品質的光環境,對於健康、情緒,學習效能和工作效率的提升,並滿足人對自然光的生理與心理上的需求,具有效的節約消耗化石能源。然而現今市面上產品大部分皆是使用集光器搭配光纖的方式將光傳輸至所需要的位置上。
自然光照明系統利用三個子系統:集光子系統、傳光子系統以及放光子系統所組成,將光導引至無法自然採光或其他需要照明之場所。然而現今的自然光照明系統中在多個系統的連結方式尚未有一個高效率的耦合裝置,因此針對這個問題提出了一個耦合裝置來改善這個問題,並且使耦合裝置可以以串接的方式來連結,使得在自然光照明系統中的光纖使用數量得以下降,自然光照明系統得以更方便的使用在既有的建築物當中。


Due to the impact of global warming, more and more people are dedicated to researching of green energy technology, especially the field of indoor lighting by using natural light; therefore, a lot of optical elements are created gradually in many literatures, and set the goal of the development toward light and small, so they have a variety of applications.
With the development of society, architectural lighting energy consumption has accounted for more than 5% of Taiwan’s total energy consumption, the trend is rising gradually. Natural light not only create high-quality light environment that improve health, emotion, learning effectiveness and work efficiency, but also satisfy people physical and psychological needs; furthermore, it conserves fossil energy effectively.
However, most of the products on the market transmit the light to the desired position by using the way of collector with optical fiber.
Natural lighting system combines three subsystems: collector subsystems, transmission subsystems and lighting subsystems. Natural lighting system directs the light to the places without natural light and light required. Nowadays, there is not still a high efficiency of coupling device for linking between many systems in the natural light system, so we propose a coupling device to improve the problem we mentioned. The coupling device can be linked by stringing, it will decrease the number of fiber we use in the natural lighting system; therefore, the system can be applied easily in the currently existing buildings.

中文摘要 I ABSTRACT II 誌謝 III The Index of Content IV The Index of Figures VI The Index of Tables IX Chapter 1 Introduction 1 1.1 The Background 1 Chapter 2 Daylighting System 6 2.1 Solar Concentrator 6 2.1.1 Fresnel Lens 6 2.1.2 Compound Parabola Concentrator 7 2.1.3 Linear Fresnel Reflector, LFR (Fresnel technologies) 8 2.1.4 Parabolic Reflector (Dish designs) 9 2.1.5 Parabolic Trough Designs 10 2.2 Light Conduction 11 2.2.1 Reflective light pipe 11 2.2.2 Optical fiber 14 2.2.3 Light Pipe 15 2.3 Light Irradiate 16 2.4 Optical Coupler 19 2.5 Natural Light Illumination System 20 2.5.1 Collecting component 21 2.5.2 Transfer component 23 2.5.3 Irradiate component 25 Chapter 3 The Optical Coupler 27 3.1 Optical Coupler 27 3.1.1 Diffractive Optical Elements (DOE) 27 3.1.2 Spherical lenses 28 3.1.3 Lensed Fiber 29 3.1.4 Direct coupling 29 3.2 Optical Coupler for NLIS 30 Chapter 4 A Wedge Coupler for Multiple Series Connection 40 4.1 Structure and outward appearance of coupler 40 4.1.1 Structure and design concept 41 4.2 Design for new wedge coupler 42 4.2.1 The single stage coupler 47 4.2.2 The two pieces series of couplers 49 4.3 Implant a freeform lens to reassign light distribution curve 51 4.3.1 Numerical optimization method 52 4.3.2 Directness method 53 4.3.3 Simultaneous multiple surface method 53 4.3.4 Tessellation method 54 4.3.5 Tailored lens method 55 4.3.6 Virtual surface method 56 Chapter 5 The Results and Discussion 58 5.1 Wedge coupler structure definition 58 5.2 Simulation and analysis of single stage coupler 59 5.3 Simulation and analysis of multiple series connection 62 5.4 Multiple series connection with freeform lens 64 5.5 The tolerance Analysis of wedge coupler 66 Chapter 6 Conclusion 68 REFERENCE 69 BRIEF BIOGRAPHY 74 THE JOURNAL PAPER LIST 74 THE CONFERENCE PAPER LIST 74

[1] Omer, A. M. (2008). Renewable building energy systems and passive human comfort solutions. Renewable and sustainable energy reviews, 12(6), 1562-1587.
