簡易檢索 / 詳目顯示

研究生: 劉錡鴻
CHI-HUO LIU
論文名稱: 水平式棉網成型機系統之動態建模與控制
Dynamic Modeling and Control of a Flat-Bed Cross Lapper Machine
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
蔡明忠
Ming-Jong Tsai
張嘉德
CHIA-DER CHANG
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 128
中文關鍵詞: 拉格蘭吉方程式近似法PI控制器狀態回授控制極點配置法滑動模式控制狀態回授線性化控制
外文關鍵詞: Lagrange’s Equation, approximation criterion, PI controller, state-feedback control, pole-placement method, sliding control, state-feedback linearization
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非織物棉網成型機(non-woven cross-lapper machine)主要是利用滑輪組機構帶動滑動架(carriage),以滑輪做往復運動,摺疊出非織物產品所需要棉網厚度(thickness)及寬度(width)。在非織物製造技術中影響產品優劣原因中,以棉網均勻度(uniformity)控制為主要關鍵。成型機系統在往復動作時需要以穩定的等速度前進後退,且在進行折返運動時能精確停在折返點位置。
    本文主要是在研究水平式棉網成型機(flat-bed cross lapper machine)的系統建模與控制。首先以拉格蘭吉方程式(Lagrange’s Equation)推導出成型機動態方程式,並分別以步階函數(step input function)及正弦函數(sinusoid function)為馬達扭矩輸入訊號,藉由輸入訊號的響應特性得知系統狀態響應圖,了解其動態特性。並分別設計線性控制器與非線性控制器以求得系統之輸出目標。
    線性控制器的設計,首先以Runge-Kutta解非線性動態系統平衡點,對非線性系統以平衡點作泰勒級數(Taylor series expansion)展開式得到線性化(linearization)系統,分別以古典控制理論(classical control theory)與現代控制理論(modern control theory)設計控制器。古典控制理論控制器之設計,首先求得高階線性化系統轉移函數(transfer function),利用近似法(approximation criterion)求得低階系統轉移函數,並再以設計PI控制器,將低階系統控制器套回高階系統獲得系統輸出響應而驗證水平式棉網成型機系統移動架速度響應。
    現代控制理論控制器之設計,利用狀態回授控制(state feedback control)以極點配置法(pole-placement method ),設計線性化系統之閉迴路(close loop)極點(pole)位置,以符合系統輸出目標。
    非線性控制器之設計,直接設計系統輸出目標和給定追蹤函數(target function),期望系統輸出可以達到追蹤函數,其控制器之設計分別以滑動模式控制(sliding control)及狀態回授線性化(state feedback linearization)結合滑動模式控制。滑動模式控制是藉由系統控制律(control law)的切換,由控制法則迫使系統進入系統軌跡(trajectory)進入滑動平面,而達到控制目的。狀態回授線性化控制(state feedback linearization control),主要是選擇不同狀態簡化系統原本狀態的非線性行為的方法,將原系統模式等效為簡單型式的模式,並且由誤差函數(error function)的微分方程式決定系統穩定,並且加上滑動模式控制來消除系統中的不確定項(uncertainty)以達到更好的輸出響應。


    The non-woven cross lapper machine is mainly reciprocating motioned via a pulley-roller system with a carriage. This system can fold non-woven production in desired thickness and width. In non-woven manufacture, technology influences products of good and bad reasons, with uniform control of the web as the main key. In non-woven factory production, the reciprocating motion required in stabilizing speed and motion has to be precisely maintained in between return points.
    This study’s purpose is to build a model and control for flat-bed cross lapper machine. We first used Lagrange’s Equation to provide the system’s dynamic equation, followed by step input function and sinusoid function as torque signals provided by the motor. The input signal response and the system dynamic can then be determined. We also designed a linear control system and a non-linear control system to achieve design requirement.
    For designing a linear control system, we first used the Runge-Kutta method to determine the equilibrium points of this non-linear system. Then, we used the Taylor series expansion to linearize this system and use both the classical and modern control theory to design the controller. To design the system by using the classical control theorem, we determined the higher order transfer function first and then used the approximant method to determine lower order transfer function to design PID controller. Using this low order control system into higher order control system allowed us to obtain system responses that could be compared to those of the flat-bed cross-lapper machine.
    For designing the modern control system, we could design by two ways: state feedback control and pole-placement design control. Then, we designed this linear system’s characteristic roots to achieve the goal.
    We designed the non-linear system by directly designing the system output and target function and expecting this system’s output to reach target function; this controller was designed by sliding control and state feedback linearization. The idea of sliding control is forcing the system’s trajectory into sliding surface by switching the control law. State feedback linearization control is basically using different kind of states to simplify the original non-linear state, meaning that the new system will still keep equivalent to original system with error function but simpler. The error function can decide the stability of the system and if sliding control mode is added to reduce the uncertainty of system, we could obtain better results.

    目錄 摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 1.4 研究流程 6 1.5 論文大綱 7 第2章 水平式棉網成型機系統動態模式推導 8 2.1 拉格蘭吉方程式 8 2.2 水平式棉網成型機系統模式化 10 2.3 移動架系統 11 2.4 馬達驅動系統 15 2.5 狀態空間表示式 20 第3章 線性系統分析與設計 23 3.1 線性系統控制器之分析與設計 23 3.2 系統平衡點 23 3.3 非線性系統之線性化 24 3.4 非線性系統線性化系統之可控制性與可觀測性 28 3.5 非線性系統線性化系統之轉移函數與系統暫態響應 29 3.6 高階系統近似低階系統之驗證準則 32 3.7 穩態誤差分析 33 3.8 非線性系統線性化系統之控制器設計 34 3.8.1 PI控制器設計 34 3.8.2 狀態回授設計 37 第4章 非線性系統分析與設計 43 4.1 非線性系統之穩定度 44 4.1.1 相位平面分析 44 4.1.2 李亞普洛夫理論 49 4.2 狀態回授線性化控制 49 4.2.1 回授線性化和標準型式 50 4.2.2 單輸入單輸出系統的輸入-狀態線性化 51 4.2.3 系統的輸入-狀態線性化必要條件與控制器之設計 53 4.2.4 輸入-輸出線性化控制 54 4.2.5 輸入-輸出線性化控制器設計 54 4.3 滑動模式控制 56 4.3.1 滑動模式控制法則 57 4.3.2 改善滑動模式控制的抖動現象 60 4.4 水平式棉網成型機系統非線性控制器設計 62 4.4.1 以滑動模式控制器為基準設計水平式棉網成型機系統控制器 62 4.4.2 以滑動模式加輸入-輸出狀態線性化為基準設計水平式棉網成型機系統控制器 65 第5章 模擬結果與討論 73 5.1 水平式棉網成型機系統運動模式響應之模擬 73 5.2 水平式棉網成型機線性化系統PI型式控制器之模擬結果 78 5.3 水平式棉網成型機線性系統狀態回授控制器之模擬結果 81 5.4 水平式棉網成型機非線性系統滑動模式控制器之模擬結果 83 5.5 滑動模式加輸入-輸出狀態線性化為基準設計水平式棉網成型機系統控制器之模擬結果 91 第6章 結論 107 6.1 結論 107 參考文獻 110 附錄A 系統之可控制性 115 附錄B 輸入-輸出狀態線性化控制 125

    [1]Stadnicki, J., “Model for the Optimal Control of the Cross-Lapper Drive,” Journal Textile Machinery Society Japan, Vol. 44, No. 4, pp. 69-73, (1998).
    [2]Kuo, C.F.J., and Chiang, W., “Dynamic Control of a Cross-Lapper,” Textile Research Journal, Vol. 73, No. 1, pp.64-68, (2003).
    [3]Kuo, C.F.J. and Tasi, C.C. “Overall Strategy for Fabric Folding Machine System Control,” The International Journal of Advanced Manufacturing Technology, Published Online, (2006).
    [4]Benaroya, H., “Mechanical Vibration: Analysis, Uncertainties and Control,” Prentice Hall Inc., (1998).
    [5]Ismail, O. and Bandyopadhyay, B., “Model Reduction of Linear Interval Systems using Pade Approximation,” Proceedings of the 1995 IEEE International Symposium on Circuits and System, Vol.2, pp.1400-1403, (1995).
    [6]Bandyopadhyay, B., Upadhye, A. and Ismail, O., “γ-δ Routh Approximation for Interval Systems,” IEEE Trans. Automatic Control, Vol. 42, No. 8, pp.1127-1130, (1997).
    [7]Bandyopadhyay, B., Ismail, O. and Gorez, R., “Routh-Pade Approximation for Interval Systems,” IEEE Trans. Automatic Control, Vol. 39, No. 12, pp.2454-2456, (1994).
    [8]Rafimanzelat, M.R. and Yazdanpanah, M.J., “A Novel Low Chattering Sliding Mode Controller,” IEEE Trans. Control Conference, Vol. 3, pp.1958 - 1963, (2004).
    [9]Utkin, V.I., “Variable Structure System with Sliding Mode,” IEEE Trans. Automatic Control, Vol.22, No.2, pp.212-222, (1977).
    [10]Utkin, V.I., “Sliding Modes and Their Application in Variable Structure System,” MIR Moscow, (1978).
    [11]Eker, I. and Akinal, S.A., “Sliding Mode Control with Integral Augmented Sliding Surface: Design and Experimental Application to an Electromechanical System,” Electrical Engineering, Vol.90, No.3 pp.189-197, (2008).
    [12]Abdulgalil, F. and Siguerdidjane, H., “PID Based on Sliding Mode Control for Rotary Drilling System,” IEEE International Conference, Volume 1, pp.262-265, (2005).
    [13]Slotine, J.J.E., “Sliding Controller Design for Nonlinear systems,” International Journal of Control, vol. 40, pp421-434, (1984).
    [14]Dunnigan, M.W., Wade, S., Williams, B.W. and Yu, X. “Position Control of a Vector Controlled Induction Machine Using Slotine’s Sliding Mode Control Approach,” IEEE Electric Power Applications, vol. 145, No. 3, pp.231-238, (1988).
    [15]Kelly, S.G., “Fundamentals of Mechanical Vibrations,” McGraw-Hill Inc., New York, (1993).
    [16]大佑機械有限公司,桃園市有恆街75號,(03)325-5666,(2004)
    [17]劉錫蘭譯, “工程材料學,” 科技圖書股份有限公司, (1981).
    [18]Kuo, B.C., “Automatic Control Systems,” John Wiley & Sons, Inc., New York, (1995).
    [19]Ogata, K. “Modern Control Engineering,” Prentice Hall Inc., New York, (1997).
    [20]Slotine, J.E. and Li, W., “Applied Nonlinear Control,” Prentice Hall Inc., New York, (1991).
    [21]Ljung, L. and Glad, T., “Modeling of Dynamic Systems,” Prentice Hall Inc., (1994).
    [22]Singiresu, S.R., “Mechanical Vibrations SI Edition,” Prentice Hall Inc., (2005).
    [23]Chang, B.C. and Yousuff, A., “Pole Placement and the Observer-Based Controller Parameterization,” IEEE Trans. Automatic Control, Vol. 35, No.6, pp.726-729, (1990).
    [24]Emre, E and Khargonekar, P., “Pole Placement for Linear Systems Over Bezout Domains,” IEEE Trans. Automatic Control, Vol. 29, No.1, pp.90-91, (1984).
    [25]Soudack, A., “Phase Plane Analysis of Second Order Nonlinear Differential-Difference Equations,” IEEE Trans. Automatic Control, Vol 13, No.2, pp.200-201, (1968).
    [26]Vibet, C., “Phase Plane Analysis of First-Order System with Transport Lag,” IEEE Education, Vol. 44, No.3, pp.289-291, (2001).
    [27]Yazdanpanah, R., Soltani, J. and Markadeh, G.R.A. “Nonlinear Torque and Stator Flux Controller for Induction Motor Drive Based on Adaptive Input–Output Feedback Linearization and Sliding Mode Control,” Energy Conversion and Management, Vol. 49, No. 4, pp.541-550, (2008).
    [28]Deutscher, J., “Input–Output Linearization of Nonlinear Systems Using Multivariable Legendre polynomials,” Automatica, Vol. 41, No.2, pp.299-304, (2005).
    [29]Palanki, S. and Kravaris, C., “Controller Synthesis for Time-Varying Systems by Input-Output Linearization,” Computers and Chemical Engineering, Vol.21, No.8, pp.891-903, (1997).
    [30]Utkin, V.I., "Sliding Model Contro1 Design Principles and Applications to Electric Drives,” IEEE Trans. Industrial Electronics, Vol. 40, No.1, pp.23-26, (1993).
    [31]Hung, J.Y., Gao, W. and Hung, J.C., “Variable Structure Control: A Survey,” IEEE Trans. Industrial Electronics, Vol.40, No.1, pp.2-22, (1993).
    [32]Rya, S.H. and Park, J.H. “Auto-Tuning of Sliding Mode Control Parameters Using Fuzzy Logic,” Proceedings of the American Control Conference, pp.618-623, (2001).
    [33]Buckholtz, K.R. “Approach Angle-Based Switching Function for Sliding Mode Control Design,” Proceedings of the American Control Conference, pp.2368-2373, (2002).
    [34]Esfandiari, F., and Khalil, H.K., “Stability Analysis of a Continuous Implementation of Variable Structure Control,” IEEE Trans. Automatic control, Vol. 36, No.5, pp.616-620, (1991).
    [35]Utkin V.I., “Sliding Modes in Control and Optimization,” Hardcover, (1992).
    [36]Bartolini, G. and Pydynowslu, P., “An Improved, Chattering Free, V.S.C. Scheme for Uncertain Dynamical Systems,” IEEE Trans. Automatic Control, Vol. 41, No.8, pp.1220-1226, (1996).

    無法下載圖示 全文公開日期 2010/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2013/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE