簡易檢索 / 詳目顯示

研究生: ARIAN DWI PUTRA
ARIAN - DWI PUTRA
論文名稱: 射出成形應用於具菲涅爾結構之全內反射透鏡以改善準直效果
Injection Molding of Total Internal Reflection Lens with Fresnel Structure for Improving Collimation of LED Illumination
指導教授: 陳炤彰
Chao Chang A. Chen
口試委員: Allen Jong-Woei Whang
Allen Jong-Woei Whang
Dr. Wei-Yao Hsu
Dr. Wei-Yao Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 140
中文關鍵詞: TIR光學元件準直透鏡LED照明射出成形菲涅爾結構
外文關鍵詞: TIR lens, collimation lens, LED illumination, injection molding, Fresnel structure
相關次數: 點閱:372下載:41
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究在原有的total internal reflection全反射 (TIR) 透鏡加入自行設計的菲涅爾結構提升固態照明或發光二極體(LED)照明之準直性能。在設計菲涅爾結構部分,其焦距(focal length)和間距(pitch)是兩個重要參數,焦距是經由幾何光學和司乃耳折射定律來計算,間距則是取決於光學模擬的結果。通常光學設計理論方法是建立在一個點光源,但由於LED具有一定的尺寸,所以須以光學模擬先驗證所使用LED光源的可能性,其芯片的尺寸為1mm ×1mm,在光學設計流程中,均勻度和平均照明在距離LED一公尺的目標平面上之結果,可用來決定與優化最佳的焦距和菲涅爾結構的間距。實驗方法以射出成形來驗證具菲涅爾結構TIR透鏡設計的實際性,以PMMA射出成形有TIR和修改後的TIR(TIR-F)光學元件。藉由模流軟體(Moldex3D)的模擬結果發現,最小的Z軸翹曲量為0.032mm,保壓壓力110MPa,射出速度為1 mm/s,其中最小的翹曲量公差為0.115mm,另使用射出速度和保壓壓力兩個參數來繪製成形視窗。射出速度的最佳範圍是1mm/s至5mm/s,如果大於5mm/s,TIR的表面將產生流痕會影響後續的量測結果。對於原有TPR和修改後的TIR-F光學元件,保壓壓力的最佳範圍是90MPa到110MPa。在光學檢測部分,修改後的TIR-F光學元件的最大光強度比原來的TIR高了15.785 %。而修改後的平均發光角度為4.69°,原來的TIR發光角度為5.55°,與原來相比修改後的多聚焦了0.86°,增進約15.5%。本研究成果未來可應用於高階TIR透鏡或高亮度準直光照明需求之產品。


This study is devoted to develop a composited lens to redesign collimation effect of a Light Emitting Diode (LED) illumination. The composited lens is a Total Internal Reflection (TIR) lens combined with a Fresnel structure. The focal length and pitch value are two important variables in designing the Fresnel structure. The focal length is calculated by geometrical optics and Snell’s law. The pitch is determined by an optical simulation of software. The theoretical method is based on a point source first and then adapted to a specific size of LED chip. Thus an optical simulation is conducted to verify the feasibility of such model of an LED chip size as 1 mm x 1 mm. In the optical design step, the uniformity and the average illumination on the target plane are two results of collimation performance which are used to determine the compromised focal length and the pitch of Fresnel structure. An injection molding process is used to manufacture the original TIR lens and the modified TIR-F lens to verify the actual performance of the desired lens design. A Moldex3D simulation shows that the minimum warpage of Z direction is 0.032 mm for packing pressure as 110 MPa and injection velocity as 1 mm/s, where the minimum warpage tolerance is constrained as 0.115 mm. The injection velocity and packing pressure are two parameters to construct a molding window. The optimal range of injection velocity is from 1 mm/s to 5 mm/s in this study where a flow mark may be generated over 5 mm/s. The optimal range of packing pressure for both the original and the modified TIR-F lens are 90 MPa to 110 MPa. In the optical test, the maximum light intensity of the modified TIR-F lens is 15.79% higher than the maximum light intensity of the original TIR lens, with the average light angle of the modified TIR-F lens is 4.69o while the light angle of the original TIR lens is 5.55o. Results of this study can be applied on high-brightness LED illumination with specific collimation.

