簡易檢索 / 詳目顯示

研究生: 謝宏村
HONG-TSWUN HSIEN
論文名稱: 氣壓平衡式之適應性模糊滑動控制實現7.5代平面顯示玻璃基板升降系統伺服定位控制
The Servo Positioning Control for the Lifting System of the 7.5th Generation TFT-LCD Glass Substrate with Pneumatic Balance system using Adaptive Fuzzy Sliding Mode Control
指導教授: 江茂雄
Mao-Hsiung Chiang
郭中豐
Chung-Feng Kuo
口試委員: 鍾清枝
Tsing-Tshih Tsung
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 105
中文關鍵詞: AC感應伺服馬達適應性模糊滑動模式控制等效控制軌跡控制升降系統平面顯示器玻璃基板
外文關鍵詞: AC induction servomotor, Adaptive Fuzzy Sliding control, equivalent control, trajectory control, lifting system, FPD, Glass substrate
相關次數: 點閱:340下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文應用PC-base來控制氣壓平衡式之7.5代平面顯示器玻璃基板升降系統,比傳統的升降系統增加了氣壓平衡系統,不但可使用較小功率的AC伺服馬達,並且可以節省成本與耗能。其定位應用適應性模糊滑動控制理論,來達成我們所設定的軌跡伺服控制,使其運動過程能夠完全平順無振顫,如此一來可避免玻璃基板在升降的過程當中所造成的磨損,再加上主動式氣壓補償控制技術,使玻璃基板在輸送過程當中更有效率,更加節省耗能。在模擬方面,先推導出氣壓平衡式之7.5代平面顯示氣玻璃基板升降系統的數學模式,再利用matlab/simulink建模,模擬出整個系統架構,搭配實驗所擷取出來的資料相互比對,來達成我們所要的目標。
    根據模擬與實驗結果中得知,從200mm到500mm的軌跡行程來說,其狀態都很穩定,上升速度平滑,但在700mm行程6秒到達時,由於機構在硬體上有最大速度的限制,飽和電壓為10V,當最高速度大於硬體最大速度時,就會達到飽和,以致於跟不上所規劃的軌跡,造成誤差變大。在模擬系統時跟實際實驗的結果有差不多的結果。
    從整個實驗與模擬的終點誤差圖表中,很明顯的可以看出其誤差的差距並不大,表示經過適當的調整參數,也可以達到相同的良好控制效果。

    關鍵字:AC感應伺服馬達、適應性模糊滑動模式控制、等效控制、軌跡控制、升降系統、平面顯示器、玻璃基板。


    The paper aims to develop a novel lifting system with pneumatic balance for 7.5th generation of TFT-LCD Glass Substrate. The PC-base control system with adaptive fuzzy sliding mode control is used and can achieve the path control. The pneumatic balance system can counterbalance the weight of the loading so as to reduce the requested power of the AC servo motor.
    The proposed system is verified by simulation and experiment. The stroke from 200mm to 500mm of the path control can be achieved with 6 sec. Due to the maximum power limit of the AC servo motor, the path profile is restricted. The simulation and experiment results show that the pneumatic-balanced lifting system controlled by adaptive fuzzy sliding mode control can achieve excellent performance.

    Keywords: AC induction servomotor, Adaptive Fuzzy Sliding control, equivalent control, trajectory control, lifting system, FPD, Glass substrate.

    摘要.............................................................II Abstact.........................................................III 誌 謝............................................................IV 目錄..............................................................V 圖目錄...........................................................IX 表目錄..........................................................XVI 符號索引.......................................................XVII 第一章緒論....................................................19 1.1 前言.........................................................19 1.2 文獻回顧.....................................................20 1.2.1 伺服馬達文獻回顧...........................................20 1.2.2 控制理論文獻回顧...........................................20 1.3 研究動機.....................................................21 1.4 本文架構.....................................................22 第二章氣壓平衡式之7.5代平面顯示器玻璃基板升降系統之架構與建立.23 2.1 氣壓平衡式之7.5代玻璃基板升降系統之架構......................24 2.2 氣壓平衡升降系統.............................................28 2.2.1 氣壓平衡技術及原理.........................................28 2.2.2 氣壓平衡技術的優點.........................................30 2.3 實驗設備.....................................................31 2.3.1 無桿氣壓缸.................................................31 2.3.2 無桿電動缸.................................................32 2.3.3 AC伺服感應馬達.............................................32 2.3.4 磁簧開關...................................................33 2.3.5 升降平台位置計算...........................................34 2.3.6 PC-base控制系統............................................34 第三章動態系統模式建立及分析..................................35 3.1 交流感應伺服馬達.............................................35 3.1.1 交流感應伺服馬達的工作原理.................................35 3.1.2 閉路控制(closed-loop control)系統..........................36 3.2 7.5代玻璃基板升降系統數學模式建立............................38 3.3 matlab/simulink程式建模......................................40 3.4 模擬與實例比較...............................................42 第四章控制理論................................................43 4.1 模糊控制理論.................................................43 4.2 模糊滑動模態控制理論.........................................45 4.2.1 模糊滑動控制器.............................................46 4.2.2 等效控制...................................................47 4.2.3 歸屬函數建立.............................................. 47 4.3 適應性模糊滑動模式控制理論...................................50 4.4 適應性模糊滑動模式控制與穩定分析.............................53 4.5 控制器設計...................................................56 4.5.1 位置控制之數學模式.........................................56 4.5.2 位置控制器設計.............................................58 第五章伺服定位系統模擬與實驗結果..............................60 5.1 應用適應性模糊滑動模式控制之模擬伺服控制.....................61 5.1.1 AFSMC玻璃基板升降系統位置控制方塊圖........................61 5.1.2 AFSMC之200mm模擬伺服控制...................................61 5.1.3 AFSMC之300mm模擬伺服控制...................................65 5.1.4 AFSMC之500mm模擬伺服控制...................................69 5.1.5 AFSMC之700mm模擬伺服控制...................................73 5.2 應用適應性模糊滑動模式控制之軌跡伺服控制 實驗結果............77 5.2.1 AFSMC之200mm軌跡伺服控制實驗...............................77 5.2.2 AFSMC之300mm軌跡伺服控制實驗...............................81 5.2.3 AFSMC之500mm軌跡伺服控制實驗...............................84 5.2.4 AFSMC之700mm軌跡伺服控制實驗...............................87 5.3 適應性模糊滑動模式控制(AFSMC)之多點定位伺服控制實驗..........90 5.3.1 AFSMC之多點定位伺服控制實驗................................90 5.3.2 AFSMC之多點軌跡伺服控制....................................91 5.4 氣壓平衡系統.................................................93 5.4.1 主動式氣壓平衡控制系統.....................................93 5.4.2 氣壓平衡變動負載模擬.......................................94 5.5 實驗結果與討論...............................................97 第六章結論與未來展望..........................................99 6.1 結論.........................................................99 6.2 未來展望....................................................100 參考文獻........................................................101

