簡易檢索 / 詳目顯示

研究生: 孫凱閔
Kai-min Sun
論文名稱: PCL結合PEG-acrylaye透過動態光罩成型系統製作3D多孔性組織工程支架
Combine PCL and PEG-acrylate to Fabricate Three-dimensional Scaffolds by Dynamic Mask Rapid Prototyping System
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 白孟宜
Meng-Yi Bai
陳元武
Yuan-Wu Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 128
中文關鍵詞: 動態光罩快速成型系統PCLPEG-acrylate組織工程支架
外文關鍵詞: PCL, Dynamic Masking Rapid Prototyping System, PEG-acrylate, tissue engineering scaffold
相關次數: 點閱:356下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室先前所發展的動態光罩快速成型系統中,使用不需添加光交聯劑即可光固化成型之PCL材料,將其添加光起始劑並且溶於丙酮,經光固化可成功地製作出所需支架。但由於無光交聯劑的關係,使得製作出來的支架強度不足。故本研究將添加市售的光交聯劑PEG-acrylate來彌補材料強度之不足,並且調整動態光罩快速成型系統,使其能與材料系統相互搭配,提升整體精度,製作出3D多孔性組織工程支架。
    本研究將可光固化成型之PCL材料與市售之光交聯劑PEG-acrylate,以6:4、7:3及8:2三種比例進行光固化測試。此三種比例之材料,測得其抗拉強度分別為0.52、0.3、0.25MPa,與先前研究之0.13MPa相較,有大幅之提升;細胞培養結果,亦可見細胞能於其上貼附及生長。由於PEG-acrylate光敏性較強,成型系統加入偏光鏡、套筒以及鏡頭,以降低光強度及延長曝光時間,除可避免過曝現象之外,亦可提高支架製作之精度。三種比例之材料應用於製作單層大孔徑支架,誤差可達2%以內;其中8:2的材料能夠成功地製作出重現性高的150μm孔洞之單層支架,誤差低於5%。並以此精度最佳之材料比例(8:2)製作3D支架,透過網狀偏移的支架設計概念,可堆疊製作出孔徑為100μm的3D多孔性組織工程支架。


    In the previous research in our laboratory, the photo-curable PCL, mixing with photo-initiator, was dissolved in the acetone and photo-polymerized to fabricate tissue engineering scaffolds by a Dynamic Masking Rapid Prototyping System. However, without cross-linking binders, the strength of the cured PCL is not satisfying. Therefore, in this research, commercially available PEG- acrylate was adopted as binder in the material system to improve the strength, the Dynamic Masking RP system was modified for the material to reach better process accuracy, and 3D porous scaffolds were fabricated.
    The materials with three different proportions of photo-curable PCL and PEG-acrylate (6:4, 7:3, and 8:2) were investigated in this study. The tensile strength of cured materials were 0.52, 0.3, and 0.25 MPa respectively, which are higher than the strength of 0.13 MPa in the previous research without adding PEG-acrylate. Cell culture results also showed the evidences of cells attachment and growth. Due to the better photo-sensitivity of PEG-acrylate, polarizer, sleeve, and lens were added to the Dynamic Masking RP system to reduce light intensity and to prolong the exposure time. This can not only avoid over-curing, but also improve the process accuracy. Three materials were applied to fabricate single layer scaffold with larger pore size and the errors were within 2%. In particular, when utilizing material with proportion of 8:2, highly repeatable single layer scaffold with 150μm pore size was successfully fabricated with the error less than 5%. This best material recipe was further used to generate 3D scaffolds with 100μm pore size through offsetting grid pattern in the alternating layer.

    摘要 .................................................... 4 Abstract ................................................ 5 誌謝 .................................................... 6 目錄 .................................................... I 圖目錄 ................................................. IV 表目錄 ................................................. IX 第一章 緒論 ............................................. 1 1.1 前言 ............................................. 1 1.2 研究背景與動機 ................................... 2 1.3 研究目的和方法 ................................... 3 1.4 論文架構 ......................................... 4 第二章 文獻探討 ......................................... 5 2.1 組織工程(Tissue Engineering)介紹 .................. 5 2.1.1 支架材料之特性 .............................. 7 2.1.2 高分子生醫材料 .............................. 8 2.1.3 傳統支架製備方法 ........................... 15 2.2 應用快速原型技術製造組織工程之支架 ............... 19 2.2.1 快速原型加工原理 ........................... 19 2.2.2 快速原型技術應用於組織工程支架之製造 ........ 21 第三章 生醫材料調配與性質檢測 ........................... 32 3.1 實驗藥品與設備 .................................. 32 3.2 材料系統介紹 .................................... 33 3.2.1 可交聯PCL 合成 ............................. 34 3.2.2 光起始劑 ................................... 36 3.2.3 光交聯 ..................................... 38 3.2.4 PCL(聚己內酯) --活性寡聚體 ................. 40 3.2.5 光聚合生醫材料 ............................. 40 3.3 材料性質檢測 .................................... 42 3.3.1 拉伸詴驗 ................................... 42 3.4 細胞培養與生物相容性檢測 ......................... 51 3.4.1 實驗藥品 ................................... 51 3.4.2 細胞培養 ................................... 52 3.4.3 倒立式顯微鏡觀察細胞生長情況 ............... 55 第四章 系統簡介與機構改善 .............................. 59 4.1 生醫動態光罩快速成型系統 ........................ 59 4.1.1 上下照式成型系統差異比較 .................... 59 4.2 下照式生醫動態光罩快速成型系統 ................... 61 4.2.1 動態光罩控制軟體 ........................... 62 4.3 系統相關機構變更 ................................ 70 4.3.1 光學系統變更 ............................... 70 4.4 參數設定與精度檢測 .............................. 77 4.4.1 參數設定 ................................... 77 4.4.2 精度檢測 ................................... 79 4.4.2.1 量測系統介紹 .......................... 79 4.4.2.2 支架精度量測 .......................... 81 第五章 製作3D 組織工程支架 .............................. 85 5.1 加工流程 ........................................ 85 5.2 單層微小孔徑支架製作 ............................ 86 5.3 3D 偏移支架設計與製作 ............................ 92 5.3.1 2D pattern 的設計........................... 93 5.3.2 3D 偏移支架的製作與量測 ..................... 96 5.4 研究成果比較 ................................... 101 第六章 結論與未來研究方向 ............................. 104 6.1 結論 ........................................... 104 6.2 未來工作 ....................................... 105 參考文獻 .............................................. 106

    【1】 Hae Yong Kweon, Mi Kyong Yoo, In KyuPark, Tae Hee Kim, Hyun Chul Lee,Hyun-Sook Lee, Jong-Suk Oh, Toshihiro Akaike, and Chong-SuCho, “A noveldegradable poly caprolactone networks for tissue engineering,” Biomaterials, Volume 24 (2003) 801-808.
    【2】 Background on Tissue Engineering, (http://www-2.cs.cmu.edu/People/tissue/ tutorial.html)
    【3】 王志光,“淺談骨組織再生”, 高雄醫學大學e快報 第128期,2009年3月
    【4】 楊婷琪,“組織工程的重要元件-生物分子”,工研院經貿中心生醫組,2002年7月
    【5】 廖俊仁,“組織工程用多孔隙骨架材料”,工研院生醫工程中心,2002年
    【6】 Shoufeng Yang, Kah-Fai Leong, Zhaohui DU, and Chee-Kai Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional Factors,” Tissue Engineering, Volume 7(2001), 679-689
    【7】 俞耀庭,生物醫用材料,初版,新文京,2004
    【8】 D.K. Gilding, and A.M. Reed, “Biodegradable polymers for use in surgery -Poly(glycolic acid)/Poly(lactide acid)homo-and copolymers.2.In vitro degradation, ” Polymer, Volume 22 (1981) 494-498.
    【9】 工業技術研究院,“生醫材料與組織工程”
    (http://www.itri.org.tw/chi/rnd/focused_rnd/biotech_medicine/e003.jsp)
    【10】 張根源,“生物吸收性PLGA材料合成與應用技術”,工業技術與資訊第112 期,2001年2月。
    【11】 興技生物科技公司, (http://www.bio-invigor.com)
    【12】 蔡秉宏,”以聚殼醣合成光交聯性衍生物之探討”,國立成功大學化學工程研究所,碩士論文,1999。
    【13】 Dumitriu S, “Medical application of synthetic polymers,” Marcel Dekker, NewYork (1994) 725.
    【14】 許芳豪,“以快速原型技術研究組織工程支架孔徑大小對細胞成長之影響”,國立台灣科技大學機械工程研究所,碩士論文,2006。
    【15】 Hae Yong Kweon, Mi Kyong Yoo, In KyuPark, Tae Hee Kim, Hyun Chul Lee, Hyun-Sook Lee, Jong-Suk Oh, Toshihiro Akaike, and Chong-SuCho, “A novel degradable poly caprolactone networks for tissue engineering,” Biomaterials,Volume 24 (2003) 801-808.
    【16】 Ji Sun Park , Dae Gyun Woo , Bo Kyung Sun, “In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application,” Journal of Controlled Release,Volume 124 (2007) 51–59
    【17】 Yu-Zhu Bian , Yang Wang , G. Aibaidoula, “Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration, ” Biomaterials, Volume30(2009) 217-225
    【18】 K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,” Polymer,Volume 36 (1995), 837-842.
    【19】 F. Yang, R. Murugan, S. Ramakrishna, “Fabrication of nano-structured porous PLLAscaffold intended for nerve tissue engineering, ” Biomaterials,Volume 25 (2004), 1891–1900
    【20】 Guobao Wei and Peter X. Ma, “Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering,” Biomaterials ,Volume25 (2004),4749-4757.
    【21】 俞耀庭, “生物醫用材料,” 初版 新文京 2004年
    【22】 Kwangsok Kim, Meiki Yu, Xinhua Zong, Jonathan Chiu, Dufei Fang, Young-Soo Seo, Benjamin S. Hsiao, Benjamin Chu and Michael Hadjiargyrou, “Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications,” Biomaterials Volume24 (2003) 4977-4985.
    【23】 Deniz Yucel, Gamze Torun Kose, Vasif Hasirci, “Polyester based nerve guidance conduit design, ”Biomaterials,Volume31(2010), 1596-1603
    【24】 國立台灣科技大學雷射實驗室( http://140.118.198.70/RP.html)
    【25】 汪家昌,“快速成型與快速模具技術”,國立台北科技大學
    【26】 Zein, IW, Hutmacher, DW, Tan, KC and Toch,SH, ”Fused deposition modeling of novel scaffold architecture for tissue engineering application,” Biomaterials,Volume 23 (2002) 1169-1185
    【27】 Giovanni Vozzi, Christopher Flaim, Arti Ahluwalia and Sangeeta Bhatia, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,”Biomaterials ,Volume24 (2003) 2533–2540
    【28】 K.F. Leong, C.M. Cheah, C.K. Chua, “Solid freeform fabrication of 3D scaffolds for engineering replacement tissue and organs,” Biomaterials ,Volume24 (2003), 2363–2378
    【29】 Park, Ann; Ben Wu; Griffith, Linda G, “Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion, ” J. Biomater. Sci., Polym. Ed. 9 (1998) 89– 110.
    【30】 Tongkui Cui, Yongnian Yan, Renji Zhang, “Biomodeling and fabrication of a hybrid PU-collagen nerve regeneration conduit, ” VECIMS,Volume1(2009),3809-3815
    【31】 Automated Fabrication (http://www.ennex.com)
    【32】 C. X. F. Lam, X. M. Mo, S. H. Teoh and D. W. Hutmacher, “Scaffold development using 3D printing with a starch-based polymer,” Materials Science and Engineering ,Volume20 (2002) 49-56
    【33】 Min Lee, James C.Y. Dunn and Benjamin M. Wu, “Scaffold fabrication by indirect three-dimensional printing,” Biomaterials, Volume 26(2005), 4281-4289
    【34】 Jessica M. Williams, Adebisi Adewunmi, Rachel M. Schek, Colleen L. Flanagan, Paul H. Krebsbach, Stephen E. Feinberg, Scott J. Hollister and Suman Das, “Bone tissue engineering using polycaprolactoe scaffolds fabricated via selective laser sintering,” Biomaterials, Volume 26 (2005) 4817-4827
    【35】 Hongyun Huang, Shunsuke Oizumi, Nobusiko Kojima, Toshiki Niino and Yasuyuki Sakai, “Avidin–biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials, Volume 28(2007), 3815-3823
    【36】 Giovanni Vozzia, Christopher Flaimb, Arti Ahluwaliaa, and Sangeeta Bhatiab, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials, Volume 24(2003), 2533–2540.
    【37】 He Jiankang, Li Dichen, Liu Yaxiong, Yao Bo, Lu Bingheng, Lian Qin “Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures,” Polymer, Volume. 48(2007), 4578-4588.
    【38】 李孟龍,“動態光罩快速原型系統製造組織工程支架之研發”,國立台灣科技大學機械工程研究所,碩士論文,2005。
    【39】 陳俊豪,“光固化快速成型技術製作組織工程支架之研究”,國立台灣科技大學機械工程研究所,碩士論文,2006。
    【40】 許貽玨,“光聚合生物可分解材料應用於RP技術製作組織工程支架性質之研究”,國立台灣科技大學機械工程研究所,碩士論文,2007。
    【41】 陳茂揚 “光固化快速成型系統製作3D組織工程支架”國立台灣科技大學機械工程研究所,碩士論文,2008。
    【42】 曾俊元“動態光罩快速成型系統光聚合PCL-PEG-PCL製作3D組織工程支架”,國立台灣科技大學機械工程研究所,碩士論文,2008。
    【43】 薛智仁“動態光罩快速成型系統製作3D PCL管狀多孔性組織工程支架之研究”,國立台灣科技大學機械工程研究所,碩士論文,2009
    【44】 許端容,“具紫外光交聯性的聚胺酯二醇樹酯合成及應用於組織工程之研究”,國立清華大學材料科學與工程研究所,碩士論文,2004。
    【45】 Sigma –Aldrich (http://www.sigmaaldrich.com)
    【46】 呂恒宗,“組織工程用精密支架之製造”,國立中央大學機械工程研究所,碩士論文,2002。
    【47】 德州儀器亞洲區DLP事業部門,“DLP™技術概要”,元件科技,2003
    【48】 奧圖瑪科技,(www.optoma.com.tw)
    【49】 HOYA光學(http://www.hoyavc.com.tw/)
    【50】 Shoufeng Yang, Kah-Fai Leong, Zhaohui Du, Chee-Kai Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional Factors,” Tissue Engineering, Volume 7 (2001) 679-689.

    QR CODE