[2] Soydan, Y., Demirer, A., Kapti, A. O., Engin, T., & Kandilli, C. (2012). Lighting of Commercial Buildings by Conveying Sunlight. IBU Journal of Science and Technology, 1(1).
[3] Bahadori, A., Zendehboudi, S., & Zahedi, G. (2013). RETRACTED: A review of geothermal energy resources in Australia: Current status and prospects.Renewable and Sustainable Energy Reviews, 21, 29-34.
[4] Alrubaih, M. S., Zain, M. F. M., Alghoul, M. A., Ibrahim, N. L. N., Shameri, M. A., & Elayeb, O. (2013). Research and development on aspects of daylighting fundamentals. Renewable and Sustainable Energy Reviews, 21, 494-505.
[5] Pacheco, R., Ordóñez, J., & Martínez, G. (2012). Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews, 16(6), 3559-3573.
[6] André, E., & Schade, J. (2002). Daylighting by optical fiber (Doctoral dissertation, MSc Thesis 2002: 260, Luleå University of Technology, Sweden).
[7] Wehrmann, A., Puttnins, S., Hartmann, L., Ehrhardt, M., Lorenz, P., & Zimmer, K. (2012). Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements. Optics & Laser Technology, 44(6), 1753-1757.
[8] AlHajri, M. F., El-Naggar, K. M., AlRashidi, M. R., & Al-Othman, A. K. (2012). Optimal extraction of solar cell parameters using pattern search. Renewable Energy, 44, 238-245.
[9] Whang, A. J. W., Chen, C. C., & Chen, Y. Y. (2009). Design, analysis, and fabrication of cascadable unit of static concentrator by prismatic structure for indoor illumination: Proceedings of the Asia Pacific Conference on Optics Manufacture. Taipei, Taiwan.
[10] Laikin, M. (1995). Lens design. Optical Engineering Series, New York, Basel: Marcel Dekker,| c1995, 2nd ed., revised and expanded, 1.
[11] Chou, K. H., Chen, Y. Y., & Whang, A. J. W. (2009, August). An optical switch of natural light guiding system based on cubic structure with Fresnel surface. In SPIE Optical Engineering+ Applications (pp. 74280O-74280O). International Society for Optics and Photonics.
[12] Maxey, L. C. (2008). Flexible sunlight—the history and progress of hybrid solar lighting. In Emerging Environmental Technologies (pp. 83-104). Springer Netherlands.
[13] Khan, N., & Abas, N. (2011). Comparative study of energy saving light sources. Renewable and Sustainable Energy Reviews, 15(1), 296-309.
[14] Smart, M., & Ballinger, J. A. (1983). Tracking mirror beam sunlighting for deep interior spaces. Solar Energy, 30(6), 527-536.
[15] Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia, K., & Sharifi, A. (2009). A review of principle and sun-tracking methods for maximizing solar systems output. Renewable and sustainable energy reviews, 13(8), 1800-1818.
[16] Tripanagnostopoulos, Y., Siabekou, C., & Tonui, J. K. (2007). The Fresnel lens concept for solar control of buildings. Solar Energy, 81(5), 661-675.
[17] Edmund Optics 2014 http://www.edmundoptics.com/
[18] Helmholtz-Gemeinschaft 2015 http://www.helmholtz.de/
[19] Kischkoweit-Lopin, M. (2002). An overview of daylighting systems. Solar Energy, 73(2), 77-82.
[20] Wkipedia 2015 https://en.wikipedia.org/wiki/Parabolic_reflector
[21] MRI Global 2011 http://www.mriglobal.org/
[22] Leutz, R., & Suzuki, A. (2012). Nonimaging Fresnel lenses: design and performance of solar concentrators (Vol. 83). Springer.
[23] Akisawa, A., Hiramatsu, M., & Ozaki, K. (2012). Design of dome-shaped non-imaging Fresnel lenses taking chromatic aberration into account. Solar Energy, 86(3), 877-885.
[24] Abdul-Rahman, H., & Wang, C. (2010). Limitations in current day lighting related solar concentration devices: A critical review. International Journal of the Physical Sciences, 5(18), 2730-2756.
[25] Nelson, D. T., Evans, D. L., & Bansal, R. K. (1975). Linear Fresnel lens concentrators. Solar Energy, 17(5), 285-289.
[26] Baig, H., Heasman, K. C., & Mallick, T. K. (2012). Non-uniform illumination in concentrating solar cells. Renewable and Sustainable Energy Reviews, 16(8), 5890-5909.