    [1]劉崇賢 ,”模糊控制在伺服馬達之應用研究”,長庚大學電機工程研究所碩士論文,2001
    [2]許鴻文 ,”線性伺服馬達之系統鑑別與定位控制”,元智大學機械工程研究所,2000
    [3]劉志豪,”應用模糊控制於線型永磁式同步伺服馬達速度及定位控制器參數之調適”,國立台灣科技大學電機與控制工程學系,2001
    [4]Mamdani, E. H. and Assilian, S., “A Fuzzy Logic Controller for a Dynamic Plant”,Int.J.Man,Maching Study,7,pp.1-13,1975.
    [5]Sung-Woo Kim, and Ju-Jang Lee, “ Design of a fuzzy controller with fuzzy sliding surface, ” Fuzzy Sets & Systems, vol.71, no.35, pp.359-67, 12 May1995.
    [6]Ji-Chang Lo, and Ya-Hui Kuo,“ Decoupled Fuzzy Sliding-Mode Control “,IEEE Trans. on Fuzzy Systems,Vol.6,No.3, ,pp.426-435, August1998.
    [7]Jiun-Fei Shiu and Chin-Min Lin, “ Decoupled Fuzzy Controller Designed with Fuzzy Sliding Surface” Automatic control Conference, pp.463-468, 2000
    [8]Zadeh, L. A., ”Fuzzy sets”, Information and control, Vol. 8, pp. 338-353, 1965。
    [9]C.C.Kung, T.Y.Kao, T.H.Chen,”Adaptive Fuzzy Sliding Mode Controller Design”,IEEE Trans. Fuzzy Syst., Vol. 9:2, pp. 674-679, 2002.
    [10]葉永培,”解耦合自組織模糊滑動平面控制應用於閥控液壓缸系統變排量節能控制與伺服控制之整合控制研究”,國立台灣科技大學碩士論文,2003年。
    [11]Sung-Woo Kim, and Ju-Jang Lee, “ Design of a fuzzy controller with fuzzy sliding surface, ” Fuzzy Sets & Systems, vol.71, no.35, pp.359-67, 12 May1995.
    [12]沈士棠,”閥控液壓缸系統節能控制與伺服控制之智慧型平行控制”,國立台灣科技大學碩士論文,2004年
    [13]A.Isidori,”Nonlinear Control Systems”, 2nd ed. Berlin, Germany: Springer-Verlag, 1989
    [14]J. J. E., Slotine and W. Li, “Applied Nonlinear Control”, Englewood Cliffs, New Jersey: Prentice-Hall, 1991
    [15]R.MSanner,J.J.Slotine “Gaussian Network for Direct Adaptive Control”,IEEE Trans.Neural Networks.,Vol.3,pp.837-863,1992
    [16]Slotine.J.E. and Coetess.J.A.,”Adaptive sliding controller synthesis fornonlinearsystems”,Int.J.Control,Syst.,Vol.43(6),pp.1631-1651,1986
    [17]L. X. Wang, “Adaptive Fuzzy Systems and Control: Design and Stability Analysis”, Englewood Cliffs, NJ: Prentice-Hall, 1994
    [18]D. Driankov, H. Hellendoom and M. Rainfrank, “An introduction to fuzzy control,” Springer, Berlin, 1993
    [19]Y. C. Chang, “Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and approaches,” IEEE Trans. on Fuzzy Syst., vol. 9, no. 2, pp. 278-292, 2001.
    [20]Zadeh, L. A., ”Fuzzy sets”, Information and control, Vol. 8, pp. 338-353, 1965.
    [21]Mamdani, E. H. and Assilian, S., “A Fuzzy Logic Controller for a Dynamic Plant”, Int. J. Man, Maching Study, 7, pp. 1-13, 1975.
    [22]Sung-Woo Kim, and Ju-Jang Lee, “ Design of a fuzzy controller with fuzzy sliding surface, ” Fuzzy Sets & Systems, vol.71, no.35, pp.359-67, 12 May1995.
    [23]Ji-Chang Lo, and Ya-Hui Kuo,“ Decoupled Fuzzy Sliding-Mode Control “,IEEE Trans. on Fuzzy Systems,Vol.6,No.3, ,pp.426-435, August1998
    [24]Jiun-Fei Shiu and Chin-Min Lin, “ Decoupled Fuzzy Controller Designed with Fuzzy Sliding Surface” Automatic control Conference, pp.463-468, 2000.
    [25]Byung-Jae Choi, Seong-Woo Kwak, and Byung Kook Kim “Design of a single-input fuzzy logic controller and its properites” Fuzzy Sets and Systems pp.299-308 1999.
    [26]Shi-Yuan Chen, Fang-Ming Yu, and Hung-Yuan Chung “Decoupled fuzzy controller design with dingle input fuzzy logic”, Department of Electrical Engineering, National Central University,Fuzzy Set and Systems 129 pp.335-342, 2002
    [27]C.C.Kung, T.Y.Kao, T.H.Chen,”Adaptive Fuzzy Sliding Mode Controller Design”,IEEE Trans. Fuzzy Syst., Vol. 9:2, pp. 674-679, 2002.
    [28]R. P. Yager and D. P. Filev, “Essentials of Fuzzy Modeling and Control” New York: Wiley, 1994.
    [29]A.Isidori,”NonlinearControlSystems”, 2nd ed. Berlin, Germany: Springer-Verlag, 1989.
    [30]J. J. E., Slotine and W. Li, “Applied Nonlinear Control”, Englewood Cliffs, New Jersey: Prentice-Hall, 1991.
    [31]L. X. Wang, “Adaptive Fuzzy Systems and Control: Design and Stability Analysis”, Englewood Cliffs, NJ: Prentice-Hall, 1994.
    [32]H. Lee. M. Tomizuka, “Robust adaptive control using a universal approximator for SISO nonlinear systems”,IEEE Trans. Fuzzy Syst., vol. 8, pp. 95-106, Feb. 2001.
    [33]陳鳳珊,”具有適應性插入模糊規則之滑動模式控制器設計” 大同大學,電機所,2000年。
    [34]葉永培,”解耦合自組織模糊滑動平面控制應用於閥控液壓缸系統變排量節能控制與伺服控制之整合控制研究”,國立台灣科技大學碩士論文,2003年。
    [35]沈士棠,”閥控液壓缸系統節能控制與伺服控制之智慧型平行控制”,國立台灣科技大學碩士論文,2004年。
    [36]李明隆,”改良式距離基礎之模糊滑動模式控制應用於長行程次微米精度之氣壓-壓電混合精密伺服定位平台模擬與控制”,國立台灣科技大學碩士論文,2004年。
    [37]Yang, F.L., Chiang, M.H., Wu, C.N., Kuo, C.H., Chen, Y.N. and Yeh, Y.C.*,”Study on Force Control and Load-Sensing Control of a Hydraulic Valve-Controlled Cylinder Systems with Decoupling Self-Organizing Fuzzy Sliding Mode Controller”, Bulletin of the College of Engineering, N.T.U., No. 92, , pp. 21–34 (EI), June 2004
    [38]Chiang, M.H., Yang, F.L., Chen, Y.N. and Yeh, Y.P., “Integrated Control of Clamping Force and Energy-Saving in Hydraulic Injection Moulding Machines Using Decoupling Fuzzy Sliding-Mode Control”, International Journal of Advanced Manufacturing Engineering, published online: 12 January 2005.
    [39]江茂雄、余冬帝,”適應性類神經模糊控制應用於電液負載感測系統之研究”,機械月刊第312期,325-335,Jul. 2001。
    [40]Chiang, M-H, Yeh,Y.P.,”解耦合自組織模糊滑動模式控制應用於閥控液壓缸系統變排量節能控制與速度控制之平行控制研究”,The 20th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Taipei,Taiwan (2003).
    [41]Chiang, M.H., Chien Y.W., Integration of path control and load-sensing control on a hydraulic valve controlled system, The 3rd International Fluid Power Conference (3. IFK), Aachen, Germany (2002).
    [42]Chiang, M.-H., Yu, D,-J., “Study on Adaptive Neural Fuzzy Control for Electro-hydraulic Load-sensing System”, 2001 Automatic Control Conference, Taoyuen, Taiwan (2001).
    [43]江茂雄、余冬帝、王琮右, “Implementation of Energy-Saving Control on Hydraulic Valve-controlled Systems- with Electro-Hydraulic Load-Sensing System”,第一屆台灣流體傳動與控制技術暨產業發展策略研討會,Taipei, Taiwan (2000).
    [44]Slotine.J.E. and Coetess. J.A.,”Adaptive sliding controller synthesis for nonlinear systems“, Int. J. Control, Syst., Vol. 43(6), pp. 1631-1651, 1986.
    [45]江茂雄,“液氣壓伺服控制”,Lecture Note, 國立台灣科技大學自動化及控制研究所。

    QR CODE