ABSTRACT 3 ACKNOWLEDGEMENT 4 TABLE OF CONTENTS 5 LIST OF FIGURES 7 LIST OF TABLE 11 NOMENCLATURES 12 CHAPTER 1 INTRODUCTION 13 1.1 Background 13 1.2 Research Objectives 14 1.3 Approach 15 1.4 Research Framework 19 CHAPTER 2 LITERATURE REVIEW 21 2.1 Reflection and Refraction Fundamental 21 2.2 Fresnel lens 21 2.3 Total Internal Reflection Lens as a Secondary Optic for LED Illumination 22 2.4 Injection Molding Process 32 2.5 Shrinkage and Warpage 32 2.6 Injection Molding Process 34 CHAPTER 3 OPTICAL SIMULATION 36 3.1 TIR Lens Inlet and Outlet Convex Introduction 36 3.2 Optical Simulation 37 3.2.1 TracePro Introduction 37 3.2.2 Light Source and Detail Simulation Parameters 38 3.2.3 Target Plane 39 3.2.4 Original and Modified TIR-F lens Profile 40 3.2.5 TracePro Simulation Result 42 CHAPTER 4 MOLD DESIGN AND MOLDEX SIMULATION 53 4.1 Mold Design 53 4.2 Core Pin Design 55 4.3 Core Pin Measurement Result 56 4.4 Moldex Simulation 59 CHAPTER 5 EXPERIMENTAL EQUIPMENT AND METHOD 63 5.1 Injection Molding Machine and Sample Preparation 63 5.1.1 Injection Molding Equipment 63 5.1.2 Molding Window Experiment 67 5.1.3 Short Shot Experiment 68 5.1.4 Warpage Calculation 68 5.2 Optical Testing Preparation 69 CHAPTER 6 RESULT AND DISCUSSION 72 6.1 Moldex Simulation Result 72 6.2 Injection Molding Experiment Result 76 6.3 Short Shot Simulation and Experiment Result 79 6.4 Molding Window Result 83 6.5 Optical Inspection Result 84 CHAPTER 7 CONCLUSION AND RECCOMENDATION 89 7.1 Conclusions 89 7.2 Recommendations 89 REFERENCES 92 APPENDIX A Lens Design Calculation 94 APPENDIX B Tracepro simulation result 111 APPENDIX C DRAWING 118 APPENDIX D Fanuc Roboshot α-15Ia Specification 122 APPENDIX E PMMA Asahi Kasei Delpet 80 NH Property 123 APPENDIX F Mechanical Dimension & Typical Spatial Distribution 125 APPENDIX G Optical Inspection Result 127 CURRICULUM VITAE 140

1. Wikipedia. Light-emitting diode. [cited 2013 5 January]; Available from: http://en.wikipedia.org/wiki/Light-emitting_diode.
2. Wang, G., et al., Collimating lens for light-emitting-diode light source based on non-imaging optics. Applied Optics, 2012. 51(11): p. 1654-1659.
3. Ding, Y., et al., Freeform LED lens for uniform illumination. Opt. Express, 2008. 16(17): p. 12958-12966.
4. Zhenrong, Z., H. Xiang, and L. Xu, Freeform surface lens for LED uniform illumination. Applied optics, 2009. 48(35): p. 6627-6634.
5. Jiang, J., et al., Optical design of a freeform TIR lens for LED streetlight. Optik-International Journal for Light and Electron Optics, 2010. 121(19): p. 1761-1765.
6. Zhao, S., et al., Lens design of LED searchlight of high brightness and distant spot. JOSA A, 2011. 28(5): p. 815-820.
7. Chen, L.-T. and G. Keiser. Simplified design of a precise freeform TIR lens for LED lighting applications. in OptoeElectronics and Communications Conference (OECC), 2011 16th. 2011. IEEE.
8. Taylor, A.E., Illumination fundamentals. Lighting Research Center, Rensselaer Polytechnic Institute, 2000.
9. Leutz, R. and A. Suzuki, Nonimaging Fresnel lenses: design and performance of solar concentrators. Vol. 83. 2001: Springer.
10. Zhen, Y., Z. Jia, and W. Zhang. The optimal design of TIR lens for improving LED illumination uniformity and efficiency. in Proc. SPIE. 2007.
11. Chen, C., S. Chang, and C. Weng. Design and fabrication of optical homogenizer with micro structure by injection molding process. in Proc. SPIE. 2008
12. Chen, J.-J. and C.-T. Lin, Freeform surface design for a light-emitting diode–based collimating lens. Optical Engineering, 2010. 49(9): p. 093001-093001-8.
13. Chen, J.-J., et al., Freeform lens design for LED collimating illumination. Opt. Express, 2012. 20(10): p. 10984-10955.
14. Fischer, J., Handbook of molded part shrinkage and warpage. 2012: Access Online via Elsevier.
15. Zarechian, B.A., A Quantitative Comparison and Validation of Computer Aided Engineering Softwares Simulating the Plastics Injection Molding Process. 2008: ProQuest.
16. Chen, C.-C.A. and F.-C. Lee. Flow front analysis of tir lens of leds with injection molding. in Annual Technical conference–ANTEC, Conference Proceedings. 2009.
17. Adolphe Ganot (1872) Natural Philosophy for General Readers and Young Persons, D. Appleton & Co., New York, p.328, Fig.25
18. Watson, Bruce. "Science Makes a Better Lighthouse Lens."Smithsonian. August 1999 v30 i5 p30. produced in Biography Resource Center. Farmington Hills, Mich.: Thomson Gale. 2005
19. V. T. Hoang, "Study of PC/PMMA Blends for Injection Molding of Optical Elements in LED Illumination," Master, Mechanical Engineering, NTUST, Taipei, 2012.

QR CODE