[27] Xie, W. T., Dai, Y. J., Wang, R. Z., & Sumathy, K. (2011). Concentrated solar energy applications using Fresnel lenses: A review. Renewable and Sustainable Energy Reviews, 15(6), 2588-2606.
[28] Mills, D. R., & Giutronich, J. E. (1978). Ideal prism solar concentrators. Solar Energy, 21(5), 423-430.
[29] Ghisi, E. (2002). The use of fibre optics on energy efficient lighting in buildings (Doctoral dissertation, University of Leeds).
[30] Leutz, R., Suzuki, A., Akisawa, A., & Kashiwagi, T. (1999). Design of a nonimaging Fresnel lens for solar concentrators. Solar energy, 65(6), 379-387.
[31] Chen, Y. T., Chong, K. K., Bligh, T. P., Chen, L. C., Yunus, J., Kannan, K. S., ... & Tan, K. K. (2001). Non-imaging, focusing heliostat. Solar Energy, 71(3), 155-164.
[32] Ullah, I., & Shin, S. Y. (2012). Development of optical fiber-based daylighting system with uniform illumination. Journal of the Optical Society of Korea, 16(3), 247-255.
[33] Leutz, R., & Suzuki, A. (2012). Nonimaging Fresnel lenses: design and performance of solar concentrators (Vol. 83). Springer.
[34] 游仁龍,利用田口法設計自然光照明系統®之放光模組,國立台灣科技大學電子研究所,碩士論文,民國101年七月
[35] Fiberoptics Technology Inc. 2001 http://www.fiberopticstech.com/
[36] André, E., & Schade, J. (2002). Daylighting by optical fiber (Doctoral dissertation, MSc Thesis 2002: 260, Luleå University of Technology, Sweden).
[37] Low Energy House 2015 http://www.lowenergyhouse.com/
[38] Whang, A. J. W., Chen, Y. Y., Yang, S. H., Pan, P. H., Chou, K. H., Lee, Y. C., ... & Chen, C. N. (2010). Natural light illumination system. Applied optics,49(35), 6789-6801.
[39] Courret, G., Scartezzini, J. L., Francioli, D., & Meyer, J. J. (1998). Design and assessment of an anidolic light-duct. Energy and Buildings, 28(1), 79-99.
[40] Zoom Apps Enchanted Learning https://zoomapps.wordpress.com/
[41] Fu, Y. Q., & Bryan, N. K. A. (2001). Hybrid microdiffractive–microrefractive lens with a continuous relief fabricated by use of focused-ion-beam milling for single-mode fiber coupling. Applied optics, 40(32), 5872-5876.
[42] Zhang, C., Quick, N. R., & Kar, A. (2009). Diffractive optical elements for pitchfork beam shaping. Optical Engineering, 48(7), 078001-078001.
[43] Optokon http://www.optokon.cz/
[44] Kang, J. H., Lee, C., Joo, J. Y., & Lee, S. K. (2011). Phase-locked loop based on machine surface topography measurement using lensed fibers. Applied optics, 50(4), 460-467.
[45] 王忠蔚,應用於NLIS模組之新穎楔形導光管與透鏡耦合器,國立臺灣科技大學電子研究所,碩士論文,民國102年七月
[46] 潘柏軒,應用於自然倒光系統之階梯狀結構光學耦合器,國立臺灣科技大學電子研究所,碩士論文,民國99年七月
[47] Hecht, E., & Zajac, A. (1974). Optics Addison-Wesley. Reading, Mass, 301-305.
[48] 黃振彥,新式模組化耦合器設計應用於自然光照明系統,國立臺灣科技大學電子研究所,碩士論文,民國103年七月
[49] Whang, A. J. W., Li, P. C., Chen, Y. Y., & Hsieh, S. L. (2009). Guiding light from LED array via tapered light pipe for illumination systems design. Display Technology, Journal of, 5(3), 104-108.
[50] Hsu, W. F., Shen, Y. T., & Chu, I. L. (2012). Asymmetric and symmetric light couplers of daylighting systems for direct indoor lighting. Journal of Optics,14(12), 125703.
[51] Hsu, W. F., Hsu, Y. C., & Shen, Y. T. (2013). Orthogonal incidence method for efficient sunlight collection from asymmetric light couplers in tree-structured light guiding systems. Applied optics, 52(25), 6332-6343.
[52] Duguay, M. A., & Edgar, R. M. (1977). Lighting with sunlight using sun tracking concentrators. Applied Optics, 16(5), 1444-1446.
[53] Paroncini, M., Calcagni, B., & Corvaro, F. (2007). Monitoring of a light-pipe system. Solar energy, 81(9), 1180-1186.
[54] Darula, S., Kocifaj, M., & Mohelníková, J. (2013). Hollow light guide efficiency and illuminance distribution on the light-tube base under overcast and clear sky conditions. Optik-International Journal for Light and Electron Optics, 124(17), 3165-3169.
[55] Darula, S., Kocifaj, M., & Mohelníková, J. (2013). Hollow light guide efficiency and illuminance distribution on the light-tube base under overcast and clear sky conditions. Optik-International Journal for Light and Electron Optics, 124(17), 3165-3169.
[56] Laouadi, A., Saber, H. H., Galasiu, A. D., & Arsenault, C. (2013). Optical model for tubular hollow light guides (1415-RP). HVAC&R Research, 19(3), 324-334.
[57] Mohelnikova, J. (2009). Tubular light guide evaluation. Building and environment, 44(10), 2193-2200.
[58] Ghisi, E., & Tinker, J. A. (2006). Evaluating the potential for energy savings on lighting by integrating fibre optics in buildings. Building and Environment,41(12), 1611-1621.
[59] Sulaiman, F., & Ahmad, A. (2003, December). Coupling efficiency of polymer optical fiber for light-gathering power in optical fiber daylighting system. InPower Engineering Conference, 2003. PECon 2003. Proceedings. National (pp. 296-299). IEEE.
[60] Kandilli, C., Ulgen, K., & Hepbasli, A. (2008). Exergetic assessment of transmission concentrated solar energy systems via optical fibres for building applications. Energy and Buildings, 40(8), 1505-1512.
[61] Nakamura, T. (2009, August). Optical waveguide system for solar power applications in space. In SPIE Optical Engineering+ Applications (pp. 74230C-74230C). International Society for Optics and Photonics.
[62] Tekelioglu, M., & Wood, B. D. (2009). Solar light transmission of polymer optical fibers. Solar Energy, 83(11), 2039-2049.
[63] Sapia, C. (2013). Daylighting in buildings: Developments of sunlight addressing by optical fiber. Solar Energy, 89, 113-121.
[64] Han, H. J., Riffat, S. B., Lim, S. H., & Oh, S. J. (2013). Fiber optic solar lighting: Functional competitiveness and potential. Solar Energy, 94, 86-101.
[65] Whang, A. J. W., Chen, Y. Y., & Wu, B. Y. (2009). Innovative design of cassegrain solar concentrator system for indoor illumination utilizing chromatic aberration to filter out ultraviolet and infrared in sunlight. Solar Energy, 83(8), 1115-1122.
[66] Ullah, I., & Shin, S. (2014). Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings. Energy and Buildings, 72, 246-261.
[67] Golnabi, H., & Haghighatzadeh, A. (2010). Beam shape and intensity profile of a fiber-bundle prism-coupled waveguide. Optics and Lasers in Engineering,48(6), 720-726.
[68] Arnaoutakis, G. E., Marques-Hueso, J., Mallick, T. K., & Richards, B. S. (2013). Coupling of sunlight into optical fibres and spectral dependence for solar energy applications. Solar energy, 93, 235-243.
[69] Hecht, E. (1987). Optik. McGraw-Hill.
[70] Smith, W. J., Betensky, E., Williamson, D., Miñano, J. C., & Koshel, R. J. (2006, June). The past, present, and future of optical design. In Contract Proceedings 2006 (pp. 63422Y-63422Y). International Society for Optics and Photonics.
[71] 郝翔,「基于自由曲面的LED照明系統研究」,碩士論文,浙江大學信息科學與工程學院,中國 (2008)
[72] Jensen, H. W., Arvo, J., Dutre, P., Keller, A., Owen, A., Pharr, M., & Shirley, P. (2003). Monte Carlo ray tracing. In ACM SIGGRAPH.
[73] Winston, R., Miñano, J. C., & Benitez, P. G. (2005). Nonimaging optics. Academic Press.
[74] Wang, L., Qian, K., & Luo, Y. (2007). Discontinuous free-form lens design for prescribed irradiance. Applied optics, 46(18), 3716-3723.
[75] 呂明君,「以LED矮路燈設計為例之非軸對稱式自由曲面設計」,碩士論文,國立臺灣科技大學,臺北 (2011)。

無法下載圖示 全文公開日期 2020/08/13 (校內網路)
全文公開日期 2035/08/13 (校外網路)
全文公開日期 2035/08/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE