簡易檢索 / 詳目顯示

研究生: 黃冠甄
Kuan-chen Huang
論文名稱: 一種純天然電紡不織布敷料的開發與促進傷口癒合之評估
A development of nonwoven dressing composed of natural materials for promoting wound healing using electrospinning technique
指導教授: 白孟宜
Meng-yi Bai
口試委員: 謝明發
Ming-fa Hsieh
許昕
Hsin Hsiu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 92
中文關鍵詞: 靜電紡絲黃芩素蠶絲蛋白
外文關鍵詞: electrospinning, baicalein, silk fibroin
相關次數: 點閱:332下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以天然蠶絲蛋白(silk fibroin)作為藥物載體,利用靜電紡絲技術(Electrospinning)添加帶有抗發炎和抗菌特性的藥物黃芩素(Baicalein),以及微量的聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)作為藥物釋放的促進劑,製備出次微米的靜電紡絲纖維,且表面具有多孔性的不織布敷料。透過藥物釋放測試可得知,添加聚乙烯吡咯烷酮能使敷料中的黃芩素釋放率增加1.2倍。並由體外細胞實驗證實敷料對細胞具有優異的生物相容性,並且能夠抑制脂多醣誘導巨噬細胞NO的生成。再透過創傷動物模式,將小鼠背部皮膚手術一個大小1.2x1.2 cm2的傷口面積,並施予金黃色葡萄球菌1x107 CFU/mL使傷口感染。實驗結果顯示,給予蠶絲蛋白/聚乙烯吡咯烷酮/黃芩素之靜電紡絲敷料後,明顯減少傷口組織的細菌量及降低嗜中性白血球的浸潤情形而減緩發炎反應,並促進微血管的增生而增加養分輸送,達到增加傷口面積癒合速度。而在組織切片上也發現,添加黃芩素之敷料可促進皮膚結構層次恢復完整性和膠原蛋白的生成增加及排列完整度。因此,由細胞和動物實驗相互應證,此一新開發的純天然蠶絲蛋白/聚乙烯吡咯烷酮/黃芩素之靜電紡絲敷料確實具有抗發炎、抗感染以及加速傷口癒合之療效。


    In this research, the use of natural silk fibroin that is mixed with an active ingredient (baicalein, Bai) represents an effective strategy for producing electrospun nonwoven mats with anti-inflammatory and antibacterial functions. Bai-containing electrospun silk fibroin nonwoven mats (SF/Bai NM) with various compositions of addition were produced and investigated. In vitro, active ingredient-containing SF/Bai NM is effective in inhibiting the formation of nitrite and the growth of Staphylococcus aureus. Both active ingredients Bai and SF have been proven to reach their maximum amount of releases within 8 h of contact with water-based environment. In vivo, a wound area of 1.2 cm x 1.2 cm was created on the back of mice, and then seeded with 1x107 CFU/mL of Staphylococcus aureus to induce an infected wound. Our experimental results show that the mice treated with Silk fibroin / PVP / Baicalein nonwoven mat (SF/PVP/Bai NM) exhibit significant acceleration in wound closure process, and reduction in infiltration of neutrophils, nitric oxide formation, and growth inhibition of wound bacteria. In histological images, the group treated with SFP/PVP/Bai NM shows fully repair of skin hierarchy, increasing production of collagen fibers, and enhancement of angiogenesis. In summary, we successfully prepare an electrospun nonwoven mat composed of all-natural materials, which show potential to be used as a wound dressing.

    中文摘要 Abstract 誌謝 目錄 表目錄 圖目錄 縮寫表 第一章緒論 1-1研究目的與動機 第二章文獻回顧 2-1皮膚生理學 2-1-1功能(Functions) 2-1-2構造(Structure) 2-1-3傷口癒合過程(Phases of healing) 2-2靜電紡絲技術 (Electrospinning) 2-2-1靜電紡絲原理 2-2-2靜電紡絲參數對纖維的影響 2-2-3靜電紡絲在生物醫學應用 2-3生醫材料 2-3-1生物可降解性高分子 2-3-2 聚乙烯吡咯烷酮(polyvinylpyrrolidone) 2-4絲蛋白(Fibroin) 2-4-1絲蛋白的結構與性質 2-4-2絲蛋白作為藥物傳輸之載體 2-4-3絲蛋白靜電紡絲 2-5黃芩素(Baicalein) 2-5-1抑制自由基及抗氧化(antioxidant) 2-5-2抗炎作用(anti-inflammatory) 2-5-3抗微生物作用(antibacterial) 2-5-4抗腫瘤作用(antitumor) 2-5-5抗病毒作用(antiviral activity) 第三章材料及方法 3-1實驗藥品與儀器 3-1-1實驗藥品 3-1-2 實驗儀器 3-2 實驗設計架構 3-3 敷料的製備 3-3-1 蠶絲蛋白的萃取 3-3-2 靜電紡絲溶液配製 3-3-3 利用靜電紡絲系統製備電紡不織布 3-4分析與鑑定 3-4-1 SEM觀察敷料纖維型態與直徑分析 3-4-2 SEM觀察敷料膨潤度與纖維孔隙度分析 3-4-3傅立葉轉換紅外線光譜分析儀 ( FT-IR ) 3-4-4藥物釋放曲線測試 (Release profile test) 3-5抑菌測試 3-5-1菌株種類 3-5-2抗菌測試 3-6細胞實驗 3-6-1細胞株 3-6-2細胞毒性測試-MTT分析 3-6-3抗發炎測試 3-6-4 統計分析 3-7動物實驗模式 3-7-1實驗動物 3-7-2動物實驗模式與敷料組別 3-7-3金黃色葡萄球菌之菌液培養 3-7-4傷口組織殘留細菌量測試 3-7-5傷口面積修復之評估 3-7-6血管新生之評估 3-7-7再生組織病理切片 3-7-8骨質過氧化酶活性分析 第四章結果與討論 4-1靜電紡絲纖維之表面型態觀察 4-2 傅立葉轉換紅外線光譜分析儀 4-3藥物釋放曲線測試 4-4抑菌測試 4-5細胞毒性測試 4-6抗發炎測試 4-7動物實驗模式 4-7-1創傷傷口面積修復表現評估 4-7-2創傷傷口組織殘留細菌量測試 4-7-3感染性傷口再生組織血管新生評估 4-7-4 再生組織病理切片 4-7-5 骨質過氧化酶活性分析 第五章結論 第六章參考文獻 附錄

    1. Katti DS, Robinson KW, Ko FK, Laurencin CT. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. Journal of biomedical materials research Part B, Applied biomaterials. 2004;70(2):286-96.
    2. Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology advances. 2010;28(1):142-50.
    3. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N. Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of biomedical materials research Part B, Applied biomaterials. 2003;67(2):675-9.
    4. Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research. 2002;60(4):613-21.
    5. Chen J-P, Chang G-Y, Chen J-K. Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;313–314:183-8.
    6. Zhou Y, Yang H, Liu X, Mao J, Gu S, Xu W. Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. International Journal of Biological Macromolecules. 2013;53:88-92.
    7. Chung HL, Yue GG, To KF, Su YL, Huang Y, Ko WH. Effect of Scutellariae Radix extract on experimental dextran-sulfate sodium-induced colitis in rats. World journal of gastroenterology : WJG. 2007;13(42):5605-11.
    8. Cao Y, Dai B, Wang Y, Huang S, Xu Y, Cao Y, et al. In vitro activity of baicalein against Candida albicans biofilms. International journal of antimicrobial agents. 2008;32(1):73-7.
    9. Rasekh M, Karavasili C, Soong YL, Bouropoulos N, Morris M, Armitage D, et al. Electrospun PVP–indomethacin constituents for transdermal dressings and drug delivery devices. International Journal of Pharmaceutics. 2014;473(1–2):95-104.
    10. 許士昌, 郭純琦, 新編解剖學, 台灣: 永大書局有限公司; 2008.
    11. The Skin. Herbal Principles in Cosmetics. Traditional Herbal Medicines for Modern Times: CRC Press; 2010. p. 1-8.
    12. Nancy AM-R. Structure and Function of Skin. Dermal Absorption Models in Toxicology and Pharmacology: CRC Press; 2005. p. 1-19.
    13. Jaideep B, Chandan KS. Chronic Wounds and Inflammation. Chronic Inflammation: CRC Press; 2012. p. 173-86.
    14. 張曉芬, 探討Melaleucaalternifolia之萃取物對傷口癒合的作用, 台北市: 國防醫學院; 2009.
    15. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. 2003;63(15):2223-53.
    16. Salles V, Seveyrat L, Fiorido T, Hu L, Galineau J, Eid C, et al. Synthesis and Characterization of Advanced Carbon-Based Nanowires – Study of Composites Actuation Capabilities Containing These Nanowires as Fillers. 2012.295-321.
    17. Sill TJ, von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials. 2008;29(13):1989-2006.
    18. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42(1):261-72.
    19. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 2002;43(16):4403-12.
    20. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer. 1999;40(16):4585-92.
    21. Kai D, Liow SS, Loh XJ. Biodegradable polymers for electrospinning: Towards biomedical applications. Materials Science and Engineering: C. 2014.
    22. Wang B, Wang Y, Yin T, Yu Q. Applications of electrospinning technique in drug delivery. Chemical Engineering Communications. 2010;197(10):1315-38.
    23. Chakraborty S, Liao IC, Adler A, Leong KW. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Advanced Drug Delivery Reviews. 2009;61(12):1043-54.
    24. Meinel AJ, Germershaus O, Luhmann T, Merkle HP, Meinel L. Electrospun matrices for localized drug delivery: Current technologies and selected biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics. 2012;81(1):1-13.
    25. Jie F, Pu LS. Biodegradable Polymers Used in Biomedical Field (Ⅱ). Journal of WuHan University of Technology. 1999;21(5):19-22.
    26. Yu DG, Branford-White C, White K, Li XL, Zhu LM. Dissolution improvement of electrospun nanofiber-based solid dispersions for acetaminophen. AAPS PharmSciTech. 2010;11(2):809-17.
    27. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. European Journal of Pharmaceutics and Biopharmaceutics. 2000;50(1):47-60.
    28. Hilton JE, Summers MP. The effect of wetting agents on the dissolution of indomethacin solid dispersion systems. International Journal of Pharmaceutics. 1986;31(1-2):157-64.
    29. Yagi N, Terashima Y, Kenmotsu H, Sekikawa H, Takada M. Dissolution behavior of probucol from solid dispersion systems of probucol-polyvinylpyrrolidone. Chemical and Pharmaceutical Bulletin. 1996;44(1):241-4.
    30. Ramadan EM, Abd El-Gawad Abd El-Gawad H, Nouh AT. Bioavailability and erosive activity of solid dispersions of some non-steroidal anti-inflammatory drugs. Pharmazeutische Industrie. 1987;49(5):508-13.
    31. Shah JC, Chen JR, Chow D. Preformulation study of etoposide: II. Increased solubility and dissolution rate by solid-solid dispersions. International Journal of Pharmaceutics. 1995;113(1):103-11.
    32. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. The Journal of Biological Chemistry. 2000;275(51):40517-28.
    33. Leng B, Huang L, Shao Z. Chapter 5 - Inspiration from Natural Silks and Their Proteins. In: Rudy JK, editor. Advances in Chemical Engineering. Volume 35: Academic Press; 2009. p. 119-60.
    34. Hardy JG, Scheibel TR. Composite materials based on silk proteins. Progress in Polymer Science. 2010;35(9):1093-115.
    35. Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins. 2001;44(2):119-22.
    36. Hakimi O, Knight DP, Vollrath F, Vadgama P. Spider and mulberry silkworm silks as compatible biomaterials. Composites Part B: Engineering. 2007;38(3):324-37.
    37. Yamada H, Nakao H, Takasu Y, Tsubouchi K. Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Materials Science and Engineering: C. 2001;14(1–2):41-6.
    38. Nair LS, Laurencin CT. Polymers as biomaterials for tissue engineering and controlled drug delivery. Advances in Biochemical Engineering/Biotechnology2006. p. 47-90.
    39. Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews. 2007;59(4-5):207-33.
    40. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. Journal of the Royal Society Interface. 2007;4(17):999-1030.
    41. Numata K, Kaplan DL. Silk-based delivery systems of bioactive molecules. Advanced Drug Delivery Reviews. 2010;62(15):1497-508.
    42. Pritchard EM, Kaplan DL. Silk fibroin biomaterials for controlled release drug delivery. Expert Opinion on Drug Delivery. 2011;8(6):797-811.
    43. Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. Journal of Controlled Release. 2011;150(2):128-41.
    44. Numata K, Cebe P, Kaplan DL. Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials. 2010;31(10):2926-33.
    45. Diab T, Pritchard EM, Uhrig BA, Boerckel JD, Kaplan DL, Guldberg RE. A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. Journal of the Mechanical Behavior of Biomedical Materials. 2012;11:123-31.
    46. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401-16.
    47. Panilaitis B, Altman GH, Chen J, Jin HJ, Karageorgiou V, Kaplan DL. Macrophage responses to silk. Biomaterials. 2003;24(18):3079-85.
    48. Santin M, Motta A, Freddi G, Cannas M. In vitro evaluation of the inflammatory potential of the silk fibroin. Journal of Biomedical Materials Research. 1999;46(3):382-9.
    49. Zhang J, Pritchard E, Hu X, Valentin T, Panilaitis B, Omenetto FG, et al. Stabilization of vaccines and antibiotics in silk and eliminating the cold chain. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(30):11981-6.
    50. Yucel T, Lovett ML, Kaplan DL. Silk-based biomaterials for sustained drug delivery. Journal of Controlled Release. 2014.
    51. TziBun N, Jack HW. A Review of Antifungal and Antiviral Proteins. Novel Therapeutic Agents from Plants: Science Publishers; 2009. p. 208-38.
    52. Gao D, Tawa R, Masaki H, Okano Y, Sakurai H. Protective effects of baicalein against cell damage by reactive oxygen species. Chemical & pharmaceutical bulletin. 1998;46(9):1383-7.
    53. Nakajima T, Imanishi M, Yamamoto K, Cyong JC, Hirai K. Inhibitory effect of baicalein, a flavonoid in Scutellaria Root, on eotaxin production by human dermal fibroblasts. Planta medica. 2001;67(2):132-5.
    54. Suk K, Lee H, Kang SS, Cho GJ, Choi WS. Flavonoid Baicalein Attenuates Activation-Induced Cell Death of Brain Microglia. Journal of Pharmacology and Experimental Therapeutics. 2003;305(2):638-45.
    55. Butenko IG, Gladtchenko SV, Galushko SV. Anti-inflammatory properties and inhibition of leukotriene C4 biosynthesis in vitro by flavonoid baicalein from Scutellaria baicalensis georgy roots. Agents and actions. 1993;39 Spec No:C49-51.
    56. Yun BY, Zhou L, Xie KP, Wang YJ, Xie MJ.Antibacterial activity and mechanism of baicalein. Acta pharmaceutica Sinica. 2012;47(12):1587-92.
    57. Yu J, Rak J. Host microenvironment in breast cancer development: Inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res. 2003;5(2):83 - 8.
    58. Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 1999;13(11):1382-97.
    59. Lynch CC, Matrisian LM. Matrix metalloproteinases in tumor-host cell communication. Differentiation; research in biological diversity. 2002;70(9-10):561-73.
    60. Chandrashekar N, Selvamani A, Subramanian R, Pandi A, Thiruvengadam D. Baicalein inhibits pulmonary carcinogenesis-associated inflammation and interferes with COX-2, MMP-2 and MMP-9 expressions in-vivo. Toxicol Appl Pharmacol. 2012;261(1):10-21.
    61. Hayashi K, Hayashi T, Otsuka H, Takeda Y. Antiviral activity of 5,6,7-trimethoxyflavone and its potentiation of the antiherpes activity of acyclovir. The Journal of antimicrobial chemotherapy. 1997;39(6):821-4.
    62. Formica JV, Regelson W. Review of the biology of Quercetin and related bioflavonoids. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1995;33(12):1061-80.
    63. Middleton E, Jr., Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews. 2000;52(4):673-751.
    64. Lam TL, Lam ML, Au TK, Ip DT, Ng TB, Fong WP, et al. A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sci. 2000;67(23):2889-96.
    65. Chen YC, Shen SC, Chen LG, Lee TJ, Yang LL. Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochemical pharmacology. 2001;61(11):1417-27.
    66. Wound Dressing: Antimicrobial Dressings. In: Wilson DA, editor. Clinical Veterinary Advisor. Saint Louis: W.B. Saunders; 2012. p. 848.
    67. Nogueira GM, Rodas AC, Leite CA, Giles C, Higa OZ, Polakiewicz B, et al. Preparation and characterization of ethanol-treated silk fibroin dense membranes for biomaterials application using waste silk fibers as raw material. Bioresource technology. 2010;101(21):8446-51.
    68. Lee K, Kweon H, Yeo JH, Woo SO, Lee YW, Cho C-S, et al. Effect of methyl alcohol on the morphology and conformational characteristics of silk sericin. International Journal of Biological Macromolecules. 2003;33(1–3):75-80.
    69. 徐云廷, 蠶絲蛋白質薄膜之靜電紡絲製程及其牙齒美白貼片應用研究, 台北市: 臺北醫學大學; 2009.

    無法下載圖示 全文公開日期 2019/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE