簡易檢索 / 詳目顯示

研究生: 苗麗麗
Lili Miao
論文名稱: 面向蜂巢式車聯網和自駕技術的下一代智慧交通系統之研究
Next Generation Intelligent Transportation System Research towards Cellular-V2X and Autonomous Driving
指導教授: 花凱龍
Kai-Lung Hua
口試委員: 鄭文皇
Wen-Huang Cheng
陳永耀
Yung-Yao Chen
陳宜惠
Yi-Hui Chen
孫士韋
Shih-Wei Sun
學位類別: 博士
Doctor
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 113
中文關鍵詞: 智慧交通系統蜂巢式車聯網自駕技術人工智慧號誌時相訊息弱勢道路用戶碰撞預警
外文關鍵詞: Intelligent Transportation System, Cellular-V2X, Autonomous Driving, Artificial Intelligence, SPAT, VRUCW
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • An intelligent transportation system (ITS) is regarded as a highly intelligent platform to provide innovative road services to the public. By introducing high-tech accurate predictions and reliable V2X (Vehicle-to-Everything) communications, ITS can provide safe, efficient, and low-carbon consumption travel experiences for road end users. The 3rd Generation Partnership Project (3GPP) has introduced a novel technology C-V2X (Cellular Vehicle-to-Everything). Through the use of C-V2X communications, the standalone sensor capabilities of a vehicle can be extended to the distances as far as the cellular network covers. As a good example of 5G’s advanced applications, autonomous driving with C-V2X deployment together will coincide and form a new ecosystem, and this ecosystem is changing how people will drive and how transportation will be managed in the future. In this dissertation, firstly, the latest global ITS development status was introduced. Secondly, C-V2X, autonomous driving, artificial intelligence, data security technologies, and how they collaborated in ITS were discussed. Thirdly, protocol designs, message flows, system architectures, experimental environments, and testing results in ITS applications were presented, and some exciting practical experiences in the implementation of C-V2X use cases in the open field were shared. Performance evaluation confirmed that C-V2X technology is promising. Finally, contributions, further development challenges and predictions on future research direction were summarized.

    Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 ITS Background . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution of the Dissertation . . . . . . . . . . . . . . . 7 1.3 Organization of the Dissertation . . . . . . . . . . . . . . . 10 2 Technologies Research . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 C-V2X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 5G Overview . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 ITS Spectrum . . . . . . . . . . . . . . . . . . . . . 14 2.1.3 3GPP Standard Evolution . . . . . . . . . . . . . . 17 2.1.4 Application Scenarios . . . . . . . . . . . . . . . . 20 2.1.5 Deployment in Global . . . . . . . . . . . . . . . . 22 2.2 Autonomous Driving . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Evolution . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Connected Vehicle . . . . . . . . . . . . . . . . . . 25 2.2.3 C-V2X Benefits . . . . . . . . . . . . . . . . . . . . 28 2.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 Evolution . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 Literature Study . . . . . . . . . . . . . . . . . . . 32 2.3.3 Neural Network Methodology . . . . . . . . . . . . 34 2.3.4 Experimental Environment . . . . . . . . . . . . . . 35 2.3.5 Experimental Result . . . . . . . . . . . . . . . . . 37 2.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 40 2.4 Data Security Support . . . . . . . . . . . . . . . . . . . . . 41 2.4.1 Solutions Survey . . . . . . . . . . . . . . . . . . . 41 2.4.2 Protocol Design . . . . . . . . . . . . . . . . . . . . 44 2.4.3 Experimental Result . . . . . . . . . . . . . . . . . 47 2.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 50 3 V2V: Autonomous Driving and C-V2X . . . . . . . . . . . . . . 51 3.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 System Integration . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 Experimental Environment . . . . . . . . . . . . . . . . . . 53 3.4 Performance Result . . . . . . . . . . . . . . . . . . . . . . 54 3.5 Difficulties and Solutions . . . . . . . . . . . . . . . . . . . 55 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 V2I: SPAT Deployment . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Protocol Design . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . 63 4.4 Experimental Result . . . . . . . . . . . . . . . . . . . . . . 65 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 V2N: Operation and Maintenance . . . . . . . . . . . . . . . . . . 70 5.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . 70 5.2 Alarm Threshold . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3 Experimental Result . . . . . . . . . . . . . . . . . . . . . . 72 5.4 Troubleshooting SOP . . . . . . . . . . . . . . . . . . . . . 74 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6 V2P: VRUCW Deployment . . . . . . . . . . . . . . . . . . . . . 76 6.1 Message Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3 Network Topology . . . . . . . . . . . . . . . . . . . . . . . 80 6.4 Experimental Result . . . . . . . . . . . . . . . . . . . . . . 82 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3 Future Research Direction . . . . . . . . . . . . . . . . . . . 88 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    [1] “Road traffic injuries,” 2020.
    [2] “Federal highway administration,” 2021.
    [3] Y. Lin, P. Wang, and M. Ma, “Intelligent transportation system(its): Concept, challenge and opportunity,” in 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids), pp. 167–172, 2017.
    [4] “What is vision zero,” 2018.
    [5] K. Kiela, V. Barzdenas, M. Jurgo, V. Macaitis, J. Rafanavicius, A. Vasjanov, L. Kladovscikov, and R. Navickas, “Review of v2x–iot standards and frameworks for its applications,” Applied Sciences, vol. 10, no. 12, p. 4314, 2020.
    [6] V. Mannoni, V. Berg, S. Sesia, and E. Perraud, “A comparison of the v2x communication systems: Its-g5 and c-v2x,” in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), pp. 1–5, IEEE, 2019.
    [7] R. Sattiraju, D. Wang, A. Weinand, and H. D. Schotten, “Link level performance comparison of cv2x and its-g5 for vehicular channel models,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp. 1–7, IEEE, 2020.
    [8] A. Bazzi, A. Zanella, I. Sarris, and V. Martinez, “Co-channel coexistence: Let its-g5 and sidelink c-v2x make peace,” in 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), pp. 1–4, IEEE, 2020.
    [9] “智慧型運輸系統 its 簡介,” 2020.
    [10] “交通行動服務 (maas) 示範建置計畫 (106-108),” 2020.
    [11] “Taas technology,” 2021.
    [12] A. Singh and B. Singh, “A study of the ieee802.11p (wave) and lte-v2v technologies for vehicular communication,” 2020 International Conference on Computation, Automation and Knowledge anagement (ICCAKM), pp. 157–160, 2020.
    [13] A. R. Khan, M. F. Jamlos, N. Osman, M. I. Ishak, F. Dzaharudin, Y. K. Yeow, and K. A. Khairi, “Dsrc technology in vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) iot system for intelligent transportation system (its): a review,” Recent Trends in Mechatronics Towards Industry 4.0, pp. 97–106, 2022.
    [14] A. Chehri, H. Chehri, N. Hakim, and R. Saadane, “Realistic 5.9 ghz dsrc vehicle-to-vehicle wireless communication protocols for cooperative collision warning in underground mining,” in Smart Transportation Systems 2020, pp. 133–141, Springer, 2020.
    [15] M. Joseph, X. Liu, and A. Jaekel, “An adaptive power level control algorithm for dsrc congestion control,” in Proceedings of the 8th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, pp. 57–62, 2018.
    [16] A.-K. Ajami and H. Artail, “Analyzing the impact of the coexistence with ieee 802.11 ax wi-fi on the performance of dsrc using stochastic geometry modeling,” IEEE transactions on communications, vol. 67, no. 9, pp. 6343–6359, 2019.
    [17] L. Cao, H. Yin, J. Hu, and L. Zhang, “Performance analysis and improvement on dsrc application for v2v communication,” in 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), pp. 1–6, IEEE, 2020.
    [18] T. Shimizu, V. Va, G. Bansal, and R. W. Heath, “Millimeter wave v2x communications: Use cases and design considerations of beam management,” in 2018 Asia-Pacific Microwave Conference (APMC), pp. 183–185, IEEE, 2018.
    [19] V. D. Kumar, V. V. Kumar, and D. Kandar, “Data transmission between dedicated short range communication and wimax for efficient vehicular communication,” Journal of Computational and Theoretical Nanoscience, vol. 15, no. 8, pp. 2649–2654, 2018.
    [20] I. Soto, M. Calderon, O. Amador, and M. Urueña, “A survey on road safety and traffic efficiency vehicular applications based on c-v2x technologies,” Vehicular Communications, vol. 33, p. 100428, 2022.
    [21] R. Molina-Masegosa, J. Gozalvez, and M. Sepulcre, “Configuration of the c-v2x mode 4 sidelink pc5 interface for vehicular communication,” in 2018 14th International conference on mobile ad-hoc and sensor networks (MSN), pp. 43–48, IEEE, 2018.
    [22] S. Bartoletti, B. M. Masini, V. Martinez, I. Sarris, and A. Bazzi, “Impact of the generation interval on the performance of sidelink c-v2x autonomous mode,” IEEE Access, vol. 9, pp. 35121–35135, 2021.
    [23] F. A. Schiegg, N. Brahmi, and I. Llatser, “Analytical performance evaluation of the collective perception service in c-v2x mode 4 networks,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 181–188, IEEE, 2019.
    [24] M. Kutila, P. Pyykonen, Q. Huang, W. Deng, W. Lei, and E. Pollakis, “C-v2x supported automated driving,” in 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–5, IEEE, 2019.
    [25] C. Campolo, A. Molinaro, F. Romeo, A. Bazzi, and A. O. Berthet, “5g nr v2x: On the impact of a flexible numerology on the autonomous sidelink mode,” in 2019 IEEE 2nd 5G World Forum (5GWF), pp. 102–107, IEEE, 2019.
    [26] B. Kang, S. Jung, and S. Bahk, “Sensing-based power adaptation for cellular v2x mode 4,” in 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1–4, IEEE, 2018.
    [27] “Imt vision towards 2020 and beyond,” 2014.
    [28] “5g connectivity will enable new use cases,” 2020.
    [29] “5g coverage map worldwide,” 2021.
    [30] “Federal communications commission news,” 2019.
    [31] G. Naik, B. Choudhury, and J.-M. Park, “Ieee 802.11 bd & 5g nr v2x: Evolution of radio access technologies for v2x communications,” IEEE access, vol. 7, pp. 70169–70184, 2019.
    [32] W. Anwar, N. Franchi, and G. Fettweis, “Physical layer evaluation of v2x communications technologies: 5g nr-v2x, lte-v2x, ieee 802.11 bd, and ieee 802.11 p,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pp. 1–7, IEEE, 2019.
    [33] X. Ma and K. S. Trivedi, “Sinr-based analysis of ieee 802.11 p/bd broadcast vanets for safety services,” IEEE Transactions on Network and Service Management, vol. 18, no. 3, pp. 2672–2686, 2021.
    [34] S. Zeadally, M. A. Javed, and E. B. Hamida, “Vehicular communications for its: Standardization and challenges,” IEEE Communications Standards Magazine, vol. 4, no. 1, pp. 11–17, 2020.
    [35] An assessment of LTE-V2X (PC5) and 802.11p direct communications technologies for improved road safety in the EU, 2017.
    [36] K. Jellid and T. Mazri, “Dsrc vs lte v2x for autonomous vehicle connectivity,” in The Proceedings of the Third International Conference on Smart City Applications, pp. 381–394, Springer, 2020.
    [37] “Keynote address at its america,” 2018.
    [38] K. Ansari, “Joint use of dsrc and c-v2x for v2x communications in the 5.9 ghz its band,” IET Intelligent Transport Systems, vol. 15, no. 2, pp. 213–224, 2021.
    [39] H. King, K. Nolan, and M. Kelly, “Interoperability between dsrc and lte for vanets,” in 2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES), pp. 1–8, IEEE, 2018.
    [40] S. Liu, W. Xiang, and M. X. Punithan, “An empirical study on performance of dsrc and lte-4g for vehicular communications,” in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pp. 1–5, IEEE, 2018.
    [41] T. Bey and G. Tewolde, “Evaluation of dsrc and lte for v2x,” in 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 1032–1035, IEEE, 2019.
    [42] S. M. Hussain, K. M. Yusof, R. Asuncion, S. A. Hussain, and A. Ahmad, “An integrated approach of 4g lte and dsrc (ieee 802.11 p) for internet of vehicles (iov) by using a novel cluster-based efficient radio interface selection algorithm to improve vehicular network (vn) performance,” Sustainable Advanced Computing, pp. 569–583, 2022.
    [43] “One global v2x solution: Dsrc and c-v2x,” 2020.
    [44] “Harman launches new dual-mode v2x system to improve automotive safety,” 2019.
    [45] Vehicle-to-everything, 2022.
    [46] Connectivity Standards in the Automotive Industry, 2019.
    [47] Study on LTE-Based V2X Services, 2016.
    [48] 5GAA releases updated white paper on C-V2X Deployment Timeline, 2019.
    [49] Evolution towards 5G-Advanced, 2021.
    [50] Study on Enhancement of 3GPP Support for 5G V2X Services, 2018.
    [51] Release 16, 2020.
    [52] S. Chen, J. Hu, Y. Shi, L. Zhao, and W. Li, “A vision of c-v2x: technologies, field testing, and challenges with chinese development,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 3872–3881, 2020.
    [53] Release 17, 2020.
    [54] Release 18, 2022.
    [55] Setting off the 5G Advanced evolution Release 18 3GPP, 2022.
    [56] The V2X of Connected Vehicles and C-ITS in Smart Cities, 2021.
    [57] Smart Transportation, 2021.
    [58] 9150 C-V2X ASIC, 2021.
    [59] Study on self-evaluation towards IMT-2020 submission, 2019.
    [60] Study on LTE support for Vehicle-to-Everything (V2X) Services, 2015.
    [61] T. Hirai and T. Murase, “Performance evaluations of pc5-based cellular-v2x mode 4 for feasibility analysis of driver assistance systems with crash warning,”Sensors, vol. 20, no. 10, p. 2950, 2020.
    [62] G. Nardini, A. Virdis, C. Campolo, A. Molinaro, and G. Stea, “Cellular-v2x communications for platooning: Design and evaluation,” Sensors, vol. 18, no. 5, p. 1527, 2018.
    [63] A. Bazzi, C. Campolo, A. Molinaro, A. O. Berthet, B. M. Masini, and A. Zanella, “On wireless blind spots in the c-v2x sidelink,” IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 9239–9243, 2020.
    [64] “智慧運輸 5 年投入 60 億,” 2019.
    [65] a Visionary Roadmap for Advanced Driving Use Cases, Connectivity Technologies, and Radio Spectrum Needs, 2020.
    [66] T. Imai, “Legal regulation of autonomous driving technology: Current conditions and issues in japan,” IATSS research, vol. 43, no. 4, pp. 263–267, 2019.
    [67] I. Panagiotopoulos and G. Dimitrakopoulos, “An empirical investigation on consumers’intentions towards autonomous driving,” Transportation research part C: emerging technologies, vol. 95, pp. 773–784, 2018.
    [68] L. Wei, Z. Li, J. Gong, C. Gong, and J. Li, “Autonomous driving strategies at intersections: Scenarios, state-of-the-art, and future outlooks,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 44–51, IEEE, 2021.
    [69] Y. Cai, T. Luan, H. Gao, H. Wang, L. Chen, Y. Li, M. A. Sotelo, and Z. Li, “Yolov4-5d: An effective and efficient object detector for autonomous driving,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–13, 2021.
    [70] S. Fu, W. Zhang, and Z. Jiang, “A network-level connected autonomous driving evaluation platform implementing c-v2x technology,” China Communications, vol. 18, no. 6, pp. 77–88, 2021.
    [71] Levels of Driving Automation as per SAE International Standard J3016, 2021.
    [72] “China’s huawei aims to reach driverless car technology in 2025,” 2021.
    [73] “Tesla driver killed in crash posted videos driving without his hands on the wheel,” 2021.
    [74] “啟動輔助駕駛不完全?「特斯拉」撞破橫躺貨車廂,” 2020.
    [75] “The evolution of onstar,” 2016.
    [76] “Deliverable d2.1 5gcar scenarios, use cases, requirements and kpi,” 2017.
    [77] C-V2X Use Cases and Service Level Requirements Volume II, 2020.
    [78] “Idc forecasts worldwide 5g connections to reach 1.01 billion in 2023,” 2019.
    [79] L. Spector, “Evolution of artificial intelligence,” Artificial Intelligence, vol. 170, no. 18, pp. 1251–1253, 2006.
    [80] Y. Duan, J. S. Edwards, and Y. K. Dwivedi, “Artificial intelligence for decision making in the era of big data–evolution, challenges and research agenda,” International Journal of Information Management, vol. 48, pp. 63–71, 2019.
    [81] J. M. A. A. Hussein, F. García and C. Olaverri-Monreal, “P2v and v2p communication for pedestrian warning on the basis of autonomous vehicles,” 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 2034–2039, 2016.
    [82] M. C. F. M. Emara and D. Sabella, “Mec-assisted end-to-end latency evaluations for c-v2x communications,” 2018 European Conference on Networks and Communications (EuCNC), pp. 1–9, 2018.
    [83] Hu.Li, “A novel solution for uu interface based c-v2x”, arxiv preprint arxiv:2109.05684,” 2021.
    [84] Arturo.Basaure and Jaume.Benseny, “Smart city platform adoption for c-v2x services,” Calgary: International Telecommunications Society (ITS), 2020.
    [85] Y. et al., “Network performance test and analysis of lte-v2x in industrial park scenario,” Wireless Communications and Mobile Computing, 2020.
    [86] M. et al., “Eu-china joint v2x trial results,” Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Special Session 2-EU-China Collaboration in 5G and Beyond, 2021.
    [87] Y. F. et al., “A survey of driving safety with sensing, vehicular communications, and artificial intelligence-based collision avoidance,” IEEE Transactions on Intelligent Transportation Systems, 2021.
    [88] Y. F. et al., “Infrastructure cooperative algorithm for effective intersection collision avoidance,”Transp. Res. C, Emerg. Technol., vol. 89, pp. 188–204, 2018.
    [89] C. L. S. Lefevre, D. Vasquez, “A survey on motion prediction and risk assessment for intelligent vehicles,” ROBOMECH J., vol. 1, pp. 1–14, 2014.
    [90] W. S. A. Ferdowsi, U. Challita, “Deep learning for reliable mobile edge analytics in intelligent transportation systems - an overview,” IEEE Vehicular Technology Magazine, vol. 14, pp. 62–70, 2019.
    [91] X. e. a. Lu, “Object detection based on ssd-resnet,” pp. 89–92, 2019.
    [92] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” pp. 770–778, 2016.
    [93] X. Lu, X. Kang, S. Nishide, and F. Ren, “Object detection based on ssd-resnet,” in 2019 IEEE 6th International Conference on Cloud Computing and Intelligence Systems (CCIS), pp. 89–92, 2019.
    [94] A.Tharwat, “Classification assessment methods,” Applied Computing and Informatics, vol. 17, no. 1, pp. 168–192, 2021.
    [95] T. Kliestik, K. Zvarikova, and G. Lăzăroiu, “Data-driven machine learning and neural network algorithms in the retailing environment: Consumer engagement, experience, and purchase behaviors,”Economics, Management and Financial Markets, vol. 17, no. 1, pp. 57–69, 2022.
    [96] J. Rahman, K. S. Ahmed, N. I. Khan, K. Islam, and S. Mangalathu, “Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach,” Engineering Structures, vol. 233, p. 111743, 2021.
    [97] S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, 2022.
    [98] N. Ali, B. Viggiano, M. Tutkun, and R. B. Cal, “Data-driven machine learning for accurate prediction and statistical quantification of two phase flow regimes,” Journal of Petroleum Science and Engineering, vol. 202, p. 108488, 2021.
    [99] J. E. Fontecha, P. Agarwal, M. N. Torres, S. Mukherjee, J. L. Walteros, and J. P. Rodríguez, “A twostage data-driven spatiotemporal analysis to predict failure risk of urban sewer systems leveraging machine learning algorithms,” Risk Analysis, vol. 41, no. 12, pp. 2356–2391, 2021.
    [100] N. Cheng, F. Lyu, J. Chen, W. Xu, H. Zhou, S. Zhang, and X. Shen, “Big data driven vehicular networks,” IEEE Network, vol. 32, no. 6, pp. 160–167, 2018.
    [101] M. Hasan, S. Mohan, T. Shimizu, and H. Lu, “Securing vehicle-to-everything (v2x) communication platforms,” IEEE Transactions on Intelligent Vehicles, vol. 5, no. 4, pp. 693–713, 2020.
    [102] Z. Lu, G. Qu, and Z. Liu, “A survey on recent advances in vehicular network security, trust, and privacy,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 2, pp. 760–776, 2018.
    [103] O. Punal, C. Pereira, A. Aguiar, and J. Gross, “Experimental characterization and modeling of rf jamming attacks on vanets,” IEEE transactions on vehicular technology, vol. 64, no. 2, pp. 524–540, 2014.
    [104] M. Azees, P. Vijayakumar, and L. J. Deborah, “Comprehensive survey on security services in vehicular ad-hoc networks,” IET Intelligent Transport Systems, vol. 10, no. 6, pp. 379–388, 2016.
    [105] B. Premasudha, V. RAVI RAM, J. Miller, and R. Suma, “A review of security threats, solutions and trust management in vanets.,” International Journal of Next-Generation Computing, vol. 7, no. 1, 2016.
    [106] B. Wiedersheim, Z. Ma, F. Kargl, and P. Papadimitratos, “Privacy in inter-vehicular networks: Why simple pseudonym change is not enough,” in 2010 Seventh international conference on wireless ondemand network systems and services (WONS), pp. 176–183, IEEE, 2010.
    [107] Security Architecture and Procedures for 5G System, document TS 33.501, 2019.
    [108] Architecture enhancements for 5G System (5GS) to support Vehicle-to-Everything (V2X) services, document TS 23.287, version 16.5.0, 2020.
    [109] “淡水自駕巴士 3 月上路測試,” 2020.
    [110] “「城市即平台」助力智慧城市發展,” 2021.
    [111] Traffic Signal Controller V3.0, 2021.
    [112] “台灣第一個上路載客運行的「智駕巴士」8/3 於淡海輕軌起跑,” 2020.
    [113] R. C.Sommer, D.Eckhoff and F.Dressler, “A computationally inexpensive empirical model of ieee
    802.11 p radio shadowing in urban environments,” Eighth international conference on wireless ondemand network systems and services, pp. 84–90, 2011.
    [114] e. a. Z.Zhang, “Research on road test of dedicated short-range communication performance based on v2x application scenarios,” Automobile Technology, vol. 9, 2018.
    [115] “Rfc2326,” 2021.
    [116] “putty,” 2021.
    [117] D. S. Tan, Y.-X. Lin, and K.-L. Hua, “Incremental learning of multi-domain image-to-image translations,” IEEE Transactions on Circuits and Systems for Video Technology, 2020.
    [118] Y.-C. Y. et al., “Vdnet: Video deinterlacing network based on coarse adaptive module and deformable recurrent residual network,” 2022.
    [119] M. S. et al., “Spatio-temporal self-attention network for fire detection and segmentation in video surveillance,” IEEE Access, vol. 10, 2022.
    [120] N. S. et al., “Photobomb defusal expert: Automatically remove distracting people from photos,”
    vol. 4, no. 5, pp. 717–727, 2020.
    [121] D. S. T. et al., “Incremental learning of multi-domain image-to-image translations,” vol. 31, no. 4, pp. 1526–1539, 2021.
    [122] M. S. et al., “Deep spatial-temporal networks for flame detection,” Multimedia Tools and Applications, vol. 80, 2021.
    [123] J. J. M. O. et al., “Controllable model compression for roadside camera depth estimation,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–8, 2022.
    [124] L. M. et al., “Pc5-based cellular-v2x evolution and deployment,” Sensors, vol. 21, no. 3, p. 843, 2021.
    [125] L. M. et al., “How does c-v2x help autonomous driving to avoid accidents?,” Sensors, vol. 22, no. 2, p. 686, 2022.
    [126] L. M. et al., “C-v2x solution for spat application and maintenance,” 2022.
    [127] “Transport and trade facilitation,” 2017

    無法下載圖示 全文公開日期 2026/01/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE