簡易檢索 / 詳目顯示

研究生: 潘柏軒
Po-Hsuan Pan
論文名稱: 應用於自然導光系統之階梯狀結構光學耦合器
Using Stepped Structure to Design the Optical Coupler for Natural Light Guiding System
指導教授: 黃忠偉
Jong -Woei Whang
口試委員: 王秀仁
Show-Ran Wang
邱炳樟
Bin-Chang Chieu
林保宏
Pao-hung Lin
吳錦銓
Chin-chuan Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 70
中文關鍵詞: 自然導光系統光學耦合器階梯狀結構
外文關鍵詞: Natural Light Guiding System, Optical Coupler, Stepped Structure
相關次數: 點閱:197下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了節省能源及健康照明,很多研究專注於探討日光照明系統,對於自然導光系統而言,一個自然導光系統可分為3個部分,分別為集光、傳光,和放光,集光部分使用稜鏡型結構,傳光部分則使用大量的光纖,這意謂著我們將在傳光部分花費不少金錢。
    自然導光系統中,光學耦合器所扮演的角色越來越重要,一個好的系統設計,可以得到更好的效率,本論文的目的是研究一個光學耦合器,我們提出結合階梯狀結構跟導光管的概念,我們將利用階梯狀結構來當作光學耦合器,我們發現階梯狀結構可以成功地維持出射光線角度,結論表示出,階梯狀結構光學耦合器可使耦合更容易且有效的維持出射光線角度且維持其效率。


    For saving energy and healthy lighting, many researches focus on the sunlight illumination system. A Natural Light Guiding System can be separated into collecting, transmission, and lighting parts. With a cascadable concentrator in the collecting part, the transmission part will use large number of lightpipe. It means the most of cost is on the transmission part.
    The role of the optical coupler has become more and more important for Nature light guiding system. With the useful design, one can get the better efficiency. The purpose of this paper is to report the research of optical coupler. We present a concept that combines stepped structure with light pipe. In this paper, we utilize the stepped structure optical coupler. It was found that the stepped structure can maintain the output angle successfully. In conclusion, the features of stepped structure optical coupler make the coupler system easier to couple and maintain the output angle.

    論文摘要I ABSTRACTII 誌謝III 圖目錄IX 表目錄XI 第一章 導論1 1.1 前言1 1.2 研究背景5 1.3 研究動機6 1.4 文獻回顧7 1.5 論文架構8 第二章 基本理論9 2.1 光度學與輻射度學9 2.1.1 光度計量單位 9 2.2 自然導光系統13 2.2.1 集光13 2.2.2 傳光15 2.2.3 放光16 2.3 光纖材料特性16 2.3.1 全反射現象與光纖構造16 2.3.2 光纖數值孔徑17 2.3.3 光纖傳遞能量的損失18 2.3.4 光纖材料與耐熱20 2.4 LED陣列22 2.4.1 輻射分析22 2.4.2 斯派羅準則(Sparrow Criterion)23 2.4.3 兩顆LED光源系統25 2.5 光學耦合器介紹與應用27 2.5.1 直接耦合(butt coupling)27 2.5.2 出光模態轉換雷射(lasers with mode size converters)28 2.5.3 楔型光纖(wedged fiber)28 2.5.4 透鏡光纖(lensed fiber)29 第三章 階梯狀光學耦合器系統原理與架構30 3.1 典型光學耦合器架構30 3.1.1楔型光學耦合器30 3.2 階梯狀光學耦合器數學模型32 3.2.1階梯狀光學耦合器32 3.2.2 導光管的分析33 3.3 連接損耗36 3.4 光學耦合器的效率分析36 3.5 光源陣列38 3.5.1單顆LED39 3.5.2兩顆LED光源陣列39 第四章 結果與討論42 4.1 光學模擬系統之建構42 4.2 公式的驗證42 4.3 楔型及階梯狀光學耦合器之比較43 4.3.1 理論分析43 4.3.2 光學模擬軟體驗證44 4.3.3 出光角度探討45 第五章 結論與未來展望46 5.1 結論46 5.2 未來展望46 參考文獻47 附錄A51 1.1 綠建築 51 1.2 綠建築九大指標51 1.2.1 生物多樣性指標51 1.2.2綠化指標53 1.2.3基地保水指標55 1.2.4日常節能指標55 1.2.5二氧化碳減量指標56 1.2.6廢棄物減量指標57 1.2.7室內環境指標58 1.2.8水資源指標59 1.2.9污水垃圾改善指標59 圖1-1 石油開採2 圖1-2 煉油槽2 圖1-4 1996~2004年世界太陽光電市場規模及成長率5 圖2-1 (a)立體角定義說明圖12 (b)輝度定義說明圖12 圖2-3 (a)光磚模擬圖14 (b)光磚實體圖14 圖2-4 導光照明模型屋完成品14 圖2-5 室內客廳(暗) 14 圖2-6 室內客廳(亮) 14 圖2-8 放光架構示意圖16 圖2-9 斯派羅準則示意圖24 圖2-10 兩顆LED 陣列的示意圖及其照明分佈情形26 圖2-11 不均勻的照明分佈情形26 圖2-12 出光模態轉換雷射28 圖2-13 楔型光纖29 圖2-14 透鏡光纖29 圖3-1 楔形光學耦合器30 圖3-2 楔形光學耦合器光傳輸示意圖31 圖3-3 楔形光耦合器光傳輸示意圖32 圖3-4 階梯狀光學耦合器32 圖3-5 2D光管平面圖 33 圖3-6 連接損失36 圖3-7 兩顆LED陣列的示意圖及其照明分佈情形41 圖3-8 兩顆LED die 陣列的照度頗面圖41 圖4-1 階梯狀光學耦合器42 圖4-2 用兩顆LED模擬階梯狀光學耦合器42 圖4-3 矩形長直光導管照度分佈結果43 圖4-4 分析二階階梯狀coupler能量分布44 表2-1 輻射度學與光度學計量單位10 表4-1 階梯狀耦合器與楔形結構耦合器比較44 表4-2 階梯狀結構與楔型結構比較表45

    [1]鄒應嶼. (2009) 節能照明. 電力電子專輯.
    [2]V. H. C. Crisp, et al., "Daylighting as a passive solar energy option: an assessment of its potential in non-domestic buildings," Report BR129, 1988.
    [3]G. Boyle, Renewable energy. New York: Oxford University Press in association with the Open University, 2004.
    [4]W. J. M. van Bommel and G. J. van den Beld, "Lighting for work: A review of visual and biological effects," Lighting Research and Technology, vol. 36, pp. 255-269, 2004.
    [5]R. P. Leslie, "Capturing the daylight dividend in buildings: Why and how?," Building and Environment, vol. 38, pp. 381-385, 2003.
    [6]A. J. W. Whang, et al., "Innovative design of cassegrain solar concentrator system for indoor illumination utilizing chromatic aberration to filter out ultraviolet and infrared in sunlight," Solar Energy, vol. 83, pp. 1115-1122, 2009.
    [7]A. Jong-Woei Whang, et al., "Design of cascadable optical unit to compress light for light transmission used for indoor illumination," Renewable Energy, vol. 34, pp. 2280-2295, 2009.
    [8]A. Jong-Woei Whang, et al., "Design, analysis, and fabrication of cascadable unit of static concentrator by prismatic structure for indoor illumination," APCOM, 2009.
    [9]S. Diemer, et al., "Liquid-core light guides for near-infrared applications," Applied Optics, vol. 36, pp. 9075-9082, 1997.
    [10]L. A. Whitehead, et al., "High-efficiency prism light guides with confocal parabolic cross sections," Applied Optics, vol. 37, pp. 5227-5233, 1998.
    [11]L. A. Whitehead, et al., "Evaluation of diffraction loss in prism light guides by finite-difference time-domain field modeling," Applied Optics, vol. 37, pp. 5836-5842, 1998.
    [12]A. Gupta, et al., "Design of efficient lightpipes for illumination by an analytical approach," Applied Optics, vol. 40, pp. 3640-3648, 2001.
    [13]P. D. Swift and G. B. Smith, "Cylindrical mirror light pipes," Solar Energy Materials and Solar Cells, vol. 36, pp. 159-168, 1995.
    [14]P. D. Swift, et al., "Rectangular-section mirror light pipes," Solar Energy Materials and Solar Cells, vol. 92, pp. 969-975, 2008.
    [15]P. D. Swift, "Splayed mirror light pipes," Solar Energy, vol. 84, pp. 160-165, 2010.
    [16]S. Siitonen, et al., "White LED light coupling into light guides with diffraction gratings," Applied Optics, vol. 45, pp. 2623-2630, 2006.
    [17]S. Siitonen, et al., "Coupling of light from an LED into a thin light guide by diffractive gratings," Applied Optics, vol. 43, pp. 5631-5636, 2004.
    [18]J. F. Van Derlofske and T. A. Hough, "Analytical model of flux propagation in light-pipe systems," Optical Engineering, vol. 43, pp. 1503-1510, 2004.
    [19]S. C. Chu and J. L. Chern, "No-loss bent light pipe with an equiangular spiral," Optics Letters, vol. 30, pp. 3006-3008, 2005.
    [20]Y. K. Cheng and J. L. Chern, "Irradiance formations in hollow straight light pipes with square and circular shapes," Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 23, pp. 427-434, 2006.
    [21]Y. K. Cheng, et al., "Irradiance formations of on-axis Lambertian pointlike sources in polygonal total-internal-reflection straight light pipes," Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 24, pp. 2748-2757, 2007.
    [22]R. E. Fischer and B. Tadic-Galeb, Optical system design. New York: McGraw Hill, 2000.
    [23]P.-H. Pan, et al., "An optical coupler of natural light guiding system based on stepped structure," San Diego, CA, USA, 2009, pp. 74230I-8.
    [24]蔡耀葳, "LCD 背光模組中菱鏡片之結構設計," 碩士, 機械與機電工程所, 國立中山大學, 2005.
    [25]王溫良, "車燈電腦輔助模擬配光分析," 車輛研測資訊, 2004.
    [26]D. Wood, "Optoelectronic Semiconductor Device," Prentice Hall International, 1994.
    [27]A. W. Jone, et al., "Toward a General for Spectroscopic Resolution," presented at the ASP Conference Series, 1995.
    [28]W. T. Chen and L. A. Wang, "Laser-to-Fiber Coupling Scheme by Utilizing a Lensed Fiber Integrated with a Long-Period Fiber Grating," IEEE Photonics Technology Letters, vol. 12, pp. 501-503, 2000.
    [29]I. Moerman, et al., "A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices," IEEE Journal on Selected Topics in Quantum Electronics, vol. 3, pp. 1308-1320, 1997.
    [30]B. Hübner, et al., "Laser diodes with integrated spot-size transformer as low-cost optical transmitter elements for telecommunications," IEEE Journal on Selected Topics in Quantum Electronics, vol. 3, pp. 1372-1382, 1997.
    [31]G. A. Vawter, et al., "Semiconductor laser with tapered-rib adiabatic-following fiber coupler for expanded output-mode diameter," IEEE Photonics Technology Letters, vol. 9, pp. 425-427, 1997.
    [32]X. Yan, et al., "Optical mode converter integration with InP-InGaAsP active and passive waveguides using a single regrowth process," IEEE Photonics Technology Letters, vol. 14, pp. 1249-1251, 2002.
    [33]H. Yoda and K. Shiraishi, "A new scheme of a lensed fiber employing a wedge-shaped graded-index fiber tip for the coupling between high-power laser diodes and single-mode fibers," Journal of Lightwave Technology, vol. 19, pp. 1910-1917, 2001.
    [34]Z. Tang, et al., "Optimization of fiber-optic coupling and alignment tolerance for coupling between a laser diode and a wedged single-mode fiber," Optics Communications, vol. 199, pp. 95-101, 2001.
    [35]K. Shiraishi and S. I. Kuroo, "New lensed-fiber configuration employing cascaded GI-fiber chips," Journal of Lightwave Technology, vol. 18, pp. 787-794, 2000.
    [36]K. Shiraishi and N. Hiraguri, "Lensed fiber with cascaded GI-fiber configuration for efficient coupling between LDs to single-mode fibers," 1998, pp. 355-356.
    [37]S. K. Mondal, et al., "Analysis of an upside-down taper lens end from a single-mode step-index fiber," Applied Optics, vol. 37, pp. 1006-1009, 1998.
    [38]J. Hecht, Understanding fiber optics: Prentice Hall, 2002.
    [39]E. Hecht, Optics. Reading, Mass.: Addison-Wesley, 2002.
    [40]I. Moreno, et al., "Designing light-emitting diode arrays for uniform near-field irradiance," Applied Optics, vol. 45, pp. 2265-2272, 2006.

    QR CODE